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This article studies the aggregation diffusion equation

where ∆ α 2 denotes the fractional Laplacian and K = x |x| a is an attractive kernel. This equation is a generalization of the classical Keller-Segel equation, which arises in the modeling of the motion of cells. In the diffusion dominated case a < α we prove global well-posedness for an L 1 k initial condition, and in the fair competition case a = α for an L 1 k ∩ L ln L initial condition. In the aggregation dominated case a > α, we prove global or local well posedness for an L p initial condition, depending on some smallness condition on the L p norm of the initial condition. We also prove that finite time blow-up of even solutions occurs, under some initial mass concentration criteria.

The models arising in the context of the chemotaxis of cells have been thoroughly studied in recent years. Among those, the (parabolic-elliptic) Keller-Segel equation models the competition between the aggregation and diffusion of cells (see [START_REF] Blanchet | Two-dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions[END_REF] and references therein for a proper biological and mathematical introduction on the topic). In this paper we consider a variant of this classical model where the diffusion is modeled with a fractional laplacian. Such a choice is biologically motivated (see for instance [START_REF] Escudero | The fractional Keller-Segel model[END_REF][START_REF] Bournaveas | The one-dimensional Keller-Segel model with fractional diffusion of cells[END_REF] and references therein). From a mathematical point of view, it is then interesting to study how such a diffusion competes with an aggregation field which singularity is up to the Newtonian one.

More precisely for some (α, a) ∈ R 2 + , we consider the fractional Keller-Segel equation (FKS)

∂ t ρ = ∆ α 2 ρ + λ div((K * ρ)ρ),
where λ > 0 is a parameter encoding the chemosensitivity, or the intensity of the aggregation. The interaction kernel is given by Particular cases of equation (FKS) have been studied by numerous authors recently. The classical case corresponds to the choice α = a = d = 2 and has been thoroughly studied in the past years. In [START_REF] Blanchet | Two-dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions[END_REF], the authors show the global wellposedness when the initial mass M 0 is smaller than the critical one M c = 4π λ . Above this mass, a finite time blow-up is shown to appear. In [START_REF] Carrillo | Uniqueness for Keller-Segel-type chemotaxis models[END_REF] is also established the well posedness for an L ∞ initial condition. This assumption is sufficient to enjoy the Log-Lipschitz regularity of the nonlinear drift K * ρ, as in this case K is the Newtonian kernel (see for instance [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF]). It is possible to relax this assumption to L ln L initial data [START_REF] Fernández | Uniqueness and Long Time Asymptotic for the Keller-Segel Equation: the Parabolic-Elliptic Case[END_REF] or even measure initial data [START_REF] Bedrossian | Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in R2 with Measure-valued Initial Data[END_REF]. Large time behavior is also studied in [START_REF] Blanchet | Two-dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions[END_REF][START_REF] Serrano | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF][START_REF] Fernández | Uniqueness and Long Time Asymptotic for the Keller-Segel Equation: the Parabolic-Elliptic Case[END_REF]. In higher dimension, the variant case α = 2, a = d = 3 is studied in [START_REF] Corrias | Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions[END_REF], where a finite time blow-up is obtained under a concentration of initial mass condition.

K(x) := x |x|
The literature on the fractional case α < 2, is also large and growing. In a significant part of it, the kernel K is the Newtonian one (a = d). In the one dimensional case, [START_REF] Bournaveas | The one-dimensional Keller-Segel model with fractional diffusion of cells[END_REF] provides a well posedness result for an L p initial condition with p > 1 α when α ∈ (0, 1) and p > 1 when a ∈ (0, 1), as well as a finite time blow-up of even solutions under some concentration of initial mass criteria. In the case d ≥ 2, [START_REF] Biler | Morrey spaces norms and criteria for blowup in chemotaxis models[END_REF] also provides some concentration of initial mass criteria leading to a blow-up of even solutions when α ∈ [1, 2) and non even when α ∈ (0, 2). Still in the Newtonian case, [START_REF] Li | Exploding solutions for a nonlocal quadratic evolution problem[END_REF] provides similar results in the range α ∈ (0, 2). See also on the limiting case α = 0, [START_REF] Bertozzi | Blow-up in multidimensional aggregation equations with mildly singular interaction kernels[END_REF] for a ∈ [0, 1), [START_REF] Bertozzi | Finite-time blow-up of solutions of an aggregation equation in R^n[END_REF] for a = 1, and [START_REF] Li | Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels[END_REF] for a ∈ (1, 2). For α = 2 and a ∈ (0, 2), see [START_REF] Karch | Blow-up versus global existence of solutions to aggregation equations[END_REF] and [START_REF] Godinho | Propagation of chaos for a subcritical Keller-Segel model[END_REF], and for a = 1 and α ∈ (0, 1), see [START_REF] Li | Finite-Time Singularities of an Aggregation Equation in R^n with Fractional Dissipation[END_REF][START_REF] Li | Refined blowup criteria and nonsymmetric blowup of an aggregation equation[END_REF] and [START_REF] Biler | Blowup of solutions to a diffusive aggregation model[END_REF]. For a wider than segment range of results see [START_REF] Salem | Propagation of chaos for Some 2 Dimensional Fractional Keller Segel Equations in Diffusion Dominated and Fair Competition Cases[END_REF] of the second author, and [START_REF] Biler | Global and exploding solutions for nonlocal quadratic evolution problems[END_REF][START_REF] Biler | Blowup of solutions to a diffusive aggregation model[END_REF] which results are summarized in Figure 1 Existing results of (FKS).

Main Results

We will work on weighted spaces defined by

M k := {ρ ∈ M, x k ρ ∈ M} L p k := {ρ ∈ L p , x k ρ ∈ L p },
where x = 1 + |x| 2 , L p = L p (R d ) and M = M(R d ) denote the space of bounded measures. We also define the space of functions with finite entropy by

L ln L := {ρ ∈ L 1 , ρ ln(ρ) ∈ L 1 }. (2)
For s ∈ (0, 1), we will denote by C S d,s the best Sobolev's constant such that for any

f ∈ H s C S d,s f 2 L 2d d-2s ≤ |f | 2 H s ,
and for a ∈ (0, d) and p, q > 1 satisfying 2 -a d = 1 p + 1 q , we will denote by C HLS d,a,p the best Hardy-Littlewood-Sobolev's constant such that for any

f ∈ L p , g ∈ L q , (3) 
R 2d |x -y| -a f (x)g(y) dx dy ≤ C HLS d,a,p f L p g L q .
Finally for s ∈ [0, d) and r = 2d d-s , we denote C GNS d,s

the best Gagliardo-Nirenberg-Sobolev's constant such that it holds

C GNS d,s f 2 L r ≤ f L 2 |f | H s .
For a given given couple (a, α) we define the following exponents for the L p spaces which will characterize the integrability of the density

p a,α := d d + α -a (4) p a := p a,0 = d d -a . ( 5 
)
Taking K = x |x| a let appear two main difficulties. The first one is the singularity at x = 0 and the second is the behavior when x → ∞. We will therefore write

K = K 0 + K c = χK + (1 -χ)K, where χ ∈ C ∞ c verifies 1 B1 ≤ χ ≤ 1 B2
. Several parts of our analysis could be easily generalized to more general kernels with similar behavior. Definition 2.1. For any T > 0, we say that ρ is a weak solution to the (FKS)

equation on (0, T ) with initial condition ρ in ∈ M if it satisfies ρ ∈ C 0 [0, T ), M (1-a)+ if a ∈ (0, 2] ρ ∈ C 0 ([0, T ), M) ∩ L 1 loc ((0, T ), L pa,2 ) if a ∈ (2, d + 2),
and for any ϕ

∈ C 2 c R d ρ(t) -ρ in ϕ = t 0 R d ρ(s) (I(ϕ) -K c * (ρ(s) • ∇ϕ)) (6) + R 2d K 0 (x -y)(∇ϕ(x) -∇ϕ(y))ρ(s, dx)ρ(s, dy) ds.
We say that this solution is global if we can take T = +∞.

The definition makes sense since it is easy to notice that

K c * (ρ∇ϕ) ∈ C 0 ∩ L ∞ ( x a-1 ) K 0 (x -y)(∇ϕ(x) -∇ϕ(y)) ∈ C 0 ∩ L ∞ (R 2d ) if a ∈ (0, 2).
Moreover, if a ∈ (2, d + 2), the last term in Definition 2.1 is bounded thanks to Hardy-Littlewood-Sobolev inequality. Remark that at least formally, this equation conserves the mass which we will denote by

M 0 := R d ρ in .
First we obtain a global or local well-posedness result, depending on the regime, given in the

Theorem 1. Let (α, a) ∈ [0, 2) × [0, d) be such that a + α > 1 and k ∈ [(1 -a) + , α). • When a < α and ρ in ∈ L 1
k , there exists a unique and global weak solution to the (FKS) equation.

• When a = α, if ρ in ∈ L 1 k ∩ L ln L satisfies (7) λM 0 < C a,d = 4(2π) a (d -a) ω 2d ω d ω d-a ω 2d-a max ω d-a ω d+a , ω 2 d-a/2 ω 2 d+a/2
, then there exists a unique and global weak solution to the (FKS) equation.

• When a > α and ρ in ∈ L 1 k ∩ L p with p ∈ (p a,α , p a ), there exists a time T > 0 such that there is a unique solution to the (FKS) equation on (0, T ). Moreover there is a constant C λ,p (M 0 ) such that if

(8) ρ in L p ≤ C λ,p (M 0 ), then the solution is global.
Remark 2.1. The constraint a + α > 1 comes from the necessity to propagate moments, which is necessary for our notion of solution and gives us compactness. Remark that it is only due to the behaviour at infinity of the interaction kernel, which we denoted by K c , and not to the singularity. Therefore, our Theorem would hold also for example for the following kernel

K(x) = x |x| a χ(x) + x |x| β (1 -χ(x)),
for any β > 1-α and which relaxes the condition a+α > 1. As it can be seen in the proof, this condition can also be removed by assuming ρ even. It is interesting also to notice that formula [START_REF] Karch | Blow-up versus global existence of solutions to aggregation equations[END_REF] could also provide an alternative definition of solution which does not need moments. However, it is not clear whether it is sufficient to provide compactness.

Remark 2.2. The explicit value of C HLS

d,a,p for a ∈ (0, d) and p = q in (3) and C S d,s for s ∈ (0, 1) are known, see for instance [START_REF] Lieb | Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities[END_REF][START_REF] Lieb | Analysis[END_REF]. Remarking that the HLS conjugate as defined in (3) of p a/2 is itself, it holds

C HLS d,a,p a/2 = π a 2 Γ d-a 2 Γ d -a 2 Γ d 2 Γ(d) -1+ a d = ω 2d-a ω d-a ω 2d ω d a-d d C S d,s = 2 2s π s Γ d+2s 2 Γ d-2s 2 Γ d 2 Γ(d) 2s d = (2π) 2s ω d-2s ω d+2s ω 2d ω d 2s d
, where we recall that

ω d = 2π d/2 Γ(d/2
) . In the case a ≤ α, this theorem enlarges the existing result by Biler et al. [START_REF] Biler | Global and exploding solutions for nonlocal quadratic evolution problems[END_REF], where global existence is proved for d = 2, 3 in the case α ≤ d 2 , and is a novelty in higher dimension. Also it is provided with larger class of initial condition, and a uniqueness result. Note that the case α = a is only the object of some remark in [START_REF] Biler | Global and exploding solutions for nonlocal quadratic evolution problems[END_REF]Remark 3.2]. As for the case α < α < 2, it seems it has not been treated yet to the best of the authors' knowledges. See also [START_REF] Biler | Morrey spaces norms and criteria for blowup in chemotaxis models[END_REF] and [START_REF] Li | Exploding solutions for a nonlocal quadratic evolution problem[END_REF] for the case a = 2.

Let us briefly sketch the proof of this theorem in the case of an L ln L initial condition. Formally differentiating the Boltzmann's entropy along (FKS) (see for instance ([8, Section 2.2]) provides a control of the L 1 ([0, T ), L p ) for p ∈ [1, p α ] by fractional Sobolev's embedding, for any initial mass in the diffusion dominated case and for small initial mass in the fair competition case. Then a slight modification of standard coupling argument enables to obtain stability in this space when p ∈ [1, p a ) and uniqueness when p = p a . The other assumption on the initial condition are meant to control the L 1 ([0, T ), L pa ) norm of the solution in the different regimes.

When global existence holds, we also retrieve some additional properties as a quantitative rate of convergence to 0 in the aggregation dominated case and a gain of local integrability in the diffusion dominated case. Theorem 2. Let (α, a) ∈ [0, 2) × [0, d) and ρ be a solution of the (FKS) equation as given by Theorem 1.

• When a < α, the gain of integrability is given for any p ∈ (1, p a ) by

ρ(t) L p ≤ CM 0 t -d αq + C λ (M 0 ).
• When α < a and for a given p ∈ (p a,α , p a ), ρ in L p < C λ,p (M 0 ) defined by [START_REF] Blanchet | Two-dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions[END_REF], then there exists a constant C = C a,α,p (ρ in ) > 0 such that

ρ L p ≤ CM 0 t -d αq .
• When a = α, the condition becomes

λM 0 < C a,d,p = 4C S d,a/2 p(d -a)C HLS d,a,r , 1 r := p p + 1 1 p + 1 p + 1 1 p a ,
which gives both a gain of integrabilty and an asymptotic behavior for any p ∈ (1, p a )

λM 0 ≤ C a,d,p =⇒ ρ L p ≤ CM 0 t -d αq , ( 9 
)
where C depends only on M 0 , d, p, a and α. Remark 2.3. If ρ is a weak solution to the (FKS) equation as given by definition 2.1 with a = α and λM 0 < C d,a,p for a given p > 1, we are not able to assert the uniqueness unless we assume that ρ in ∈ L ln L.

Finally we obtain a finite time blow-up for even solutions to (FKS) under some concentration of mass condition stated in the

Theorem 3. Let (α, a) ∈ [0, 2) × [0, d) be such that a > α and ρ ∈ C 0 (R + , L 1
k ) be an even weak solution to the (FKS) equation with initial condition

ρ in ∈ L 1 k verifying (10) R d ρ in x k ≤ C * λ k 2(a-k) M 2a-k 2(a-k) 0 ,
for a given universal constant C * depending only on a, α, k and d. Then the solution ceases to be in L 1 in finite time.

The proof of this theorem relies on the time differentiation of an adequate moment, which is adapted to the fractional diffusion and not Newtonian aggregation case, and which leads to a contradiction. We summarize our results in the following figure One of the strength of the result of Theorem 3, even if it deals only with even solutions, is that it applies to weakly singular interactions, i.e. a < 2. Indeed it seems that so far most of finite time blow-up results for aggregation fractional diffusion equation dealt with the case of a Newtonian interaction at the exception of [5, Theorem 2.2], which deals with interactions of the from x |x| near the origin. Considering a less singular kernel than the Newtonian erases some algebraic facilities and requires a thinner estimation of the competing terms. We emphasize that it also covers the purely aggregative case α = 0, giving stronger results than [START_REF] Bertozzi | Finite-time blow-up of solutions of an aggregation equation in R^n[END_REF][START_REF] Li | Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels[END_REF] for the case a ≥ 2. For a ≤ 2, the blow-up was already proved in [START_REF] Bertozzi | Blow-up in multidimensional aggregation equations with mildly singular interaction kernels[END_REF] using a Lagrangian point of view.

Finally, let us comment about the disjunction of the different global existence and finite time blow-up conditions. Condition (8) in Theorem 1 is heuristically in contradiction with the assumption of Theorem 3. First remark that if we require that ρ in is concentrated around zero, for instance with a condition of the type ρ in L 1 k < CM 0 for a given constant C which does not depend on ρ in , then the condition of blow-up ( 10) is equivalent to

λM 0 ≥ C ,
where C is a positive constant that depends only on a, α, k and d. Moreover, in a more general setting, for k > 0,

q = p ∈ (1, ∞) and ρ ∈ L 1 k ∩ L p , the following inequality ρ ≤ C ρ x k d d+kq ρ kq d+kq L p ,
holds with C depending only on d, k and q. With fixed M 0 , this inequality is enough to exclude a priori ( 8) from [START_REF] Serrano | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF], at least in the range of arbitrarily large (or small) ρ in L p or ρ in x k . When this is not the case, we expect that no other behavior appear in the remaining cases.

We bound ourselves to check that in the simple case α = a = 2 < d, the global well-posedness condition ( 7) is coherent with the classical large mass blowup criteria. Indeed take a solution to (FKS) in that case, it is possible to consider initial condition ρ in ∈ L 1 2 and then classically

d dt ρ|x| 2 = R d ρ∆(|x| 2 ) -λ R 2d K(x -y) • (x -y)ρ(dx)ρ(dy) = 2dM 0 -λM 2 0 = 2dM 0 1 - λM 0 2d ,
so that the condition λM 0 > 2d yields to final time blow-up. And since

ω a+2 = 2π a ω a , it holds C 2,d = 4(2π) 2 (d -2) ω 2d ω d ω d-2 ω 2d-2 max ω d-2 ω d+2 , ω 2 d-1 ω 2 d+1 = 4(2π) 2 (d -2) d -2 2d -2 max d(d -2) (2π) 2 , (d -1) 2 (2π) 2 = 2(d -1) < 2d,
so that the two conditions can not be realized simultaneously. 

ρ in ∈ L 1 k . Then ρ ∈ L ∞ loc (R + , L 1 k ). Proof. Let m = x k and M k = ρ L 1 k . When k ≥ 1, the convexity of m leads to dM k dt = R d ρ I (m) -λ R 2d h m (x, y)ρ(dx)ρ(dy) (11) ≤ R d ρ I (m), where h m (x, y) = (∇m(x)-∇m(y))•(x-y) |x-y| a ≥ 0. From [4, Remark 4.2]
and [21, Proposition 2.2], we know that for any k ∈ (0, α),

(12) I (m) ≤ C α,k m(x) x -α .
Since m(x) x -α ≤ 1, the following inequality holds

dM k dt ≤ C α,k M 0 . When k ∈ [1 -a, α ∧ 1), there exists R > 0 such that m is strictly convex on B R .
Therefore, a part of the second term in ( 11) is still nonpositive

- |x-y|≤R h m (x, y)ρ(dx)ρ(dy) ≤ - |x-y|≤R |x -y| 2-a ρ(dx)ρ(dy).
The other part can be controlled as follows

- |x-y|>R h m (x, y)ρ(dx)ρ(dy) ≤ k |x-y|>R (x • y)( x k-2 + y k-2 ) |x -y| a ρ(dx)ρ(dy) ≤ 2k |x-y|>R (x • y) x k-2 |x -y| a ρ(dx)ρ(dy) ≤ 4k |x-y|>R,|x|>|y| |x||y| x k-2 |x -y| a ρ(dx)ρ(dy) ≤ 4k(I 1 + I 2 ),
where

I 1 = |x-y|>R,2|x|<|y| |y| x k-1 |x -y| a ρ(dx)ρ(dy) I 2 = |x-y|>R,|x|<|y|<2|x| |y| x k-1 |x -y| a ρ(dx)ρ(dy). Since |x -y| > ||y| -|x|| > |y||1 -|x|/|y|| > |y|/2 when |y| > 2|x|, we get I 1 ≤ 2 a |x-y|>R,2|x|<|y| |y| 1-a x k-1 ρ(dx)ρ(dy) ≤ 2 a M 1-a M 0 .
For I 2 , we use the fact that |y| < 2 x to obtain

I 2 ≤ 2 R a |x-y|>R,|x|<|y|<2|x|
x k ρ(dx)ρ(dy)

≤ 2 R a M k M 0 .
Combining these three inequalities with [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF] and [START_REF] Carrillo | Local well-posedness of the generalized Cucker-Smale model with singular kernels[END_REF], we obtain

dM k dt ≤ C α,k M k-α + λM 0 2 1-a M 1-a + 2 R a M k .
In particular, since 1 -a ≤ k and k -α < 0, we get

dM k dt M k ≤ M 0 C α,k + λ 2 1-a + 2 R a M k .
By Gronwall's Lemma, this leads to

M k ≤ M in k + C α,k λC a,R e λC a,R M0t ,
which proves the result.

The second type of estimates are a priori bounds of integrability. Let us first briefly emphasize that the quantities we estimate will take the form

R d Φ(u(x)) dx,
where u ≥ 0 and Φ : R + → R + is a non-decreasing convex mapping such that Φ(0) = 0 and u → u Φ (u) ∈ L 1 loc . Then we can define

Ψ(u) := u 0 v Φ (v) dv (13) ψ(u) := 1 2 u 0 √ Φ . ( 14 
)
For p = q > 1 and u ≥ 0, we recover Lebesgue norms and Boltzmann's entropy as follow

Φ p (u) := 1 p-1 u p =⇒ Ψ p (u) = u p ψ p (u) = 2 √ p u p/2 Φ 1 (u) := u ln(u) =⇒ Ψ(u) = u ψ 1 (u) = 2u 1/2 . Lemma 3.1 (General estimate). Assume that (α, a) ∈ (0, 2] × (0, d) (with α = 2 if d = 2
) and let ρ be a smooth solution to the (FKS) equation, Φ be a non-decreasing convex mapping, Ψ and ψ be defined respectively by [START_REF] Carrillo | Propagation of chaos for the VPFP equation with a polynomial cut-off[END_REF] and ( 14) and b ∈ (1, p a ).

Then there holds d dt

R d Φ(ρ) ≤ λ(d -a)C HLS d,a,b ρ L s Ψ(ρ) L b -|ψ(ρ)| 2 H α 2 , (15) ≤ λ(d -a)C HLS d,a,b ρ L s Ψ(ρ) L b -C S d,α/2 ψ(ρ) 2 L b , ( 16 
)
where 1 s = 2 - a d - 1 b , 2 b = 1 - α d .
Proof. We define the "Carré du Champs" and the Φ-dissipation by [START_REF] Godinho | Propagation of chaos for a subcritical Keller-Segel model[END_REF] where c d,α is defined in [START_REF] Bedrossian | Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in R2 with Measure-valued Initial Data[END_REF]. With these definitions, we have

Γ(u, v) := c d,α 2 R d (u(y) -u(x))(v(y) -v(x)) |x -y| d+α dy dx (17) D Φ (u) := Γ(u, Φ (u)),
R d I (u)v = R d u I (v) = - R d Γ(u, v).
In particular, since Φ is convex,

R d I (u)Φ (u) = - R d D Φ (u) ≤ 0. We remark that |ψ(u) -ψ(v)| 2 = v u √ Φ 2 ≤ v u ds v u Φ ≤ (u -v)(Φ (u) -Φ (v)),
which by definition (17) leads to

Γ(ψ(u), ψ(u)) ≤ Γ(u, Φ (u)). Therefore (19) |ψ(u)| 2 H α 2 = R d Γ(ψ(u), ψ(u)) ≤ R d Γ(u, Φ (u)) = R d D Φ (u).
Let ρ be a nonegative solution to the (FKS) equation. Then formally

d dt R d Φ(ρ) = R d Φ (ρ) I (ρ) -λΦ (ρ)∇ρ • (K * ρ)ρ = - R d D Φ (ρ) - R d λ∇(Ψ(ρ)) • (K * ρ) = - R d D Φ (ρ) + λ R d Ψ(ρ)(div(K) * ρ) = - R d D Φ (ρ) + λ(d -a) R d 1 |x| a * ρ . ( 20 
)
We remark that by Hardy-Littlewood-Sobolev inequality, we have

(d -a) R d 1 |x| a * ρ Ψ(ρ) ≤ (d -a)C HLS d,a,b ρ L s Ψ(ρ) L b ,
and by [START_REF] Hauray | Wasserstein distances for vortices approximation of euler-type equations[END_REF] and Sobolev embeddings, we have

- R d D Φ (ρ) ≤ -|ψ(ρ)| 2 H α 2 ≤ -C S d,α/2 ψ(ρ) 2 L b ,
which ends the proof. 

R d ρ ln(ρ) + 4C -1 a,d (λM 0 -C a,d ) t 0 | √ ρ| 2 H a 2 ≤ R d ρ in ln(ρ in ),
with ρ = ρ(t, •) and

C a,d = 4(C GNS d,a/2 ) 2 (d -a)C HLS d,a,p a/2 . Moreover if λM 0 < C a,d and for some T, k > 0, ρ ∈ L ∞ ((0, T ), L 1 k ), then (21) ρ ∈ L 1 ((0, T ), L pa ).
Remark 3.1. The explicit value for C GNS d,a/2 does not seem to be known, however the following lower bound holds

(22) C GNS d,s ≥ max C S d,s/2 , (C S d,s ) 1/2 .

Indeed, a first way to get the Gagliardo-Nirenberg-Sobolev inequality is to first use Sobolev's inequality and then interpolation between

H s spaces C S d,s/2 f 2 L r ≤ |f | 2 H s 2 ≤ f L 2 |f | H s .

A second way is to first interpolate between Lebesgue spaces and then to use Sobolev's inequality

(C S d,s ) 1/2 f 2 L r ≤ (C S d,s ) 1/2 f L 2 f L r 2 ≤ f L 2 f H s , where r 2 := 2d d-2s .
Proof. We use inequality [START_REF] Corrias | Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions[END_REF] for

Φ = Φ 1 , ψ 1 (u) = 2u 1/2 and b = s = p a/2 to obtain d dt R d ρ ln(ρ) ≤ λ(d -a)C HLS d,a,b ρ 2 L b -|ψ 1 (ρ)| 2 H a 2 .
Then, by Gagliardo-Nirenberg-Sobolev's inequality, we have

(C GNS d,a/2 ) 2 ρ 2 L b = (C GNS d,a/2 ) 2 ρ 1/2 4 L 2b ≤ ρ 1/2 2 L 2 |ρ 1/2 | 2 H a 2 = M 0 |ρ 1/2 | 2 H a 2 . Hence, since ψ 1 (u) = 2u 1/2 , we have 4(C GNS d,a/2 ) 2 ρ 2 L b ≤ M 0 |ψ 1 (ρ)| 2 H a 2 . This yields d dt R d ρ ln(ρ) ≤ C -1 a,d (λM 0 -C a,d ) |ψ 1 (ρ)| 2 H a 2
, which proves the first assertion. Formula (21) comes form the fact for k > 0, defining

λ k > 0 such that R d e -λ k x k dx = 1, with h(u) = u ln u -u + 1 ≥ 0 it holds R d ρ log ρ = R d h ρe λ k x k e -λ k x k + R d ρ ln(e -λ k x k ) ≥ -λ k R d ρ x k .
Combined with the following Sobolev's inequality

4C S d,a/2 ρ L pa = C S d,a/2 ψ 1 (ρ) 2 L 2pa ≤ |ψ 1 (ρ)| 2 H a 2 , it yields 0 ≤ R d ρ ln(ρ) + λ k x k ρ + 4C S d,a/2 C -1 a,d (C a,d -λM 0 ) t 0 ρ L pa ≤ R d ρ in ln(ρ in ) + λ k ρ L ∞ (0,T ;L 1 k )
, and the conclusion follows.

Proposition 3.3 (L p estimates). Let (α, a) ∈ [0, 2) × [0, d).
Then, when a < α and p = q ∈ (1, p a ), we get a gain of integrability from L 1 to L p and a global in time propagation of the L p norm

(23) ρ(t) L p ≤ CM 0 max t -d αq , M d q(α-a) 0 ,
where C > 0 is a constant depending on d, a, α, p and λ. When a > α, then for any p ∈ (p a,α , p a ), there exists two constants

C = C a,α,p > 0 and C in = C a,α,p ( ρ in L p ) such that ρ in L p < CM 0 (λM 0 ) -d (a-α)q =⇒ ρ L p ≤ C in M 0 t -d αq ( 24 
)
ρ in L p > CM 0 (λM 0 ) -d (a-α)q =⇒ ρ ∈ L ∞ ((0, T ), L p ) (25) ρ in L p = CM 0 (λM 0 ) -d (a-α)q =⇒ ρ ∈ L ∞ (R + , L p ), ( 26 
)
where

T < C a,α,p (λ, M 0 ) ρ in -pb L p with b = α p(α -a) + d(p -1)
.

When a = α, then there exists a constant

C a,d,p = 4C S d,α/2 (d -a)C HLS d,a,r
, such that for any p ∈ (1, p a ),

λM 0 ≤ C a,d,p =⇒ ρ L p ≤ M 0 (C in b) -1 b t -d αq ( 27 
)
λM 0 ≥ C a,d,p =⇒ ρ ∈ L ∞ ((0, T ), L p ), ( 28 
)
where C in is a nonnegative constant depending on the initial data and

T > 1 bC in M 0 ρ in L p αq d . Remark 3.2.
The critical mass is clearly not optimal since we could use optimal constants in the Gagliardo-Nirenberg type embeddings, as it is done in the L ln L estimate, instead of using Sobolev's embeddings and interpolation between Lebesgue spaces.

Proof. We will separate the proof into severals steps.

Step 1. Differential inequality for the L p norm. We recall that

1 r = p p + 1 1 p + 1 p + 1 1 p a .
Since p < p a , it implies that r ∈ (p, p a ) and in particular r/p > 1. Therefore, by taking Φ = Φ p , r = s and b = r/p in inequality [START_REF] Fernández | Uniqueness and Long Time Asymptotic for the Keller-Segel Equation: the Parabolic-Elliptic Case[END_REF] and defining r = p b 2 , we obtain

d dt R d Φ p (ρ) ≤ λC a,r ρ p+1 L r -Cα p ρ p L r , ( 29 
)
where

C a,r = (d -a)C HLS d,a,r , C α = 4C S d,α/2 and p + 1 r = 2 - a d (30) p r = 1 - α d . ( 31 
)
We also remark that

r ≤ r ⇔ 1 p 1 -α d ≤ 1 p+1 2 -a d ⇔ 1 + 1 p (d -α) ≤ (2d -a) ⇔ p ≥ d -α d + α -a .
Since p ≥ p a,α ≥ d-α d+α-a , we deduce that r ≤ r. We will now use interpolation between Lebesgue spaces to express the left hand side of [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] in terms of M 0 and the L p norm only. Let ε ∈ (0, 1) to be choosen later and

b 0 := a -α(1 -ε) εd(p -1) = α d(p -1) + a -α εd(p -1) (32) θ 1 := εp p + 1 (1 + b 0 ) (33) θ 2 := (1 -ε)p p + 1 (34) θ 0 := 1 -θ 1 -θ 2 . ( 35 
)
Since p > 1 and ε ∈ (0, 1), we deduce that θ 2 ∈ [0, 1). Moreover, using the respective definitions [START_REF] Salem | Propagation of chaos for Some 2 Dimensional Fractional Keller Segel Equations in Diffusion Dominated and Fair Competition Cases[END_REF] and (31) of r and r, we have

θ 1 p + θ 2 r + θ 0 = ε(1 + b 0 )p p + 1 1 p -1 + (1 -ε)p p + 1 1 r -1 + 1 = 1 p + 1 ε(1 -p)(1 + b 0 ) + (1 -ε) 1 - α d -p + p + 1 = 1 p + 1 ε(1 -p) - a -α(1 -ε) d + 2 - α d -ε (1 -p) + ε α d = 1 p + 1 2 - a d = 1 r .
Therefore, if we can choose ε ∈ (0, 1) such that (θ 0 , θ 1 ) ∈ [0, 1] 2 , we obtain by interpolation

ρ p+1 L r ≤ M θ0(p+1) 0 ρ pε(1+b0) L p ρ p(1-ε) L r = A ε B 1-ε .
Then, by using the standard Young's inequality a ε b 1-ε ≤ εa + (1 -ε)b, for any ε 0 > 0, we have

A ε B 1-ε = 1 -ε ε 0 1-ε ε A ε ε 0 B 1 -ε 1-ε ≤ C ε,ε0 A + ε 0 B, with C ε,ε0 = ε 1-ε ε0 1-ε ε . Coming back to (29), it yields d dt R d Φ p (ρ) ≤ (λC a,r ) 1/ε C ε,ε0 M θ0(p+1)/ε 0 ρ p(1+b0) L p + ε 0 -Cα p ρ p L r , ( 36 
)
where we take ε 0 smaller than C α /p. Since 1 ≤ p ≤ r, again by interpolation, we get

ρ p(1+b1) L p ≤ M pb1 0 ρ p L r , with b 1 = α d(p -1)
.

Thus, inequality (36) becomes

d dt ρ p L p ≤ C 1 M θ0(p+1)/ε 0 ρ p(1+b0) L p -C 2 M -pb1 0 ρ p(1+b1) L p , ( 37 
)
where

C 1 = (p -1)(λC a,r ) 1/ε C ε,ε0 and C 2 = (p -1) Cα p -ε 0 .
Step 2. Conditions on ε. We still have to verify that we can choose ε so that (θ 0 , θ 1 ) ∈ [0, 1] 2 . By definition (33) of θ 1 , we get

θ 1 ≥ 0 ⇔ b 0 ≥ -1 ⇔ a -α + αε > -εd(p -1) ⇔ ε ≥ α -a α + d(p -1) = ε m .
Moreover, by definition (35) of θ 0

θ 0 ≥ 0 ⇔ θ 1 + θ 2 ≤ 1 ⇔ p p + 1 (1 + εb 0 ) ≤ 1 ⇔ εb 0 ≤ 1 p ⇔ a -α(1 -ε) d(p -1) ≤ 1 p ⇔ ε ≤ 1 - 1 α a - d q = ε M . Since p < p a , ε M < 1.
Let us check that it is nonnegative. We have

ε M ≥ 0 ⇔ a - d q ≤ α ⇔ 1 q ≥ a -α d .
Since q = p ≥ 1, this is always verified when a ≤ α. When a > α, it is verified by hypothesis since we can also read previous formula as

ε M ≥ 0 ⇔ p ≥ d d + α -a = p a,α .
When a < α, we also have to verify that ε m ≤ ε M . We have, indeed

ε M ε m = (p(α -a) + d(p -1))(α + d(p -1)) pα(α -a) = pα(α -a) + d(p(p -1)(α -a) + α(p -1) + d(p -1) 2 ) pα(α -a) = 1 + d(p -1) p(α -a) + α + d(p -1) pα(α -a) > 1.
Therefore, since θ 2 ≥ 0 and

θ 0 + θ 1 + θ 2 = 1, we proved that for any ε ∈ [max(ε m , 0), min(ε M , 1)], (θ 0 , θ 1 , θ 2 ) ∈ [0, 1] 3
. By looking at (37), we want to take ε which minimizes b 0 . Hence, we take

ε = ε m when a < α, ε = ε M when a > α.
Step 3. Case a < α. In this case, we have ε = ε m , which yields b 0 = -1. Moreover, since θ 0 (p + 1) = p + 1 -(1 -ε)p = 1 + εp, by (37), we obtain

d dt ρ p L p ≤ C 1 M p+1/ε 0 -C 2 M -pb1 0 ρ p(1+b1) L p . Then, either (38) C 2 M -pb1 0 ρ p(1+b1) L p ≤ 2C 1 M p+1/ε 0 , or (39) d dt ρ p L p ≤ -1 2 C 2 M -pb1 0 ρ p(1+b1) L p .
Inequality (38) is equivalent to

ρ p L p ≤ 2C 1 C 2 1 1+b 1 M p+ 1 ε(1+b 1 ) 0 =: C(M 0 ),
and by Gronwall's inequality, (39) leads to

ρ p L p ≤ 1 2 C 2 M -pb1 0 b 1 t -1/b1 = M p 0 b1 2 C 2 t -1/b1
Step 4. Case a > α. In this case, we have

ε = ε M = p(α -a) + d(p -1) αp = 1 pb ,
which by definition (32) leads to

b 0 = 1 d(p -1) α + a -α ε = α d(p -1) p(α -a) + d(p -1) + p(a -α) p(α -a) + d(p -1) = α p(α -a) + d(p -1) = b,
and by inequality (37), to d dt

ρ p L p ≤ C 1 M θ0(p+1)/ε 0 ρ p(1+b) L p -C 2 M -pb1 0 ρ p(1+b1) L p .
As remarked previously, ε = ε M ≥ 0. Therefore, since a > α,

(40) b = b 1 + a -α εd(p -1) ≥ b 1 .
The estimate on the L p norm is then obtained by analyzing the corresponding ODE which is of the form y (t) = Ay(t) 1+b -By(t) 1+b1 , with A and B nonnegative. It has a fixed point at y = 0 and at

y = B A 1 b-b 1 ≥ 0.
Therefore, when y(0) ∈ [0, y ), it yields y(t) ∈ [0, y ) for any t > 0, and since y ≤ 0 in this interval, it implies the existence of a constant C = C(y(0) in ) < 1 such that Ay 1+b ≤ CBy 1+b1 .

It implies that

y ≤ -(1 -C)By 1+b1 , which, by Gronwall's inequality, leads to

∀t ∈ R + , y ≤ 1 (y(0) -b1 + b 1 (1 -C)Bt) 1 b 1 ≤ M p 0 (b 1 (1 -C)C 2 t) 1 b 1 .
When y(0) > y , we can still write that y ≤ Ay 1+b .

It implies that the solution is bounded in [0, T ] for some T > 0 and

∀t ∈ [0, T ], y(t) ≤ 1 (y(0) -b -bAt) 1 b T < 1 bAy(0) b .
We deduce the corresponding results for the L p norm of ρ by Gronwall's inequality. When y = y , all we get that y is constant and therefore that ρ p L p ≤ y for any t > 0. We can compute more precisely

y = C 2 M -pb1 0 C 1 M θ0(p+1)/ε 0 1 b-b 1 = C 2 C 1 1 b-b 1 M -θ0(p+1)/ε-pb1 0 1 b-b 1 .
Now by the definitions of C 1 and C 2 in step 1, by (40) and the definition (35) of θ 0 , we have

θ 0 (p + 1) = 1 -εpb = 0 (b -b 1 )ε = a -α d(p -1) C 1 = (p -1)(λC a,r ) 1/ε C ε,ε0 C 2 = (p -1) Cα p -ε 0 .
This leads to

y = C α -ε 0 p (λC a,r ) 1/ε C ε,ε0 p 1 b-b 1 M p(b-b1)-1/ε 0 1 b-b 1 = C p a,α,p M p- d(p-1) a-α 0 λ d(p-1)
a-α .

Step 5. Case a = α. When a = α, by definition (32), b 0 does not depend on ε and

b = b 0 = b 1 = α d(p -1) θ 0 (p + 1) = 1 -εpb.
Moreover, we can take any ε ∈ (ε m , ε M ] = (0, d/(αq)]. Thus, by inequality (37), we get

d dt ρ p L p ≤ C 1 M (1-εpb)/ε 0 ρ p(1+b) L p -C 2 M -pb 0 ρ p(1+b) L p ≤ ρ p(1+b) L p M -pb 0 C 1 M 1/ε 0 -C 2 .
The left hand side will be negative when

(41) M 0 ≤ C 2 C 1 ε = (C α /p -ε 0 ) ε λC a,r ε 0 1 -ε 1-ε ε -ε = u ε (ε 0 ).
Taking ε 0 maximizing the right hand side, we get

ε 0 = (1 -ε)C α /p u ε (ε 0 ) = C α pλC a,r = C a,d,p λ .
When this is the case, then

C in := |C 1 M 1/ε 0 -C 2 | > 0 and by Gronwall's inequality ∀t ∈ R + , ρ p L p ≤ 1 ( ρ in -pb L p + bM -pb 0 C in t) 1 b ≤ M p 0 (bC in t) 1 b
, which proves [START_REF] Lieb | Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities[END_REF]. When M 0 > M * 0 we only get the existence of T > 0 such that

∀t ∈ [0, T ], ρ p L p ≤ 1 ( ρ in -pb L p -bM -pb 0 C in t) 1 b
.

Moreover, T verifies T > 1 bC in M 0 ρ in L p pb ,
which proves [START_REF] Lieb | Analysis[END_REF]. 43) is a consequence of (36), which by integrating in time leads to

ρ p L p (t) + C 2 t 0 ρ(s) p L r ds ≤ ρ in p L p + C 1 M θ0(p+1)/ε 0 t 0 ρ(s) p(1+b0) L p ds. If ρ ∈ L ∞ ([0, T ], L p ), then we deduce that C 2 t 0 ρ(s) p L r ds ≤ ρ in p L p + C 1 M θ0(p+1)/ε 0 T ρ p(1+b0) L ∞ ([0,T ],L p ) ,
and we conclude by using ( 24) or (25).

Tightness and coupling.

For the rest of the section we consider some given stochastic basis (Ω, F, (F t ) t≥0 , P). The expectation with respect to P will be denoted E. We frist provide a generalization of [START_REF] Carrillo | Propagation of chaos for the VPFP equation with a polynomial cut-off[END_REF]Proposition 3.1] 

(i) E |X -Y | k-1 K(X -X) -K(Y -Ȳ ) ≤ CC ρ1,ρ2 E k ,
and when p = p a ,

(ii) E |X -Y | k-1 K(X -X) -K(Y -Ȳ ) ≤ CC ρ1,ρ2 E k 1 + ln -(E k ) k ,
where

C ρ1,ρ2 = 1 + ρ 1 L p + ρ 2 L p and E k = E [X -Y | k .
Remark 3.3. The point (i) of this Lemma has been extensively used in the literature (See for instance [START_REF] Carrillo | Local well-posedness of the generalized Cucker-Smale model with singular kernels[END_REF][START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF][START_REF] Godinho | Propagation of chaos for a subcritical Keller-Segel model[END_REF][START_REF] Salem | Propagation of chaos for Some 2 Dimensional Fractional Keller Segel Equations in Diffusion Dominated and Fair Competition Cases[END_REF]). So has the point (ii) in the Newtonian case a = d and thus p a = ∞ (see for instance [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF][START_REF] Hauray | Wasserstein distances for vortices approximation of euler-type equations[END_REF][START_REF] Carrillo | Propagation of chaos for the VPFP equation with a polynomial cut-off[END_REF]). However to the best of the authors' knowledge, its generalization to a general Riesz interaction kernel a ∈ (0, d) is a novelty. A similar technique can be found in [START_REF] Lafleche | Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation[END_REF]. Since this observation is crucial with respect to the competition between diffusion and aggregation, we detail the proof.

Proof. We start with the classical inequality (see [19, (3.9)], [18, Lemma 2.5], [11, (3.26)], [12, (3.5)]) which holds for any (x, y)

∈ (R d ) 2 |K(x) -K(y)| ≤ (|∇K(x)| + |∇K(y)|) |x -y|. Then denote π = L(X, Y ) = L( X, Ȳ ) ∈ P(R 2d ).
Step 1. Proof of (i). We assume here that p > p a . Then we have

E |X -Y | k-1 K(X -X) -K(Y -Ȳ ) ≤ E |X -Y | k-1 (|X -Y | + X -Ȳ ) |∇K(X -X)| + |∇K(Y -Ȳ )| := I 1 + I 2 .
We first estimate I 1 . Since X and X are independent we get

I 1 = E |X -Y | k E |∇K(X -X)| + |∇K(Y -Ȳ )| |X, Y = E |X -Y | k R 2d (|∇K(X -x)| + |∇K(Y -y)|) π(dx, dy) = E |X -Y | k R d |∇K(X -x)|ρ 1 (x) dx + R d |∇K(Y -y)|ρ 2 (y) dy . But since |∇K| ≤ C a |x| -a with C a = max(1 -a, a), we obtain C -1 a R d |∇K(X -x)|ρ 1 (x) dx ≤ R d |X -x| -a ρ 1 (x) dx ≤ |X-x|≤r |X -x| -a ρ 1 (x) dx + r -a ρ 1 L 1 ≤ ρ 1 L p |x|<r |x| -aq dx 1/q + r -a ρ 1 L 1 ,
where q = p and r > 0. Since p > p a , we get aq < d so that |x| -aq is locally integrable and we obtain

C -1 a R d |∇K(X -x)|ρ 1 (x) dx ≤ C K r d/q ρ 1 L p + r -a ρ 1 L 1 ,
where

C K = ω d d-aq 1/q .
Step 2. Proof of (ii). Note that for any (x, y) ∈ (R d ) 2 and r > 0, it holds

|K(x) -K(y)| ≤ |K(x)| + |K(y)| if |x| ∧ |y| ≤ r (|∇K(x)| + |∇K(y)|) |x -y| else. So that E |X -Y | k-1 K(X -X) -K(Y -Ȳ ) ≤ E |X -Y | k-1 |K(X -X)| + |K(Y -Ȳ )| 1 |X-X|∧|Y -Ȳ |≤r + E[|X -Y | k-1 (|X -Y | + X -Ȳ ) |∇K(X -X)| + |∇K(Y -Ȳ )| 1 |X-X|∧|Y -Ȳ |>r ] =: I 1 + I 2 .
To estimate I 1 , we write

I 1 = I 1 1 + I 2 1 + I 3 1 := E |X -Y | k-1 |K(X -X)| + |K(Y -Ȳ )| 1 |X-X|∨|Y -Ȳ |≤r + E |X -Y | k-1 |K(X -X)| + |K(Y -Ȳ )| 1 |X-X|>r≥|Y -Y | + E |X -Y | k-1 |K(X -X)| + |K(Y -Ȳ )| 1 |X-X|≤r<|Y -Y | .
Then, for the estimate of I 1 1 , we get by independence of X and X (resp. Ȳ and Y )

I 1 1 = E E |K(X -X)| + |K(Y -Ȳ )| 1 |X-X|∨|Y -Y |≤r |X, Y |X -Y | k-1 ≤ E |X-x|≤r ρ 1 (x) |X -x| a-1 dx + |Y -y|≤r ρ 2 (y) |Y -y| a-1 dy |X -Y | k-1 ≤ ( ρ 1 L pa + ρ 2 L pa ) |z|≤r |z| -(a-1) d a dz a d E |X -Y | k-1 . Since |z|≤r |z| -(a-1) d a dz = ω d r 0 u d-1-(a-1) d a ds = aω d d r d a =: (C d,a r) d a ,
we get

I 1 1 ≤ C d,a r ( ρ 1 L pa + ρ 2 L pa ) E |X -Y | k-1 .
For I 2 1 , we have

I 2 1 ≤ E 2 |Y -Y | a-1 1 |Y -Y |≤r |X -Y | k-1 = 2 E |Y -y|≤r ρ 2 (y) |Y -y| a-1 dy |X -Y | k-1 ≤ 2C d,a r ρ 2 L pa E |X -Y | k-1 .
We then estimate I 3 1 similarly. Combining the above estimates, we obtain

I 1 ≤ 3C d,a r ( ρ 1 L pa + ρ 2 L pa ) E |X -Y | k-1 ≤ 3C d,a r ( ρ 1 L pa + ρ 2 L pa ) E |X -Y | k (k-1)/k .
Next, we estimate I 2 by writing

I 2 = C a (I 1 2 + I 2 2 ) := C a E |X -Y | k 1 |X -X| a + 1 |Y -Y | a 1 |X-X|∧|Y -Y |>r + C a E |X -Y | k-1 |X -Y | 1 |X -X| a + 1 |Y -Y | a 1 |X-X|∧|Y -Y |>r .
First we easily obtain since 1 a∧b≥r = 1 a≥r 1 b≥r

I 1 2 = E |X -Y | k E 1 |X -X| a + 1 |Y -Y | a 1 |X-X|∧|Y -Y |>r |X, Y ≤ E |X -Y | k |X-x|≥r ρ 1 (x) |X -x| a dx + |Y -y|≥r ρ 2 (y) |Y -y| a dy .
We then consider two cases: r > 1 and 0 < r ≤ 1. For r ≤ 1, we get

|X-x|≥r ρ 1 (x) |X -x| a dx = |X-x|>1 ρ 1 (x) |X -x| a dx + |X-x|∈[r,1] ρ 1 (x) |X -x| a dx ≤ ρ 1 L 1 + ρ 1 L pa |X-x|∈[r,1] 1 |X -x| d dx a d ≤ ρ 1 L 1 + ω d ρ 1 L pa ln -(r) a d ≤ C d ( ρ 1 L pa + ρ 1 L 1 ) (1 + ln -r) .
For the case r > 1, it is clear to obtain

|X-x|≥r ρ 1 (x) |X -x| a dx ≤ ρ 1 L 1 .

This yields

I 1 2 ≤ C d ( ρ 1 L pa + ρ 2 L pa + 2) E |X -Y | k (1 + ln -r) .
On the other hand, by Hölder's inequality

I 2 2 ≤ E |X -Y | k 1 |X -X| a + 1 |Y -Y | a 1 |X-X|∧|Y -Y |>r 1/k × E |X -Y | k 1 |X -X| a + 1 |Y -Y | a 1 |X-X|∧|Y -Y |>r 1-1/k .
The second term of the product is some power of ther term I 1 2 which has already been dealt with, and so is the second term by symmetry of the roles of (X, Y ) and (X, Y ). So that

I 2 ≤ C d,a ( ρ 1 L pa + ρ 2 L pa + 2) E |X -Y | k (1 + ln -r) .
Putting all these estimates together yields for any r > 0

E[|X -Y | k-1 K(X -X) -K(Y -Ȳ ) ] ≤ C d,a ( ρ 1 L pa + ρ 2 L pa ) r E |X -Y | k 1-1/k + C d,a ( ρ 1 L pa + ρ 2 L pa + 2) E |X -Y | k (1 + ln -r) . Choosing r = E |X -Y | k 1/k yields the desired result.
Proof of Theorem 1. Let ρ in be such as the assumptions of Theorem 1. For ε > 0 define

K ε (x) = K(x) if |x| ≥ ε ε -a x else,
and consider the following nonlinear PDE with smooth coefficient (44)

∂ t ρ ε = I (ρ ε ) + λ div((K ε * ρ ε )ρ ε )
with the initial condition ρ in ε = ρ in . Since the kernel K ε is (ε -a )-Lipschitz, the difficulty for the well posedness of (44) does not come from the quadratic nonlinear term. Existence and uniqueness of solution for this nonlinear problem is straightforward in the case a ∈ (1, 2). Indeed it is sufficient to apply a standard fix point in C([0, T ], P k ) technique using Wasserstein metric, since in this case the solution a priori enjoys some k ∈ (1, a) moment. In the case a ∈ (0, 1], it is no more possible to use the completeness of C([0, T ], P κ ), κ > 1, and we have to proceed by compactness (see [START_REF] Salem | Propagation of chaos for Some 2 Dimensional Fractional Keller Segel Equations in Diffusion Dominated and Fair Competition Cases[END_REF]Appendix B]).

Then due to Proposition 3.2 (if α = a), Corollary 3.1 (if a = α), and Proposition 3.1,

ρ ε ∈ L 1 ([0, T ], L p ) ∩ L ∞ ([0, T ], L 1
k ) for some p ≥ p a and T > 0 depending or not on ρ in , uniformly w.r.t. ε > 0.

Step 1. Tightness. Let X 0 be a random variable on R d of law M -1 0 ρ in and (Z α t ) t≥0 be an α-stable Lévy process independent of X 0 . We denote by (X ε t ) t≥0 (respectively (X ε t ) t≥0 ) the solution to the following SDE

X ε t = X 0 -λ t 0 R d K ε (X ε s -x)ρ ε (dx) ds + Z α t .
Note that (µ ε (t)) t≥0 := (L(X ε t )) t≥0 solves the linear PDE

∂ t µ ε = I(µ ε ) + λ div((K ε * ρ ε )µ ε ), with initial condition µ in ε = M -1 0 ρ in . Therefore L(X ε t ) = M -1 0 ρ ε (t)
by uniqueness of solution to this linear PDE with smooth coefficient.

Assume first 0 < 1 -a < α. It is direct to obtain in this case for any β > 1

K β ε := R 2d |K ε (x -y)| β ρ ε (dx)ρ ε (dy) ≤ C a,β R 2d (|x -y| ∨ ε) β(1-a) ρ ε (dx)ρ ε (dy) ≤ C a,β R d |x| (1-a)β + ε (1-a)β ρ ε (dx).
Then choose β = k 1-a > 1 and use the symmetry between x and y to get

sup 0<ε<1 T 0 K β ε (t) dt ≤ sup 0<ε<1 T 0 R 2d C a,β |x| (1-a)β + ε (1-a)β ρ ε (dx)ρ ε (dy) dt ≤ C a,β,T sup ε>0 ρ ε L ∞ ((0,T ),L 1 k ) + 1 < ∞.
Assume now that a > 1. First note that Hardy-Littlewood-Sobolev inequality yields for any ε > 0 and β > 1 to be fixed later

K β ε ≤ R 2d |x -y| -(a-1)β ρ ε (dx)ρ ε (dy) ≤ C ρ ε 2 L d d+β(1-a)/2
. By interpolation between Lebesgue spaces, if β < 2(p-1)d a-1 , then

ρ ε L d d+β(1-a)/2 ≤ ρ ε θ L p ρ ε 1-θ L 1 ,
where θ = β (a-1)q 2d with q = p . Therefore

sup ε>0 T 0 K β ε (t) dt ≤ sup ε>0 T 0 ρ ε 2 L d d+β(1-a)/2 dt ≤ sup ε>0 T 0 ρ ε β (a-1)q d L p dt < ∞,
provided that β ∈ 1, d (a-1)q . Then in both cases, denote the stochastic process

J ε t = -λ t 0 R d K ε (X ε s -x)ρ ε (dx) ds,
and observe that for any 0 ≤ s < t ≤ T , it holds by Holder's inequalitiy

|J ε t -J ε s | ≤ t s R d K ε (X ε u -x)ρ ε (dx) du ≤ t s R d |K ε (X ε u -x)| ρ ε (dx) du ≤ |t -s| 1/β T 0 R d |K ε (X ε u -x)| β ρ ε (dx) 1/β
du, so that by the estimates carried out in the beginning of this step and Jensen's inequality

sup 0<ε<1 E sup 0≤s<t≤T |J ε t -J ε s | |t -s| 1/β ≤ T 0 E R d |K ε (X ε u -x)| β ρ ε (dx) 1/β du ≤ T 0 E R d |K ε (X ε u -x)| β ρ ε (dx) 1/β du ≤ T 1/β T 0 K β ε (t) dt 1/β < ∞.
We then deduce that the family of law of the processes (J ε t ) t∈[0,T ] is tight in P(C([0, T ], R d )). Indeed let us denote

K R := f ∈ C([0, T ], R d ), f (0) = 0, sup 0≤s<t≤T |f (t) -f (s)| |t -s| 1/β ≤ R ,
which is compact due to Ascoli-Azerla's Theorem. By Markov's inequality we get for any ε > 0

P ((J ε t ) 0≤t≤T / ∈ K R ) = P sup 0≤s<t≤T |J ε t -J ε s | |t -s| 1/β > R ≤ R -1 sup 1>ε>0 E sup 0≤s<t≤T |J ε t -J ε s | |t -s| 1/β .
Hence the family of law of the processes

L ε = L ((X ε t = X 0 + J ε t + Z α t ) 0≤t≤T ) ∈ P(D([0, T ], R d ))
is tight. Thus, we can find a sequence ε n going to 0 such that L εn goes weakly to some π ∈ P(D([0, T ], R d )). For any t ∈ [0, T ], we define 

e t : γ ∈ D([0, T ], R d ) → γ(t) ∈ R d and
ρ ∈ L 1 ([0, T ], L p ) ∩ L ∞ ([0, T ], L 1 k ). We now show that ρ satisfies (6). Indeed for ϕ ∈ C 2 c denote F(ρ, t) = R d ρ(t) -ρ in ϕ - t 0 R d ρ(s) (I(ϕ) -K c * (ρ(s) • ∇ϕ)) ds - t 0 R 2d
K 0 (x -y)(∇ϕ(x) -∇ϕ(y))ρ(s, dx)ρ(s, dy) ds.

Since ρ ε solves (44), it holds for any t > 0

F ε (ρ ε , t) = 0,
where F ε is the same functional as F with K replaced with K ε . So that for any

t ∈ [0, T ] |F(ρ, t)| ≤ |F(ρ, t) -F η (ρ, t)| + |F η (ρ, t) -F η (ρ ε , t)| + |F η (ρ ε , t) -F ε (ρ ε , t)| . But note that for η > ε ≥ 0 |K ε (x) -K η (x)| ≤ 1 ε≤|x|≤η |x| 1-a ≤ η|x| -a .
We deduce that for any ∈ L 1 ([0, T ]; L pa ), by (3), it holds

|F η ( , t) -F ε ( , t)| ≤ η t 0 |x -y| -a s ( dx) s ( dy) ds ≤ η C HLS d,a,p a/2 t 0 2 L 2d 2d-a ds ≤ η C HLS d,a,p a/2 t 0 L pa ds. So that |F(ρ, t)| ≤ η C HLS d,a,p a/2 t 0 ρ L pa ds + sup 0<ε<1 t 0 ρ ε L pa ds + | F η (ρ, t) -F η (ρ ε , t)|.
Letting first ε go to 0 makes the second term in the r.h.s. vanishes, since for fixed η > 0, F η is a smooth function on L 1 ([0, T ]; L pa ) and ρ ε goes weakly to ρ as ε goes to 0, then letting η go to 0 yields F(ρ, t) = 0, and ρ is a solution to (FKS) in the sense of Definition 2.1.

Step 3. Uniqueness of the limiting point. We now show that there exists at most one such solution. Let ρ, ρ ∈ L 1 ([0, T ], L p ) ∩ L ∞ ([0, T ], L 1 k ) for some p ≥ p a and T > 0 be two solutions to the (FKS) equation with initial condition ρ in . We argue by a coupling argument. Define

X t := X 0 -λ t 0 R d K(X s -y)ρ(dy) ds + Z α t Y t := X 0 -λ t 0 R d K(Y s -y)ρ(dy) ds + Z α t .
Due to the L p regularity of ρ and ρ and Lemma 3. 

∂ t µ = I (µ) + λ div ((K * ρ)µ) ,
for the initial condition µ(0) = M -1 0 ρ in . By uniqueness of solution to this linear PDE with Lipschitz or log-Lipschitz coefficient, L(

X t ) = M -1 0 ρ(t) (respectively L(Y t ) = M -1 0 ρ(t)). Denoting Z s = X s -Y s , and π s = L(X s , Y s ) yields |Z t | 2 = -2λ t 0 R 2d Z s • (K(X s -x) -K(Y s -y))π s (dx, dy) ds.
Introducing Xs i.i.d. from X s (resp. Ȳs i.i.d. from Y s ) and taking the expectation yields

E |Z t | 2 ≤ 2λ t 0 E |Z s ||K(X s -Xs ) -K(Y s -Ȳs )| ds ≤    C t 0 ( ρ L p + ρ L p + 2) E |Z s | 2 ds, if p > p a C t 0 ( ρ L pa + ρ L pa + 2) E |Z s | 2 1 + ln -(E[|Zs| 2 ]) 2 ds else.
where we used Lemma 3.2. By Gronwall's inequality, we get

∀t ∈ [0, T ], E |Z t | 2 = 0, i.e. ∀t ∈ [0, T ], ρ(t) = ρ(t),
which yields the desired results. Then since ϕ a ∈ W a,∞ , we obtain that h α,a (y) ≤ C|x -y| -d+a-α , which, since a > α, implies that h α,a ∈ L 1 loc . Moreover, when |y| > r, then

h α,a (y) ≤ C ϕ r α (|y| -r) d+α ∈ L 1 (B c r ).
Therefore, h α,a ∈ L 1 uniformly in x ∈ B r . Hence I (ϕ a ) ∈ L ∞ (B r ), which, combined with (46), leads to the expected result. Combining (49), ( 50) and (51), we obtain d dt

R d ρm ≤ C 1 R d ρ x k-α -C 2 λ R 2d
x k-a y k-a ρ(dx)ρ(dy)

≤ C 1 M k-α -C 2 λM 2 k-a , ( 52 
)
where M k = R d ρ x k . We define

Y := M 0 + R d ρm = R d ρ(1 + m).
Remarking that

1 2 (1 + m) ≤ x k ≤ 2 k/2 (1 + m),
we obtain that Y can always be compared to M k up to a constant depending on k. Therefore, Hölder's inequality yield

M 0 ≤ M k a k-a M 1-k a k ≤ CM k a k-a Y 1-k a .
Thus, using the fact that M k-α < M 0 because k -α < 0 and the conservation of the mass M 0 , we obtain dY dt

≤ C 1 M 0 -C 2 λM 2a k 0 Y 2(1-a k ) .
By assumption (48) for the appropriate C * ,

ε := C 2 1 - C 1 Y 2( a k -1) (0) C 2 λM 2a k -1 0 > 0.
Then for any t ≥ 0, dY dt ≤ 0 and

Y 2( a k -1) (t) ≤ Y 2( a k -1) (0) = C 2 -ε C 1 λM 2a k -1 0 , and dY dt ≤ -ελM 2a k 0 Y 2(1-a k ) .
By Gronwall's inequality, we deduce

Y (t) ≤ Y (0) 2a k -1 -ελ 2a k -1 M 2a k 0 t k 2a-k .
Since Y is positive and the above inequality goes to 0 in finite time, we deduce that the solution ceases to be well defined in L 1 in a finite time T * verifying

T * < kY (0) 2a k -1 ελ(2a -k)M 2a k 0 = k 2a -k Y (0) 2a k -1 C 2 λM 2a k 0 -C 1 Y 2( a k -1) (0)M 0 .

  a , and I := ∆ α 2 denotes the fractional Laplacian defined by (1)I (u) = ∆ α 2 u := c d,α R d u(y) -u(x) |x -y| d+α dy.The constant c d,α can be writtenc d,α = -(2π) α ω-α ω d+α > 0 where ω d = 2π d/2 Γ(d/2) is the size of the unit sphere in R d when d ∈ N * .
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 1 Figure 1. Existing results of (FKS).

Figure 2 .

 2 Figure 2. Range of application of Theorems 1 and 3. We emphasize that for d > 2 the results extend to the segment (α, a) ∈ {2} × (0, d).
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 3331 Figure 3. Lower bound of the threshold of condition (7) for d = 2, 3, 4 and a ∈ (0, 2). For the case a ≤ 1 2 see Remark 2.1.
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 3141 Fractional Laplacian of truncated polynomials. Let ϕ ∈ C ∞ c be such that R d ϕ = 1. Then for any a > α (45) |I (|x| a ϕ)| ≤ C x -(d+α) . Proof. Let ϕ a := |x| a ϕ and R > 0 be such that supp(ϕ) ⊂ B R . For any x ∈ B c R , we get (46) I (ϕ a )(x) = B R ϕ a (y) dy |x -y| d+α ∈ m ϕa (|x| + R) d+α , m ϕa (|x| -R) d+α .Now, assume x ∈ B r for a given r > R. Then we write the fractional Laplacian asI (ϕ a ) = R dh α,a (y) dy, where h α,a (y) = ϕ a (y) -ϕ a (x) |x -y| d+α when α ∈ (0, 1) h α,a (y) = ϕ a (y) -ϕ a (x) -(y -x) • ∇ϕ a (x) |x -y| d+α when α ∈ [1, 2).
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 424243 Let ϕ ∈ C ∞ c be such that R d ϕ = 1 and 1 Br ≤ ϕ ≤ 1 B2r . Then for any k ∈ (0, α)(47) I (|x| k ϕ c ) ≤ C x k-α ,where ϕ c = 1 -ϕ.Proof. The proof is similar to[START_REF] Biler | Blowup of solutions to generalized Keller-Segel model[END_REF] Remark 4.2] for k > 1 and [21, Proposition 2.2] for k < 1. Blow-up for even solutions. Assume 0 < k < α < a and let ρ ∈ L ∞ ((0, T ), L 1 (1-a)+ ) be an even solution of the (FKS) equation with initial condition ρ in and verifying for a universal constant C * depending only on d, a, α and k. Then the solution ceases to exist in finite time.Proof. Let ϕ ∈ C ∞ c (R) even and nonincreasing be such that R ϕ = 1 and 1 Br ≤ ϕ ≤ 1 B2r for a given r ∈ (0, 1/2) and ϕ c = 1 -ϕ. We definem(x) := ϕ(|x|)|x| a + ϕ c (|x|)|x| k .By (45) and (47), we get (49)I (m) ≤ C x k-α . Assuming the existence of ρ ∈ L ∞ ((0, T ), L 1 k ) to the (FKS) equation, we get d dt R d ρm = R d ρ I (m) -λ R 2d (∇m(x) -∇m(y)) • (x -y) |x -y| a ρ(dx)ρ(dy) = R d ρ I (m) -λ R 2d g(x, y) -h(x, y)x • y |x -y| a ρ(dx)ρ(dy),wherem (|x|) = ∇m(x) • x |x| and g(x, y) = m (|x|)|x| + m (|y|)|y| h(x, y) = m (|x|)|x| -1 + m (|y|)|y| -1 .Since |x -y| a ≤ 2 a (|x| a + |y| a ), h is symmetric and ρ is even, we getR 2d g(x, y) |x -y| a (1 -h(x, y)x • y) ρ(dx)ρ(dy) ≥ R 2d g(x, y) -h(x, y)x • y 2 a (|x| a + |y| a ) ρ(dx)ρ(dy) ≥ R 2d g(x, y) 2 a (|x| a + |y| a ) ρ(dx)ρ(dy). (50) We remark that if (x, y) ∈ B 2 r , g(x, y) 2 a (|x| a + |y| a ) = a 2 a . If (x, y) ∈ (B c 2r ) 2 , g(x, y) 2 a (|x| a + |y| a ) = k(|x| k + |y| k ) 2 a (|x| a + |y| a ) ≥ k(2r) a-k 2 a (|x||y|) a-k . If (x, y) ∈ B r × B c 2r , g(x, y) 2 a (|x| a + |y| a ) = a|x| a + k|y| k 2 a (|x| a + |y| a ) ≥ k|y| k 2 a (r + |y| a ).Moreover, when x ∈ B 2r \B r , m (|x|)|x| = ϕ (|x|)(|x| a+1 -|x| k+1 ) + aϕ(|x|)|x| a + kϕ c (|x|)|x| k .Remarking that we can take ϕ decreasing and r < 1/2, which implies that |x| ≤ 1 and m (|x|)|x| ≥ aϕ(|x|)|x| a + kϕ c (|x|)|x| k ≥ k|x| a , it allows us to do the same kind of estimates for the remaining (x, y) ∈ R 2d and obtain (51) g(x, y) 2 a (|x| a + |y| a ) ≥ C x k-a y k-a .
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Step 2. A priori properties of the limit point.

  ρ(t) := (e t )#π ∈ P the push-forward of ρ by e t . Since for any t ∈ [0, T ], (e t )#L ε = ρ ε (t), ρ εn (t) goes weakly to ρ(t) in P k , By lower semi continuity of • L p and • L 1 k with respect to the weak convergence of measures and Fatou's Lemma, it holds
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