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Abstract

We test the performances of an incompressible turbulence Reynolds-Averaged Navier-
Stokes one-closure equation model in a boundary layer, which requires the determi-
nation of the mixing length `. A series of direct numerical simulation are performed,
with flat and non trivial topographies, to obtain by interpolation a generic formula
` = `(Re?, z), Re? being the frictional Reynolds number, and z the distance to the
wall. Numerical simulations are carried out at high Reynolds numbers with this turbu-
lence model, in order to discuss its ability to properly reproduce the standard profiles
observed in neutral boundary layers, and to assess its advantages, its disadvantages
and its limits. In an appendix, we achieve the mathematical analysis of the model.

Key words : Fluid mechanics, Turbulence models, Navier-Stokes Equations, Direct nu-
merical simulations, Boundary layer, Channel flows.
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1 Introduction

The simulation of a turbulent flow by a direct numerical simulation (DNS) using the
Navier-Stokes Equations (NSE) remains today out of reach for a high Reynolds number
Re. Indeed, the Kolmogorov’s laws imply that O(Re9/4) degrees of freedom are necessary
to do so, which is too large in term of computing power for realistic turbulent flows, such as
geophysical flows, the Reynolds number of which is larger than 108. This is why turbulence
models are always essential until now. Among all turbulence models, two main classes
can be distinguished: the Large Eddy Simulation models (LES), such as Smagorinsky’s
model, and the Reynolds-Averaged Navier-Stokes (RANS) models, such as the k−ε model
[11, 25, 31, 33].
The aim of this paper is to investigate the ability of one of the most basic incompressible
RANS model to faithfully reproduce a neutral boundary layer. The model under consid-
eration is a by-product of the k− ε model with only one closure equation, specified by the
following PDE system:

(1.1)


(v · ∇)v −∇ ·

[
(2ν + Cv`

√
k)Dv

]
+∇p = f , (i)

∇ · v = 0, (ii)

v · ∇k −∇ · ((µ+ Ck`
√
k)∇k) = Ck`

√
k|Dv|2 − `−1k

√
|k|, (iii)
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where “∇·” is the divergence operator and

i) v = (u, v, w) is the long time average of the flow [4, 20] (or any stationary statistical
mean, which does not make any difference thanks to the ergodic assumption about
turbulent flows, see for instance in [14]), p the mean pressure, k the turbulent kinetic
energy (TKE), Dv = (1/2)(∇v +∇vT ) the deformation tensor,

ii) ν > 0 is the kinematic viscosity of the flow, µ > 0 a diffusion coefficient, f a source
term expressing possible external forces,

iii) νt = Cv`
√
k is the eddy viscosity, µt = Ck`

√
k the eddy diffusion, ` the Prandtl mixing

length, Cv > 0 and Ck > 0 are dimensionless constants,

iv) the term Ck`
√
k|Dv|2 in the equation (1.1, (iii)) is the dissipation of the mean flow,

generating turbulent kinetic energy, whereas ε = `−1k
√
|k| is the mean dissipation of

the fluctuations, damping the TKE.

This type of one-closure equation model can be a good alternative to the full two-closure
equations k−εmodel, which is expensive and very hard to implement numerically, although
very accurate and effective. Evolutionary versions of (1.1) have been used for large scale
oceanic simulations ([5, 22]), and also in marine engineering to simulate a 2D flow around
a fishing net [24].
A natural question is: how far can such one-closure model be used instead of the full k− ε
model or higher order closure models such as the Melor-Yamada model [12] ? It depends
strongly on how the mixing length ` and the boundary conditions are set.
In [24], 2D simulations are performed at Re = 105 around, with ` chosen equal to the
local size of the mesh. The no slip boundary condition for v was applied combined with
homogenous Dirichlet boundary condition for k. Although we got very good results, it
will not work for a 3D boundary layer. Therefore, alternative options have to be tested.
To fix ideas, let us consider a 3D flow over a plate, placed at z = 0. The flow domain is
the half space {z ≥ 0}, divided in two regions:

i) the boundary layer {0 ≤ z ≤ z0}, z0 being the height of the boundary layer,

ii) {z0 ≤ z}, where a turbulent model is implemented.

At z = z0, the boundary condition satisfied by the mean velocity is usually a wall law, one
of the most popular being the Glaucker-Manning law (see in [11, Chapter 5])1:

(1.2) v · n = 0, −[(2ν + νt)Dv · n]τ = αv|v|v.

When the model involves the TKE, people used to set, at z = z0,

(1.3) k = |v|2.

The boundary layer is often modeled by a given continuous steady profile depending on
z, most of the time linear in the viscous sublayer and then logarithmic. However, there
are several different models [11, 34, 35], more or less sophisticated, depending on the
desired degree of accuracy and the available computing power. When stratification occurs,
such as in the atmosphere, the Monin Obukhov theory [26] applies, requiring addition of
stabilizing functions to the log profile, which may be controversial [29]. Moreover, in

1Let n denotes the outward normal vector at the boundary, and for a given vector w, wτ = w−(w ·n)n
its tangential part. We refer to νt as any eddy viscosity.
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the case of the ocean, there are many other boundary layer models, as for instance the
Pacanowski-Philander model, based on closure equations with eddy viscosities, functions
of the Richardson number [3].
Therefore, there is no universal boundary layer model. This is what motivates us to
evaluate the performances of the model (1.1) inside a boundary layer, which means taking
z0 at least of order of the height of the viscous sublayer. We will do so in the case of a flat
bottom, then in the case of a non trivial topography as displayed in figure 1, called the
rough case.

Figure 1: Non trivial topography, also called the rough case.

A natural option is solving (1.1) with the boundary conditions (1.2)-(1.3) inside the bound-
ary layer, provided that the mixing length ` is specified. However, we know that the
resulting boundary value problem, for a given smooth function ` = `(x), yields serious
mathematical and numerical complications (see in [11, Chapters 7,8] and additional com-
ments in section A.1 below), mainly because of (1.3), that must be reconsidered. In this
perspective, we have modeled in this paper an alternative boundary condition for the TKE
k, which is a non linear Neumann boundary condition, see (2.13) below. We get a more
affordable mathematical structure than that provided by (1.3) (see Appendice A). The
resulting model, (1.1)-(1.2)-(2.13), is appointed by the acronym NSTKE.
For running the NSTKE model, the mixing length ` must be determined. In the full k− ε
model, it is deduced from k and ε by the standard formula

(1.4) ` =
k3/2

ε
,

which cannot be directly used in our NSTKE model, since we do not have any equation
to compute ε. We get numerical values of ε from direct numerical simulations (DNS)
using the Navier-Stokes equations at some low and medium Reynolds numbers. To be
more specific, let Re? denotes the frictional Reynolds number (see definition (3.1) below).
By the formula (1.4) and assuming that ` is homogeneous in the x − y axes, we evaluate
` = `(z,Re?) at the grid points, properly averaging the data based on the DNS. We then
interpolate the collected sets of numerical values to get a general formula in both flat and
rough cases (see formula (3.17) and (3.18), complemented by (3.19), (3.21) and (3.22) for
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the calculation of the different coefficients)2. Our DNS are compared to the DNS of Moser
et al. [18, 27], which serve as the benchmark for our results.
With this formula for `, several numerical simulations with the NSTKE model have been
performed up to Re? = 10000, in both flat and rough cases, after having evaluated the
roughness coefficients contained in the boundary conditions. There is no universal turbu-
lence model, and this one is neither better nor worse than another. The approach to use
it for numerical simulations is as important as the model itself.
The NSTKE model behaves properly in the flat case, which validates our approach. How-
ever, the results are less good in the rough case. This does not mean that the model and
our approach have reached their limits, and the present study opens several questions.
We clearly do not have enough DNS in the rough case for the determination of `. More-
over, in this case, the assumption ` = `(z,Re?) must be called into question, in favour of
` = `(x, y, z, Re?). Last but not least, this first series of results shows that the topography
should be strongly taken into account in the calculation of the roughness coefficients, and
it remains an open question to know how to find a universal and simple way for doing
this, which is one of the main challenge in the field (see the “bulk algorithm” in [29] for
instance).
This paper is a snapshot of a constantly evolving research. It is organized as the introduc-
tion, in the following order: TKE boundary condition modeling, DNS and mixing length
formula, NSTKE simulations and analysis of the results and convergence. The paper is
ended by an appendix, in which one proves the existence of a weak solution to the NSTKE
model, by a proof that can be extended to the evolutionary case, which is a clear theoretical
advantage of the model.

2 Boundary condition modeling

The aim of this section is the derivation of the boundary condition (2.12) for the turbu-
lent kinetic energy, TKE in the following. Before doing this, we set up the geometrical
framework and recall the classical log law of the boundary layer mean velocity profil.

2.1 Geometry and boundary layers assumptions

The computational box Ω is defined by (see figure 2)

Ω = [0, Lx]× [0, Ly]× [0, Lz].

For simplicity, we assume that the flow field (v, p, k) satisfies periodic boundary conditions
in the x and y directions. To be more specific, (v, p, k) is defined on IR2 × [0, Lz], and
when it is at least of class C2, for ψ = v, p, k,

(2.1) ∀ (m,n) ∈ IN2, ∀ (x, y, z) ∈ Ω, ψ(x+ nLx, y +mLy, z) = ψ(x, y, z).

To carry out the modeling process, we assume that in the boundary layer, the mean
velocity v has a constant direction, v = (u, 0, 0), and is homogeneous in the x-y axes.
Therefore, u = u(z), which is a standard assumption.

2In the process, we also calculate the values of the constants Cv and Ck involved in the eddy viscosities
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Figure 2: 3D Representation of Ω

It is generally accepted [11, 22, 25, 31] that there exists 0 < z0 << z1 such that in the
absence of stratification or buoyancy effects, u has in [0, z1] the following profile,

∀ z ∈ [0, z0], u(z) =
u?
κ

z

z0
,(2.2)

∀ z ∈ [z0, z1], u(z) =
u?
κ

(
log

(
z

z0

)
+ 1

)
,(2.3)

where u? denotes the friction velocity, given by

(2.4) u? =

√
ν
∂u

∂z
(0),

and κ is the Van Karmàn constant, the numerical value of which is estimated between
0.35 and 0.42 [36]. Here z1 denotes the height of the boundary layer.

2.2 Boundary condition for the TKE

We model in this section a boundary condition for the TKE at z = z0, alternative to (1.3).
In order to proceed, we first must:

i) Determine the eddy diffusion coefficient µt in [0, z0],

ii) Settle the profile of the TKE k in the same region, in which we assume k = k(z).

i) According to standard use, we assume that in [0, z0], the flow is driven by the mixing
length ` and the friction velocity u?, and that

` = κz.

Therefore, as z and u? are dimensionally independent, (z, u?) is a dimensional basis (see [11,
Chapter 3]). We deduce from straightforward calculation based on dimensional analysis
the usual formula:

(2.5) ∀ z ∈ [0, z0], µt(z) = κµu?z,
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where κµ is a dimensionless constant.
ii) It is natural to set k(0) = 0 and k(z0) = u2(z0), which yields, by (2.2),

(2.6) k(0) = 0, k(z0) =
u2
?

κ2
.

Following (2.2) we enforce k to be linear in the viscous sublayer3, which leads by (2.6) to

(2.7) ∀ z ∈ [0, z0], k(z) =
u2
?

κ2

z

z0
.

We derive from these modeling hypotheses, the following result.

Proposition 2.1. Assume that (2.7) and (2.5) hold. Then the following expansion holds:

(2.8) ∀ z ∈ ]0, z0], µt
dk

dz
= κκµ

(z0

z

) 1
2
k
√
k + o(z).

Proof. We expand k(z) between 0 and z:

(2.9) k(0) = k(z)− z dk
dz

(z) + o(z).

By (2.7), we get

(2.10) z
dk

dz
(z) =

u2
?

κ2

(
z

z0

)
+ o(z).

We combine (2.5) and (2.10), and we get

(2.11) µt
dk

dz
(z) =

κµ
κ2
u3
?

(
z

z0

)
+ o(z).

The relation (2.7) can be rewritten for z > 0 as

u? = κ
(z0

z

) 1
2
√
k(z),

that we insert in (2.11) to eliminate u?, which yields (2.8).

When we neglect the remaining term in (2.8), we get at Γb,c = {z = z0} the following
boundary condition for k:

(2.12) µt
dk

dz
= αkk

√
k,

where αk = κκµ. By symmetry, a similar analysis can be carried out at the top of the
computational box. Therefore, we can summarize the results in the following general
setting:

(2.13) − µt
∂k

∂n
= αkk

√
k at IR2 × ({z = z0} ∪ {z = Lz − z0}) = Gc.

3Notice that, even it seems reasonable, this is an arbitrary choice, and that another choice would yields
another boundary condition.
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Remark 2.1. Note that according to formula (1.4), the boundary condition (2.13) can be
rewritten as

(2.14) − µt
∂k

∂n
= αk`ε.

This is as if at the computational boundary Gc, we decided that the TKE is damped by the
mean dissipation of the fluctuation scaled by the mixing length, which is in coherence with
the TKE equation and some way of a physical interpretation.

Let Omc denotes the infinite strip

(2.15) Omc = IR2 × [z0, Lz − z0].

We are led to introduce the following boundary value problem:

(2.16)



(v · ∇)v −∇ · [(2ν + νt(k))Dv] +∇p = f in Omc,
∇ · v = 0 in Omc,

v · ∇k −∇ · [(µ+ µt(k)∇k] = νt(k)|Dv|2 − `−1k
√
|k| in Omc,

−[(2ν + νt(k))Dv · n]τ = αv|v|v on Gc,
v · n = 0 on Gc,

−(µ+ µt(k))∇k · n = αkk
√
|k| on Gc,

with periodic boundary conditions in the x and y axes, as defined by (2.1). The proof of
the existence of a weak solution to the system (2.16) is postponed to appendice A.

Remark 2.2. We have replaced µt by µ+µt to avoid degeneration issues in the TKE part
of the system, where µ > 0 is a small stabilizing mathematical parameter.

Remark 2.3. In the context of the modeling assumptions of this section, the wall law
(1.2) becomes

(2ν + νt)
∂u

∂z
= αvu

2 at z = z0,(2.17)

(2ν + νt)
∂u

∂z
= −αvu2 at z = Lz − z0.(2.18)

Remark 2.4. The coefficients αv > 0 and αk > 0 involved in the boundary conditions of
(2.16) must be set. This point is discussed in section 4.1 below.

3 Direct Numerical Simulations

We perform and validate in this section several DNS, in order to derive a universal formula
for the mixing length ` as a function of the frictional Reynolds number

(3.1) Re? =
u?H

ν
,

the friction velocity u? being given by (2.4), H = Lz/2. The frictional Reynolds number
is the main control parameter in this study. To close the set of parameters, we enforce u
to be equal to 1 at z = H. We will use the following standard relation between u? and
Re?:

(3.2) u? =

(
1

0.41
logRe? + 5.5

)−1

,
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which is a byproduct of the log law. Therefore, Re? yields u? and then ν from (3.1)
re-written as

(3.3)
ν

u?
=

H

Re?
.

Note that ν/u? is the natural length scale of the flow.

3.1 Settings and results

To begin with, we set data and parameters for the simulations.

i) Software and equations. The direct numerical simulations (DNS) are performed by using
the parallelised flow solver Incompact3d (see at https://www.incompact3d.com/). The
numerical schemes implemented in this software are detailed in [16, 17, 19]. The equations,
solved in Ω = [0, Lx]× [0, Ly]× [0, Lz], are4:

(3.4)


∂tv +

1

2
[∇ · (v ⊗ v) + (v · ∇)v]−∇ · (ν∇v) +∇p = f ,

∇ · v = 0,
v|z=0 = v|z=Lz = 0, v periodic in the x− y axes,
v|t=0 = v0.

The source term f is constant and given by

(3.5) f =

(
u2
∗
H
, 0, 0

)
.

ii) The initial data. The initial data v0 is a random perturbation of the field

(3.6) U(x, y, z) =

((
z̃

H

) 1
7

, 0, 0

)
,

where z̃ = min(z, 2H − z). The corresponding profile coincides more or less with the log
profile, without the singularity at z = 0 and z = Lz. In order to get a flow that is not too
trivial and looks like a turbulent flow, we take v0 such that

(3.7) v0 = U + 0.125η(x, y, z̃, ω)

((
z̃

H

) 1
7

, 1, 1

)
.

The function η ∈ [−1, 1] is a zero mean Gaussian random variable: at each point (x, y, z)
and each run labeled by ω, the code randomly picks a number η(x, y, z, ω), thanks to a
standard numerical random generator. This field is not divergence free, but the code auto-
matically correct this error at the first time step, through the incompressibility condition.

iii) Parameters of the simulations. They are the same as those of Moser et al [27], which
is our benchmark. We have performed four DNS: three of them are in the flat case (see
figure 2), for Re? = 180, 360, 550, and one in the rough case (see figure 1) for Re? = 180.
Let ∆t denotes the time step, T the final time of the simulation, (nx, ny, ny) determines
the mesh size, which means that the discretization space-step ∆a in the a-axis (a = x, y, z)
is given by

∆a =
La
na
.
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Run (Lx, Ly, Lz) (nx, ny, nz) ∆t T

DNS-FLAT-180 (4π, 4/3π, 2) (128, 128, 128) 0.005 3600ν/u2
?

DNS-FLAT-360 (2π, 2/3π, 2) (256, 128, 192) 0.0025 3600ν/u2
?

DNS-FLAT-550 (2π, 2/3π, 2) (256, 256, 257) 0.00125 1800ν/u2
?

DNS-ROUGH -180 (4π, 4/3π, 2) (128, 128, 128) 0.005 3600ν/u2
?

Table 1: Parameters for each DNS

Since the Kolmogorov scale is getting smaller as Re? increases, the computational cost is
dramatically expensive for large Re?. This is why the dimensions of the computational
boxes in DNS-FLAT-360 and 550 are smaller than the dimensions in DNS-FLAT-180.

iv) Results in the flat case.5 Our results are reported in figure 3 where we have plotted
the mean adimensionalized streamwise component of the velocity as well as the results of
Moser et all [27]. In particular, if vDNS = (uDNS, vDNS, wDNS) denotes the calculated field
by the DNS,

(3.8) u(z) =
1

Tnxny

T/∆t∑
n=0

nx∑
j=0

ny∑
k=0

uDNS

(
n∆t, j

Lx
nx
, k
Ly
ny
, z

)
.

We observe a very good correspondence between our results of those of [27], at least in
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Figure 3: Streamwise velocity profile compared to those of [27].

average. This validates our DNS in the flat case, which allows us to think that our DNS
in the rough case6, outlined below, is accurate.

4numerically more convenient, theoretically equivalent to the standard Navier-Stokes equations
5For the simplicity, the overline always means an average which will be specified case by case, to avoid

the risks of confusion. We also may use 〈 · 〉 for time averages.
6So far we know, there is no available data in the literature for such a rough case.
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v) The rough case. The rough topography displayed in figure 1 is built in three steps as
follows.

1) We construct regularly spaced Gaussian domes centered at (xi, yi) with random heights
Λ̃i and variances σi, leading to the primary topography z = Λ̃(x, y) given by

(3.9) Λ̃(x, y) =

N∑
i=1

Λ̃ie
−[(x−xi)2+(y−yi)2)]/(4σ2

i ).

2) This topography remains regular. In order to make it more chaotic, we follow [32] and
we pick Gaussian domes Λj again, as well as random angles θj and aspect ratio aj .
Then we perturb Λ̃(x, y) as follows:

(3.10) Λ(x, y) = Λ̃(x, y) +

N∑
j=1

Λje
−[[cj(x−xj)+sj(y−yj)]2/a2j+[cj(y−yj)−sj(x−xj)]2a2j ]/(4σ2

j )),

where cj = cos(θj), sj = sin(θj), aj . The Λj ’s, the θj ’a and the aj ’s are all Gaussian as
well.

3) The roughness field is normalized such that max(Λ(x, y)) = hmax = 0.1. Therefore,
the bottom is the surface given by: z = Λ(x, y).

To perform the simulation, we use the “immersed boundary method” (IBM), initially
developed by Peskin [30] (see also in [24]). This consists of solving the Navier-Stokes
equation in Ω = [0, Lx] × [0, Ly] × [0, Lz], by adding in the Navier-Stokes equations (3.4)
the additional source term

(3.11) − 1

ε
1{0≤z≤Λ(x,y)}v,

for a small value of ε, which does not change the standard results and analysis about the
Navier-Stokes equations7. This additional term enforces v to be negligible for z ≤ Λ(x, y),
and does not affect the system in the domain Λ(x, y) ≤ z ≤ Lz. The results of the
simulation are reported in figure 4. We also have plotted on the same figure the log profile
given by

h(z) =
1

0.31
ln
( z

0.025

)
+ 7.0.

Our simulation yields a mean streamwise profile that perfectly matches with this log law
for z ∈ [0.3, 0.8], thereby validating our DNS.

3.2 Determination of the mixing length and the constants

The aim of this section is to derive from the DNS a formula to determine the mixing
length `. We also settle the values of the constants Cv and Ck involved in the boundary
conditions at Γc for v and k.

7The comprehensive mathematical analysis of the IBM is carried out in [24].
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3.2.1 General methodology

Let E denotes the total mean dissipation, given by

(3.12) E = 2ν|∇v|2.

It is common in turbulence modeling to assume that ` is a function of k and E , that is
` = `(k,E ). A straightforward dimensional analysis yields the formula

(3.13) ` =
k
√
|k|

E
,

on which the determination of ` is based. We assume that ` does not depend on x and y.
Therefore in this framework, the means are calculated from the data by the same formula
as (3.8). To be more specific, if Ψ is any field related to the flow, ΨDNS the corresponding
calculated field, then

(3.14) Ψ(z) =
1

Tnxny

T/∆t∑
n=0

nx∑
j=0

ny∑
k=0

ΨDNS

(
n∆t, j

Lx
nx
, k
Ly
ny
, z

)
.

Of course, only numerical values of Ψ at z = qLz/nz (q = 0, · · · , nz) can be calculated by
(3.14). Based on this, our procedure is the following:

i) we compute v = v(z) by (3.14),

ii) at each grid point, we form the field v′vert = vDNS − v,

iii) we extract from the data the numerical TKE denoted by kvert, given at each z =
qLz/nz by the quantity kvert(z) = (1/2)|v′vert|2(z),

iv) by the standard finite difference scheme, we calculate Evert = Evert(z) by (3.12),

v) we get at each z = qLz/nz the mixing length ` = `(z) by forming the quotient
kvert(z)

√
kvert(z)/Evert(z).
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Remark 3.1. The function kvert(z) calculated above is the horizontal mean of the TKE.
This is the appropriate quantity for the determination of `, according to the horizontal
homogeneity assumption. To calculate the full TKE from the DNS, we must use the time
average over the simulation time:

(3.15) 〈ψ〉(x) =
1

T

T/∆T∑
n=0

ψDNS(n∆T,x),

where x = (x, y, z). Then the Reynolds decomposition is written as vDNS = 〈v〉 + v′DNS,
yielding

(3.16) kDNS(x) = (1/2)〈|v′DNS|2〉.

We have plotted in figure 5 the curves of ` we have obtained by this way, in terms of the
non dimensional variable z′ = z/H.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.5

0.6

0.7

0.8

0.9

ℓ

Re∗ = 180

Re∗ = 180Rough

Re∗ = 550

Re∗ = 360

Figure 5: Profils of ` calculated from the DNS

3.2.2 Universal formula for the mixing length

We observe that the mixing length is increasing in the beginning of the turbulent layer
(until z ≈ 0.6) and slighly decreases until z = 1. Our goal is to interpolate these curves
to get a universal formula in terms of the Re? and z, by an empirical method.
Figure 5 suggests to seek for exponential profils. However, it is usually accepted that near
z = 0, ` is of the form ` = κz. Therefore, we multiply this exponential profile by an
hyperbolic tangent function, which is an approximation of the Heaviside function. Finally,
since ` is non-zero within the viscous sublayer, we add a term that depends on the natural
length scale ν/u? = H/Re?. These considerations have led us to introduce the following
empirical formula by trial and error:

(3.17) ` = K tanh
(
A
(
Re?

z

H
−B

))
exp

−Re2
?

( z
H
− zi
H

)2

2σ

+ 75
H

Re?

12



where zi = 0.6Hm. In the rough case, by comparing the red line to the dark line in
figure 5 (DNS-FLAT 180 and DNS-ROUGH 180 ) we apply a correction that takes the
topography into account, which gives:

(3.18) ` = K tanh

(
A

(
Re?

z + zR
H

−B
))

exp

−Re2
?

(
z + zR
H

− zi
H

)2

2σ

+ 75
H

Re?

where zR = 0.05Hm is the mean value of the roughness, estimated from Figure 5. It
remains to settle the coefficients A, B, σ and K. They are sought to be function of Re?
only. As we shall show it in the following, we get the following laws for large values of Re?
(valid from Re? = 900, depending on the coefficients):

A = 3.05Re0.065
∗ ,(3.19)

B = 0,(3.20)

σ = 0.3Re1.05
∗ ,(3.21)

K = 0.32Re0.12
∗ .(3.22)

Moreover, it is accepted that near z = 0, ` = κz where κ is the von Kármán constant.
However, according to figure 7, although ` follows well a linear law near z = 0, its slope
looks non constant when Re? varies. Indeed, we obtain from our graphs (see Figure 12
below) the following law, valid from Re? ≈ 800:

(3.23) κ = κ(Re?) = 0.25(Re?)
0.32 hence ` = 0.25(Re?)

0.32z.

However, we observe in Figure 12 that the usual law is valid for instance when Re? = 180.
The law (3.17) must be checked for high values of Re?, which is done by applying the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z/H

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ℓ

Re∗ = 180

Re∗ = 180

Re∗ = 180Rough

Re∗ = 180Rough

Re∗ = 550

Re∗ = 550

Re∗ = 360

Re∗ = 360

Figure 6: Dotted lines draw the mixing length calculated from the DNS, Crosses draw
curves from formula (3.17) and (3.18)

algorithm to the results of Moser and al in Figure 7, and also yields the laws satisfied by
the coefficients A, B, σ and K for high values of Re?, also used in the rough case.
In Figures 8 and 9, we have plotted the values of the constants A and B.
Figure 10 shows that the coefficient σ follows a linear law for all Re?, hence (3.19).
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Figure 7: Lines are results from Moser and al [27], Crosses results from formulae (3.17)
and (3.18)
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Re∗
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A

Figure 8: A = A(Re?). The green dotted line is the 0.065 slope.

3.2.3 Determination of the constants

We recall that the eddy viscosities/diffusion νt and µt are given by

νt(k) = Cv`
√
k, µt(k) = Ck`

√
k.

Now that we know how to compute ` thanks to (3.17), we are able to estimate the constants
Cv and Ck as follows. In this section, 〈ψ〉 denotes the time average over the time simulation
defined by (3.15), and the TKE k in the formulae below is given by (3.16). Because of the
horizontal homogeneity assumption, we focus on the vertical components of the Reynolds

14
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Figure 9: B = B(Re?)
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Figure 10: σ = σ(Re?). The green doted line is the 1.05 slope.

stress, linked to the eddy coefficients by:

(3.24) 〈u′DNSw
′
DNS〉 = νt

∂〈uDNS〉
∂z

= Cv`
√
kDNS

∂〈uDNS〉
∂z

,

and

(3.25) 〈e′DNSw
′
DNS〉 = µt

∂kDNS

∂z
= Ck`

√
kDNS

∂kDNS

∂z
.

Hence, Cv is the value that minimizes the error in (3.24) whereas Ck is the value that
minimizes the error in (3.25). By the least square method, Cv is such that

(3.26)

N∑
i=1

(
〈u′DNSw

′
DNS〉(xi)− Cv`(zi)

√
kDNS(xi)

∂〈uDNS〉
∂z

(xi)

)2
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Figure 11: K = K(Re?). The green dotted line is the 0.12 slope.
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Figure 12: κ = κ(Re?). The green dotted line is the 0.32 slope.
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is minimum, and Ck is such that

(3.27)

N∑
i=1

(
〈e′DNSw

′
DNS〉(xi)− Ck`(zi)

√
kDNS(xi)

∂kDNS

∂z
(xi)

)2

is minimum, where {x1, · · · ,xN} denotes the grid points set, xi = (xi, yi, zi). This opti-
mization problem has been solved by the brute-force method [2], based on the results of
DNS-FLAT 180, DNS-FLAT 550 and the corresponding profiles for `. We get:

(3.28) Ck = 0.15 Cv = 0.105

Remark 3.2. We find in [25, Chapter 4]: Cv = Ck = 0.09. However, these values have
been calibrated for the full k − E model, which can explain the slight difference with our
results.

4 NSTKE simulations and conclusions

4.1 Algorithm and settings

Our code is based on the SIMPLEC algorithm (Patankar [28], Issa [15]), that we have
adapted to the NSTKE equations, leading to encode the following iterations. At step n,
(vn−1, pn−1, kn−1) being known, we first solve the velocity equation
(4.1)

(vn−1 · ∇)vn −∇ ·
[
(2ν + νt(k

n−1))Dvn
]

+∇pn−1 = f in Omc,
∇ · vn = 0 in Omc,

−[(2ν + νt(k
n−1))Dvn · n]τ = αv|vn−1|vn on Gc,

vn · n = 0 on Gc,

which is a standard elliptic equation, with the added difficulties presented by the incom-
pressibility constrain and the boundary condition vn ·n|Gc = 0. Once vn is calculated, we
solve the TKE equation:
(4.2) vn · ∇kn −∇ · [(µ+ µt(k

n−1)∇kn] = νt(k
n−1)|Dvn|2 − kn

√
|k|n−1

`
in Omc,

−(µ+ µt(k
n−1))

∂kn

∂n
= αkk

n
√
|k|n−1 on Gc.

Finally, the pressure is calculated by the Poisson equation:
(4.3)

∆pn = −∇ ·
(
∇ · (vn ⊗ vn−1)−∇ ·

[
(2ν + νt(k

n−1))Dvn
]
− f
)

in Omc,
∂pn

∂n
= 0 on Gc.

System (4.1)-(4.2)-(4.3) for a given n, satisfies periodic boundary conditions in the x− y
axes. The source term f is given by (3.5). We implement this scheme in the OpenFoam
solver (see at https://www.openfoam.com), based on the second order finite volumes
method (see in [13]).
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Remark 4.1. Although we observe a good numerical convergence (see section 4.2.3 be-
low), we have no mathematical proof of the convergence of this scheme to the NSTKE
model, which is a difficult open question. Usually, we know that such scheme does con-
verge when the eddy viscosity is close to a constant and when the source term is small
enough in some sense (see in [21]). However, it is likely that the homogeneous Neumann
boundary condition for the pressure in the equation (4.3) may yield serious complications
in a mathematical convergence analysis.

We have carried out four simulations in the flat case for high Reynolds numbers, namely
Re? = 990, 2000, 5200, 10000. Then we have tested the rough case for Re? = 5200, 10000.
The mixing length is given by (3.17) (flat case) and (3.18) (rough case), the constants Cv
and Ck by (3.28). The iterations (4.1)-(4.2)-(4.3) are initialized by

(4.4) v0 = (u0, 0, 0), u0 = 1ms−1; k0 = 10−3m2s−2; p0 = 0Pa.

The parameter settings are given in Table 2. The coefficients αv and αk have been deter-

Run (Lx, Ly, Lz) (nx, ny, nz) αv αk
NSTKE-FLAT-990 (6.28, 4.18, 2) (16, 16, 32) 0.000125 0.04

NSTKE-FLAT-2000 (6.28, 4.18, 2) (16, 16, 32) 0.0000525 0.01

NSTKE-FLAT-5200 (6.28, 4.18, 2) (16, 16, 32) 0.000035 0.0005

NSTKE-FLAT-10000 (6.28, 4.18, 2) (16, 16, 64) 0.000035 0.0005

NSTKE-ROUGH-5200 (6.28, 4.18, 2) (32, 24, 64) 0.000035 0.0005

NSTKE-ROUGH-10000 (6.28, 4.18, 2) (32, 24, 64) 0.00035 0.0005

Table 2: Parameters settings

mined up to Re? = 5000 by solving the minimization problem

(4.5) min{||vNSTKE − vDNS||22 + ||kNSTKE − kDNS||22}.
The resolution of problem (4.5) is based on a standard dichotomy algorithm (see for
instance in [37]). We have kept the same values for Re? = 10000, in the flat case as well
as in the rough case, in the absence of DNS. Notice that the mesh sizes in this case are
much more coarser than those used for the DNS, which is an undeniable advantage of the
model. However, considering that the height of the viscous sublayer is negligible compared
to this resolution, we have taken z0 = 0 in the simulations for the flat case. The number
of iterations is of order 1000.

4.2 Numerical Results in the flat case

4.2.1 Streamwise velocity

The results we get are compared to those of the high Reynolds numbers DNS provided in
[18], up to Re? = 5200. For Re? = 10000, we have compared our result to the log law, in
the absence of anything better. The NSTKE model yields a departure from the log law.
However, things seem better when Re? increases, which may be only a trend reversal near
the bottom. To corroborate these observations, we have calculated the non dimensional
mean shear defined by

(4.6) Φ =
κz

u∗

∂u

∂z
,

which is equal to 1 when the profile is logarithmic. The results are plotted in Figure 14.
The streamwise velocity given by the NSTKE model has a serious lack of shear at the top
and the bottom of the boundary layer.
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Figure 13: NSTKE Flat case. Non dimensional streamwise velocity
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Figure 14: NSTKE Flat case. Comparison of the non dimensional mean shear Φ computed
by the NSTKE model for the High Reynolds number simulations.

4.2.2 Turbulent kinetic energy

The turbulent kinetic energy is plotted on Figure 15, compared with the DNS results.The
model overestimates the TKE at the bottom of the boundary layer.

4.2.3 Convergergence analysis

The convergence of the SIMPLEC algorithm for the NSTKE problem is shown in figure 16
for the Re? = 900, 2000, 5200 cases. The black lines indicates the slope of the decreasing
rate, which is proportional to n−2/3 for the first 300 iterations and increases up to n−8

until n = 1000, which is a good convergence result.

4.2.4 Corrected mixing length
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The previous sections show that the NSTKE model does not perfectly reproduce the
standard boundary layer profiles. It may come from the mixing length formula (3.17) and
the law (3.19) that determines the main coefficient in the formula for `, denoted by A. To
fix this issue, we have replaced A by another coefficient of the form λA, the best choice of
λ being equal to 0.608, after some simulations. As shown by the figure (17), the corrected
model accurately reproduces the log profile up to z = 0.7H, which is quite satisfactory.
About the TKE, it does not change much, in particular at high Reynolds number.
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Figure 17: NSTKE Flat case. Mean shear Φ with the corrected mixing length profile.
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Figure 18: NSTKE Flat case. Turbulent kinetic energy with the corrected mixing length
profile.

4.3 Numerical results in the rough case

The simulation is carried out from z0 = 0.1. This is as if we have put a flat plate
over the domes, starting the simulation from z0 as in the flat case, the information about
the topography being contained in the formula for `, the boundary condition and the
corresponding coefficients. We have applied the same correction for the coefficient A in

21



formula (3.18) as in the flat case (see section 4.2.4 above). The results are reported in
Figure 19, Figure 20 and Figure 21, following the same order as in the flat case. Without
any DNS, the only way to analyse the results is the comparison with log profiles. We
observe a departure from the log law outside the interval [0.5, 0.7]. Considering the TKE
profiles, the intensity of the turbulence for Re? = 5000 and Re? = 5000 looks to be different
only from z/H = 0.5.
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Figure 19: NSTKE Rough case. Non dimensional streamwise velocity.
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Figure 20: NSTKE Rough case. Mean shear

4.4 Some conclusions and perspectives

The NSTKE model yields satisfactory results in the flat case, although we had to adjust
the formula calculated from the DNS for `. The treatment of the pressure in the SIM-
PLEC algorithm could be questionable, in particular because of the boundary condition
(4.3). Further simulation are probably necessary with another treatment of the pressure,
following what was done in [11, Chapters 13], where similar simulations for low Reynolds
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Figure 21: NSTKE Rough case. Turbulent kinetic energy

numbers are performed by the variational multi-scale method and a perturbation of the
incompressibility constrain to resolve the pressure.
In the rough case, the present study cannot be considered as fully conclusive, but as a first
step towards a general methodology to tackle this class of difficult numerical problems.
These simulations suggest that the topography must be taken into account for the deter-
mination of the coefficients αv et αk in the boundary conditions (1.2) and (2.12), which
has not been done already. The question is how to do that? Moreover, it is likely that `
does not depend on z only, but also on x, y in a way that depends on the topography. To
fix this, several other DNS are necessary in the rough case, for the highest possible Re?,
expecting for a generic formula for `(x, y, z, Re?), as well as αa(x, y, z, Re?) (a = v, k).
This will be the subject of a next study.

Appendices

A Theoretical analysis of the NSTKE model

We aim to prove the existence of a weak solution (v, p, k) to the boundary value problem
(2.16). Standard à priori estimates yield νt(k)|Dv|2 ∈ L1(Ω), so that (2.16) couples a
steady-state Navier-Stokes like equation to an elliptic equation with a right hand side in
L1.
Throughout this theoretical appendix, the mixing length ` = `(x) is a given strictly non
negative bounded continuous function, ν > 0, µ > 0, αv > 0, αk > 0 are constants, the
eddy viscosity νt = νt(k) ≥ 0 and µt = µt(k) ≥ 0 are continuous function of k.

A.1 Brief state of the art

The NSTKE model was first studied in [23], where Ω ⊂ IRd (d = 2, 3) is a smooth
bounded domain, with homogeneous boundary condition in the whole boundary of Ω,
that is v|∂Ω = 0 and k|∂Ω = 0, and where νt and µt are bounded continuous functions
of k. Steady state and evolutionary cases were considered in this paper, in which various
existence and stability results are proved.
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In [10], the model was studied in Ω ⊂ IR3, v satisfies the (linear) Navier Law at ∂Ω, k
satisfies mixed homogeneous Dirichlet/Neumann boundary condition at ∂Ω, νt and µt are
continuous functions of k, with growth condition at infinity, covering the case νt, µt =
O
(
k1/2

)
. In this paper, the k-equation is replaced by the equation for the total energy

e = 1/2|v|2 + k, and the existence of a weak solution to the (v, p, e) system is proved.
In [11], we have studied the NSTKE model in Ω ⊂ IR3 with the boundary conditions (1.2)
(wall law) and (1.3) (k∂Ω = |v|2) at the whole boundary. To carry out this study, we have
set k′ = k−|v|2 and considered the equation for k′ in place of that for k. The advantage is
that k′ satisfies an homogeneous Dirichlet boundary conditions at ∂Ω, suggesting that the
method developed in [23] might be adapted. The disadvantage is that additional coupling
terms appear in the equation for k′.
In the steady state case, we have proved in [11, Chapters 7] the existence of a weak solution
to the (v, p, k′) system when νt = νt(k) and µt = µt(k) are continuous bounded function
of k, by a very long and technical proof. When νt, µt = O

(
k1/2

)
at infinity, we still get an

existence result when the equality in the k′ equation is replaced by a variational inequality.
The method fails in the evolutionary case, which still remains an open problem. In this
evolutionary case, we have been able to obtain existence results when k|∂Ω = 0 and v
satisfies the wall law (1.2).
In comparison with the former studies, the boundary value problem (2.16) is characterized
by

i) mixed boundary conditions, in the sense that they are periodic in the x− y axes, and
of flux type in the z-axis (wall law, Neumann),

ii) the non linear Neumann boundary condition (2.13) for k in the z axis.

In what follows, we will limit ourselves to focus on these special features, to avoid repeating
arguments already written in former works. In particular, it will be enough to carefully
detail the functional setting, and to study the Laplace equation with a right hand side in
L1, periodic boundary conditions in the (x, y)-axes, and (2.13) in the z-axis, which was
not already carried out elsewhere, up to our knowledge.

A.2 Functional spaces

This section is devoted to define the functional spaces we are working with, which will be
done step by step. Let us first set

Ωc = [0, Lx]× [0, Ly]× [z0, Lz − z0],(A.1)

Γb,c = [0, Lx]× [0, Ly]× {z = z0} (bottom),(A.2)

Γt,c = [0, Lx]× [0, Ly]× {z = Lz − z0} (top),(A.3)

Γc = Γb,c ∪ Γt,c.(A.4)

i) Suitable space for the periodic boundary conditions in the (x, y)-axes. It is natural to
introduce the following functional space:
(A.5)

W =
{
ψ ∈ C∞(IR2 × [z0, Lz − z0], IR) s.t.

∀ (m,n) ∈ IN2, ∀ (x, y, z) ∈ Ωc, ψ(x+ nLx, y +mLy, z) = ψ(x, y, z)
}
,

that means the smooth function defined in the strip z0 ≤ z ≤ Lz − z0, periodic in the
(x, y)-axes by the [0, Lx]×[0, Ly] box. Given any ψ ∈ W, we still denote by ψ its restriction
to Ωc, so far no risk of confusion occurs.
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Let us consider on W the following norm:

(A.6) ||ψ||1,2 =

(∫
Ωc

|∇ψ|2
) 1

2

+

(∫
Ωc

|ψ|2
) 1

2

= ||ψ||1,2,Ωc .

Generally speaking, for any s ≥ 0, 1 ≤ p ≤ ∞, we set

(A.7) ||ψ||s,p = ||ψ||s,p,Ωc ,

where ||ψ||s,p,Ωc denotes the W s,p norm of the restriction of ψ to Ωc. Due to the periodicity
in the (x, y)-axes, these are norms on W. We denote by W s,p

π the completion of W with
respect to the || · ||s,p norm.

Remark A.1. Let W s,p
π |Ωc be the space of the restrictions to Ωc of functions of W s,p

π .
Then W s,p

π |Ωc is a closed subspace of W s,p(Ωc).

We will write in the remainder:

(A.8) H1
π = W 1,2

π , Lpπ = W 0,p
π .

ii) Vertical homogeneous space. We will need the following space:

(A.9)
W0 = {ψ ∈ W s.t.

∃ δ > 0, ∀ (x, y) ∈ IR2, ∀z ∈ [z0, z0 + δ] ∪ [Lz − z0 − δ, Lz − z0],
ψ(x, y, z) = 0}.

In other word,W0 is the set of functions inW vanishing in a neighbourhood of the bottom
z = z0 and the top z = Lz − z0. We denote by W 1,p

π,0 the adherence of W0 in W 1,p
π . It

easy checked that given any ψ ∈ W 1,p
π , then ψ ∈ W 1,p

π,0 if and only if ψ|Γc = 0 (see [9]).
Moreover, the following Poincaré’s inequality holds

(A.10) ∀ψ ∈W 1,p
π,0 , ||ψ||0,p,Ωc ≤ Cp,Ωc ||∇ψ||0,p,Ωc ,

where Cp,Ωc is a constant that only depends on p and Ωc. Note that in view of the geometry
of Ωc, a straightforward calculation using Fubini’s theorem allows to check that (A.10) can
be improved by:

(A.11) ∀ψ ∈W 1,p
π,0 , ||ψ||0,p,Ωc ≤ Cp,Lz ||

∂ψ

∂z
||0,p,Ωc ,

iii) Norm with the trace. Because of the boundary conditions involved in problem (2.16),
it is convenient to consider norms on W 1,p

π that take the traces on Γc into account. The
general framework is the following:

• Given any 1 ≤ p < 3, p? =
3p

3− p is the critical exponent for the space W 1,p(Ωc),

• For all ψ ∈ W 1,p
π , trbψ (resp. trtψ) denotes the trace of ψ at the bottom Γb,c

(resp. at the top Γt,c). In this case, according to the theory of traces (see in [1])
trαψ ∈ W 1−1/p,p(Γα,c) for α = b,t. Because of the Sobolev embedding theorem,
trψ ∈ Lq(Γc) for any

(A.12) 1 ≤ q ≤ 2p

3− p = p??,

where trψ(x) = trαψ(x) if x ∈ Γα,c, for α = b,t.
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Lemma A.1. Let 1 ≤ p < 3, 1 ≤ q < p??. Then the application

(A.13) Np,q :

{
W 1,p
π −→ IR+,

ψ −→ ||∇ψ||0,p,Ωc + ||trψ||0,q,Γc ,

is a norm on W 1,p
π , equivalent to the standard W 1,p-norm.

Proof. The application Np,q is obviously a semi norm. To check that it is a norm, let us

consider ψ ∈ W 1,p
π such that Np,q(ψ) = 0. In particular ψ|Γc = 0. Therefore, ψ ∈ W 1,p

π,0 ,
hence as ||∇ψ||0,p,Ωc = 0, we get from Poincaré’s inequality, ||ψ||0,p,Ωc = 0. Then ψ|Ωc = 0,
and by periodicity, ψ = 0.
To prove that Np,q is equivalent to the W 1,p norm, it is enough to prove that there exists
a constant C such that

(A.14) ∀ψ ∈W 1,p
π , ||ψ||0,p,Ωc ≤ CNp,q(ψ).

If (A.14) would not hold true, there would be a sequence (ψn)n∈IN in W 1,p
π such that

||ψn||0,p,Ωc = 1 and Np,q(ψn) → 0 as n → ∞. Such a sequence is bounded in W 1,p
π .

Therefore, up to a subsequence, it converges weakly in W 1,p
π to some ψ. By Remark

A.1 and the compact Sobolev embedding theorem, ψn → ψ in Lpπ strong (eventually
up to another subsequence). In particular, ||ψ||0,p,Ωc = 1. By a similar argument, as

q < p??, trψn → trψ strongly in Lq(Γc), and from Np,q(ψn) → 0, we obtain ψ ∈ W 1,p
π,0 .

Finally, always by Np,q(ψn)→ 0 and ||∇ψ||0,p,Ωc ≤ lim infn→∞ ||∇ψn||0,p,Ωc since ψn → ψ

weakly in W 1,p
π , ||∇ψ||0,p,Ωc = 0, and by Poincaré’s inequality, ||ψ||0,p,Ωc = 0, which is in

contradiction with ||ψ||0,p,Ωc = 1, hence (A.14), ending the proof.

Remark A.2. The application Np,q is also a norm on W 1,p(Ωc), equivalent to the standard
W 1,p norm.

Space for the velocity. The boundary condition v · n = 0 at z = z0 and z = Lz − z0

must be considered in the functional setting. We remark that if w = (wx, wy, wz) is a
vector field defined over IR2 × [z0, Lz − z0] that satisfies w · n|z=z0 = w · n|z=Lz−z0 = 0,
then wz(x, y, z0) = wz(x, y, Lz − z0) = 0. In other words, wz|Γc = 0. Therefore, according
to this fact and in view of the standard variational formulations involved in the general
Navier-Stokes equations framework, we are led to seek for the mean velocity in the space

(A.15) W = H1
π ×H1

π ×H1
π,0,

Note that the proof of Lemma A.1 combined with Korn’s inequality (see [11, Appendix A])
shows that W equipped with the scalar product

(A.16) (u,w) =

∫
Ωc

Du : Dw +

∫
Γc

tru · trw,

is a Hilbert space, and that the norm u →
√

(u,u) is a norm on W equivalent to the
standard H1 norm.

A.3 Weak solutions

Weak solutions are solutions of the variational problem deduced from the initial boundary
value problem. They are usually deduced from à priori estimates, based on the Stokes
formula and interpolation inequalities. Given the previous studies and the results already
known, we must:
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i) Study the action of general operator ψ → −∇ · (A∇ψ) on the W 1,p
π -spaces, for any

positive definite matrix A = A(x) of class C1, periodic in the (x, y)-axes,

ii) Set the appropriate variational formulation for the system (2.16) and check that it
falls within the framework of problems already studied before, in particular the one
considered in [11, Chapter 7],

iii) Check if W 1,q (1 ≤ q < 3/2) estimates “à la Boccardo-Gallouët” (see the initial paper
[7]) can be deduced from the equation satisfied by k.

From now, the source term f in (2.16) is in the dual space W ′.

A.3.1 Turbulent operator

In this section, A = A(x) is a C1 (x, y)-periodic matrix, positive definite uniformly in
x = (x, y, z) ∈ Ωc = IR2 × [z0, Lz − z0], that is

(A.17) ∀u ∈ IR3, ∀x ∈ Ωc, (A(x)u,u) ≥ ν|u|2.

Let ψ, φ ∈ W. By the Stokes formula over Ωc, which is a Lipchitz domain, we have

(A.18)

∫
Ωc

−∇ · (A∇ψ)φ = −
∫
∂Ωc

φA∇ψ · n +

∫
Ωc

A∇ψ · ∇φ.

Using the notations of figure 2, we decompose the integral on ∂Ωc as

(A.19)

∫
∂Ωc

=

∫
Γc

+

∫
Γe

+

∫
Γs

+

∫
Γlg

+

∫
Γlr

We have: n|Γe = −n|Γs and n|Γlg = −n|Γlr . As φA∇ψ is a C1 function, periodic in
the (x, y)-axes, we also have φA∇ψ|Γe = φA∇ψ|Γs as well as φA∇ψ|Γlg = φA∇ψ|Γlr .
Therefore, aside the term on Γc, all other terms in the boundary integral (A.19) are
vanishing, hence (A.18) yields

(A.20) (−∇ · (A∇ψ)φ, φ) =

∫
Ωc

−∇ · (A∇ψ)φ = −
∫
∂Γc

φA∇ψ · n +

∫
Ωc

A∇ψ · ∇φ.

Unfortunately, the operator {
W → Lp(Γc),
ψ → tr(A∇ψ) · n

is not bounded, whatever the choice of p ≥ 1. Therefore, Formula (A.20) cannot be
extended for any ψ and φ in W 1,p

π spaces. However, the structure of our problem suggests
to introduce the following. Let F : IR → IR be a function which satisfies the growth
condition

(A.21) |F (ψ)| ≤ C(1 + |ψ|q),

for some q that be specified later, and let us consider

MF = {ψ ∈ W; tr(A∇ψ) · n = −F (ψ)}.

Let MF denotes the adherence of MF with respect to the W 1,p topology. For ψ ∈ MF ,

φ ∈W 1,p′
π , the equality (A.20) becomes

(A.22) (−∇ · (A∇ψ)φ, φ) =

∫
∂Γc

φF (ψ) +

∫
Ωc

A∇ψ · ∇φ.
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We observe on one hand that as ∇ψ ∈ Lp(Ωc) and ∇φ ∈ Lp′(Ωc), the volume integral in
(A.22) is also well defined as soon as A ∈ Lp

′
(Ωc). On a second hand, straightforward

calculations based on Hölder and Sobolev inequalities, yield the following rules for the
right choice of q to make the boundary integral well defined in (A.22):

(A.23)


if 1 ≤ p < 3/2, q ≤ p?? =

2p

3− p = qc,

if p = 3/2, q < 2 = qc,

if 3/2 < p < 3, q ≤ 3

3− p = qc.

In the equation for v8, A = (2ν + νt(k))Id, p = 2 and

(A.24) F (v) = αv|v|v.

then q = 2 and qc = 3. This case is well covered by the classification (A.23). In the
k-equation9, A = (µ+ µt(k))Id, p = 3/2−,

(A.25) F (k) = αkk
√
|k|,

then q = 3/2 and qc = 2, which is also well covered by the classification (A.23).

A.3.2 Variational formulation

For the sake of simplicity, we only consider the case of bounded eddy viscosities. We define
the following operators, suggested by the results of the previous section:

(A.26)



a(v,w) = 2ν

∫
Ωc

Dv : Dw, ae(k, l) = µ

∫
Ωc

∇k · ∇l,

s(k;v,w) =

∫
Ωc

νt(k)Dv : Dw, se(k; q, l) =

∫
Ωc

µt(k)∇q · ∇l,

G(v,w) = αv

∫
Γc

v|v|w, Ge(k, l) = αk

∫
Γc

k
√
k l.

As we are not working with a space of free divergence field, following [11, Chapter 6], we
use the transport operator b(z;v,w) defined by

(A.27) b(z;v,w) =
1

2

(∫
Ωc

(z · ∇)v ·w −
∫

Ωc

(z · ∇)w · v
)
.

By similar calculations as those carried out in section (A.3.1) and arguments of the proof
of Lemma 6.3 in [11], we easily get:

Lemma A.2. The form (z,v,w)→ b(z;v,w) verifies the following properties.

i) b is trilinear and continuous on (H1
π)3, then on W , and in particular,

(A.28) ∀ z, v, w ∈ (H1
π)3, |b(z;v,w)| ≤ C ‖z‖1,2,Ωc ‖v‖1,2,Ωc ‖w‖1,2,Ωc ,

for some constants C only depending on Ω.

8Things are a little bit more technical with vector fields and laws such as (1.2), but the calculation and
the final result are similar to the scalar case, changing ∇ by D, and thus we will not repeat it.

9When we write k ∈W 1, 3
2
−

π , we mean k ∈
⋂

r<3/2

W 1,r
π . When we write q ∈W 1,3+

π , we mean q ∈
⋃
ρ>3

W 1,ρ
π
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ii) b is antisymmetric,

(A.29) ∀ z, v, w ∈ (H1
π)3, b(z;v,w) = −b(z;w,v),

iii) we also have

(A.30) ∀ z, w ∈ (H1
π)3, b(z;w,w) = 0.

iv) For any z ∈W such that ∇ · z = 0 (in L2
π), we have

(A.31) ∀v, w ∈ (H1
π)3, b(z;v,w) =

∫
Ωc

(z · ∇)v ·w,

as well as

(A.32) ∀w ∈ (H1
π)3, b(z; z,w) = −

∫
Ωc

z⊗ z : ∇w.

We also introduce the following transport operator, with similar properties in the appro-
priate spaces:

(A.33) be(z; k, l) =
1

2
[(z · ∇k, l)− (z · ∇l, k)] ,

where

∫
Ωc

φψ = (φ, ψ). More generally, given any Banach space E, ψ ∈ E, φ ∈ E′, then

so far no risk of confusion occurs, (φ, ψ) denotes the duality product between φ and ψ.
These results yield the following variational problem corresponding to the system (2.16)
(we write v instead of v for the simplicity):

Find (v, p, k) ∈W × L2
π ×H

1, 3
2

−

π s.t. for all (w, q, l) ∈W × L2
π ×H1,3+

π ,

b(v;v,w) + a(v,w) + s(k;v,w) +G(v,w)− (p,∇ ·w) = (f ,w),(A.34)

(q,∇ · v) = 0,(A.35)

be(v; k, l) + ae(k, l) + se(k; k, l) +Ge(k, l) = (νt(k)|Dv|2 − `−1k
√
|k|, l).(A.36)

Any solution to the variational problem (A.34)-(A.34)-(A.34) is a weak solution to the
system (2.16). The calculation carried out before ensures that any strong solution to
(2.16) is a weak solution. Conversely, it is easily checked that if (v, p, k) is a weak solution
which in addition satisfies (v, p, k) ∈ (H2

π)3 ×H1
π ×H2

π, and νt, µt are C1 functions, then
(v, p, k) is also a strong solution to (2.16).

Theorem A.1. The system (2.16) has a weak solution.

The analysis carried out above shows that the weak formulation of system (2.16) is for-
mulated as that considered in [11, Chapter 7], which was one of our goal. Therefore, the
proof is similar to that of Theorem 7.1 in [11]10, once we will have checked that estimates
“à la Boccardo-Gallouët” hold in this case, which is the aim of the next section.

Remark A.3. When νt and µt are of order k1/2 as it is the case in the real life, arguing
by approximation like in section 7.5.3 in [11], we also get an existence result in which the
equation for k is replaced by a variational inequality.

Remark A.4. It is easily proved by standard arguments that the TKE k is non negative.
10In fact it is much more simpler in this case, since we do not have many additional terms coming from

the boundary condition, in which v is involved. These terms are replaced by the boundary term Ge(k, l),
which is easily treated, just as the term G(v,w) in the v-equation.
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A.4 Elliptic equation with a r.h.s in L1

Basically, the k-equation is an elliptic equation with a r.h.s in L1 (see for instance [6, 8]
and in [22, Chapter 5]). Indeed, taking w = v in (A.34) and using the result of Lemma
A.2, in particular b(v;v,v) = 0, we get

(A.37)

∫
Ωc

(2ν + νt(k))|Dv|2 + αv

∫
Γc

|v|3 = (f ,v).

We deduce from Lemma A.1 combined with Korn’s inequality the existence of a constant
C such that

(A.38) C||v||2W ≤ 2ν

∫
Ωc

|Dv|2 + αv

∫
Γc

|v|3.

Therefore, by Young inequality, (A.37) yields

(A.39)
C

2
||v||2W +

∫
Ωc

νt(k)|Dv|2 ≤ 1

2C
||f ||W ′ .

Hence νt(k)|Dv|2 ∈ L1(Ωc). The derivation of W 1,q estimates for such an equation is
based on taking l = H(k) as test, for suitable continuous Lipchitz functions H. The term
−`−1k

√
|k| has the correct sign, and is not involved in this process. Moreover, we also

have be(v; k,H(k)) = 0. Finally as µt ∈ L∞, the term −∇ · [(µ + µt(k)]∇k) behaves as
−∆k, at least from this viewpoint. Therefore, we are left with the following basic elliptic
problem:

(A.40)

{ −∆k = g ∈ L1
π,

∂k

∂n
|Γc = −αkk|k|

1
2 ,

which has not been studied before, so far we know. We will have finished this section once
we will have proved the following formal à priori estimate:

Lemma A.3. for all 1 ≤ q < 3/2, there exists a constant Cq = Cq(||g||1,1,Ωc) such that
any solution k to (A.40) satisfies

(A.41) ||k||1,q,Ωc ≤ Cq.

Proof. The proof follows a formal procedure, which is standard in this context. Given any
n ∈ IN, let Hn : IR→ IR be the odd continuous Lipchitz function defined by

(A.42)


Hn(x) = 0 if x ∈ [0, n],
Hn(x) = x− n if x ∈ [n, n+ 1],
Hn(x) = 1 if x ∈ [n+ 1,∞[.

Taking Hn(k) as test in (A.40) yields

(A.43)

∫
Ωc

H ′n(k)|∇k|2 + αk

∫
Γc

k|k| 12Hn(k) =

∫
Ωc

gHn(k) ≤ ||g||1,1,Ωc

As Hn is odd, k|k| 12Hn(k) ≥ 0. Therefore, (A.37) yields

(A.44)

∫
n≤|k|≤n+1

|∇k|2 ≤ ||g||1,1,Ωc .
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From this estimate, we can use the result of Boccardo-Gallouët [7] turnkey to get the
existence of Cq = Cq(||g||1,1,Ωc) such that

(A.45) ||∇k||0,q,Ωc ≤ Cq,

for all 1 ≤ q < 3/2. To conclude, it is enough by Lemma A.1 to find an Lr estimate at
Γc, for whatever r < 2 = (3/2)??. To do so, given any ε > 0, let Sε be the odd function
defined by

(A.46)

{
Sε(x) = ε−1x if x ∈ [0, ε],
Sε(x) = 1 if x ∈ [ε,∞[,

and take Sε(k) as test in (A.40), which leads to

(A.47)

∫
Ωc

S′ε(k)|∇k|2 + αk

∫
Γc

k|k| 12Sε(k) =

∫
Ωc

gSε(k) ≤ ||g||1,1,Ωc

As Sε is non decreasing, S′ε(k)|∇k|2 ≥ 0. Hence (A.47) yields

(A.48) αk

∫
Γc

k|k| 12Sε(k) ≤ ||g||1,1,Ωc ,

which gives by Fatou’s Lemma, since Sε(k)→ sign(k) where k 6= 0 as ε→ 0,∫
Γc∩{k 6=0}

|k| 32 ≤ lim inf
ε→0

∫
Γc∩{k 6=0}

k|k| 12Sε(k) ≤ ||g||1,1,Ωc ,

leading to

(A.49)

∫
Γc

|k| 32 ≤ ||g||1,1,Ωc ,

hence a L3/2 estimate for k at Γc, which concludes the proof.
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Stokes-Fourier type systems in three spatial dimensions. Comment. Math. Univ.
Carolin., 52(1):89–114, 2011.
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