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Abstract

We aim to test the performances of an incompressible turbulence Reynolds-Averaged
Navier-Stokes one-closure equation model in a boundary layer (NSTKE model). We
model a new boundary condition for the turbulent kinetic energy k (TKE), and we
achieve the mathematical analysis of the resulting NSTKE model. A series of direct
numerical simulation are performed, with flat and non trivial topographies, to obtain
by interpolation a generic formula for the Prandtl mixing length ` = `(Re?, z), Re?
being the frictional Reynolds number, and z the distance to the wall. This allows us to
carry out numerical simulations at high Reynolds numbers with this turbulence model,
in order to discuss its ability to properly reproduce the standard profiles observed in
neutral boundary layers, and to assess its advantages, its disadvantages and its limits.
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1 Introduction

The simulation of a turbulent flow by a direct numerical simulation (DNS) using the
Navier-Stokes Equations (NSE) remains today – and likely for a very long time – out of
reach for a high Reynolds number Re. Indeed, the Kolmogorov’s laws imply that O(Re9/4)
degrees of freedom are necessary to do so, which is too large in term of computing power
for realistic turbulent flows, such as geophysical flows, the Reynolds number of which is
larger than 108. This is why turbulence models are inescapable. Among all turbulence
models, two main classes can be distinguished: the Large Eddy Simulation models (LES),
such as Smagorinsky’s model, and the Reynolds-Averaged Navier-Stokes (RANS) models,
such as the k − ε model (see Chacon-Lewandowski [15] , Schlichting-Gersten[35] ,
Pope [42] and Sagaut [44]).
This paper combines modeling, mathematical analysis and numerical simulations. The aim
is to investigate the ability a basic incompressible RANS model to faithfully reproduce a
neutral boundary layer based on series of numerical simulations, after having modeled
suitable boundary conditions and carried out the mathematical analysis of the resulting
PDE system. The starting point is a by-product of the k− ε model with only one closure
equation, specified by the following equations (Chacon-Lewandowski [15] chapter 6,
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Wilcox [51]). :

(1.1)


(v · ∇) v −∇ ·

[
(2ν + Cv`

√
k)Dv

]
+∇p = f , (i)

∇ · v = 0, (ii)

v · ∇k −∇ · ((µ+ Ck`
√
k)∇k) = Ck`

√
k|Dv|2 − `−1k

√
|k|, (iii)

where “∇·” is the divergence operator and

i) v = (u, v, w) is the long time average of the flow as considered in Berselli-Lewan-
dowski [7] and Lewandowski [31] (or any stationary statistical mean, which does
not make any difference thanks to the ergodic assumption about turbulent flows, see
for instance in Frisch [22]), p the mean pressure, k the turbulent kinetic energy
(TKE), Dv = (1/2)(∇v +∇vT ) the deformation tensor,

ii) ν > 0 is the kinematic viscosity of the flow, µ > 0 a diffusion coefficient, f a source
term expressing possible external forces,

iii) In system (1.1), the functions

(1.2) νt = νt(k) = Cv`
√
k, µt = µt(k) = Ck`

√
k,

are the eddy viscosity and the eddy diffusion, ` is the Prandtl mixing length, Cv > 0
and Ck > 0 are dimensionless constants. These eddy functions νt and µt may be
truncated for large values of k for reasons related to mathematical analysis, which
will be discussed in the rest of this article.

iv) the term Ck`
√
k|Dv|2 in the equation (1.1, (iii)) is the dissipation of the mean flow,

generating turbulent kinetic energy, whereas ε = `−1k
√
|k| is the mean dissipation of

the fluctuations, damping the TKE.

This type of one-closure equation model can be a good alternative to the full two-closure
equations k − ε model, which is expensive and very hard to implement numerically, al-
though very accurate and effective. Evolutionary versions of (1.1) have been used for large
scale oceanic simulations (See Blanke-Delecluse [8], Lewandowski [29]), and also in
marine engineering to simulate a 2D flow around a fishing net, which has been studied by
Lewandowski-Pichot [33].
The model is known as the Prandtl one-equation model (see in Wilcox [51]). Others
one equation closures exist in literature such as the Baldwin-Barth model [4], Spalart-
Allmaras model [47]. All such models generate correct results for a flat plane bounded
flow. An extensive review of RANS model is available in the publication of Argyropoulos
and Markatos [2]. The mathematical foundation of the models are available in Wilcox’s
book [51]. Recently Fares and Schröder [20] developed another one equation models
derived from the k − ω two equations model with good performance.

To fix ideas, let us consider a 3D flow over a plate, placed at z = 0. The flow domain is
the half space {z ≥ 0}, divided in two regions:

i) the boundary layer {0 ≤ z ≤ z0}, z0 being the height of the boundary layer,

ii) {z0 ≤ z}, which is the computational domain and where a turbulent model is imple-
mented.
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This raises the questions of the boundary conditions, in particular at the bottom of the
computational domain z = z0. In this place, the boundary condition satisfied by the mean
velocity is usually a wall law, one of the most popular being the Glaucker-Manning law
(see in Chacon-Lewandowski [15, Chapter 5])1:

(1.3) v · n = 0, −[(2ν + νt)Dv · n]τ = αv|v|v, at z = z0.

A more general set of wall functions can be found in Kalitzin et al [24].
When the friction Reynolds number is small, the Dirichlet boundary condition can be
applied for the velocity (Wilcox [51] Parente-Gorlé [38]).
The natural boundary condition for the TKE is,

(1.4) k = |v|2 at z = z0,

which connects in a non linear way the TKE to the velocity at the bottom of the compu-
tational domain.
All this, equations and boundary conditions, yields a turbulence model. If the main
question is to assess the ability of such a model to simulate turbulent flow from a practical
point of view, we must begin to question its mathematical structure, which leads to purely
theoretical considerations.

Mathematical motivation and new boundary condition. We know that the result-
ing boundary value problem given by the system (1.1) and the boundary conditions (1.3)
(wall law for v) and (1.4) (boundary condition that links v and k), for a given smooth
function ` = `(x), yields serious mathematical and numerical complications mainly be-
cause of the relation (1.4) between v and k at the bottom. In particular, we have never
been able to demonstrate the existence of a solution to this problem in the evolutionary
case, and although we have a proof in the steady-state case as considered here (see in
in Chacon-Lewandowski[15]), the proof is particularly technical and long, which is not
satisfactory. This is the reason why we looked for an alternative condition to (1.4), which
decorrelates the velocity of the TKE, while preserving the physical characteristics of the
flow and leading to a better treatment from the point of view of mathematical analysis.
It is important to note that this mathematical analysis that we undertake in this paper,
namely the theoretical question of the existence of solutions to the system of partial dif-
ferential equations used to simulate the flow, has a considerable impact on the question
of stability and consistency of the numerical schemes used for the numerical simulations,
which amounts to a theoretical validation of these simulations, regardless of DNS results
and/or any in situ data, which unfortunately we do not have here.
By adapting the reasonings which allow the obtaining of the wall law for the velocity such
as (1.3), we get in this paper the following nonlinear law for the TKE at the bottom of
the numerical domain:

(1.5) µt(k)
∂k

∂n
= αkk

√
k, at z = z0,

where µt(k) is the eddy viscosity diffusion, such as given by equation (1.2), αk a dimension-
less coefficient that we have calibrated according to the DNS. Considering this boundary
condition instead of (1.4), we get a more affordable mathematical structure than that
provided by the relation (1.4) between k and v. In particular, we are able to prove in this
paper, by a proof not too complicated, the existence of a weak solution to the system of

1Let n denotes the outward normal vector at the boundary, and for a given vector w, wτ = w−(w ·n)n
its tangential part. We refer to νt as any eddy viscosity.
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equations (1.1), with the boundary conditions (1.3) (wall law for the velocity) and (1.5)
(new boundary condition for the TKE). This is the Theorem 3.1 below, the proof of which
is developped in Section 3, which is the main theoretical result of this paper.

Remark 1.1. The resulting model, given by the equations (1.1), (1.3) and (1.5), is ap-
pointed by the acronym NSTKE.

Remark 1.2. Homogenenous Neumann boundary condition may also be prescribed for the
TKE at z = z0, that is

∂k

∂n
= 0,

see in Cindori-Juretié [17], Liu [34], which comes within the scope of our theoretial
study, in a simplified way.

Numerical framework and mixing length. Once the structure of the new model is
understood, the next step is to evaluate its numerical performances inside a boundary
layer, which means taking z0 at least of order of the height of the viscous sublayer. We
will do so in the case of a flat bottom, which is the simple case with which to start, then
in the case of a non trivial topography as displayed in figure 1, called the rough case. The
aim is to test topology that are small compared to the turbulent boundary layer height
such as grass, sand (or wave for oceanic boundary layer). Problems related to buildings
or hills are not treated in this paper.

Figure 1: Non trivial topography, also called the rough case.

Another motivation is that the model is easy to implement. The mixing length ` is com-
puted by the product of two functions that depend only on the distance, determined by
DNS and an extrapolation method, which yields the need to determine four dimensionless
coefficients, that we assume to only depend on the friction Reynolds number. For com-
parison, Spalart-Allmaras [47] model is closed with eight closure coefficients and three
damping functions. Baldwin-Barth model seven closure coefficients and three damping
functions, Wilcox [51]. Furthermore, the proposed model is universal. The implementa-
tion of the wall function is also easy in solvers like OpenFoam.
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It is important here to explain how the mixing length ` is determined, which is one of the
main contributions of this study. In the full k − ε model, it is deduced from k and ε by
the standard formula

(1.6) ` =
k3/2

ε
,

From DNS data of small and high Reynolds turbulent channel flow, k and ε are obtained
assuming that k, ε and ` are homogeneous in the x− y axes, we evaluate ` = `(z,Re?) at
the grid points, properly averaging the data raised from the DNS. We then interpolate the
collected sets of numerical values to get a general formula in both flat and rough cases (see
formula (4.17) and (4.18), complemented by (4.19), (4.21) and (4.22) for the calculation of
the different dimensionless coefficients)2. Our DNS are compared to the DNS of Moser
et al. [27, 37], which serves as the benchmark for our results.
To return to performance, comparing to other models, note that eddy viscosity computed
by both Spalart-Allmaras and Baldwin-Barth models do not decay at the end of
the turbulent boundary layer (see in Wilcox [51]). In our model, given the expression
for the turbulent mixing length, the computed TKE and the turbulent mixing length
decrease (and remain positive) at the edge of the boundary layer leading to a decaying
eddy viscosity. This fundamental property avoid the extra dissipation at the summit of
the boundary layer as seen in algebraic models (0 equation closure) Smith-Cebeci [46]
and Baldwin-Lomax models [5].

Numerical results. With numerical formula (4.17) and (4.18) for `, several numerical
simulations with the NSTKE model have been performed up to Re? = 10000, in both
flat and rough cases, after having evaluated the roughness coefficients contained in the
boundary conditions. There is no universal turbulence model, and this one is neither better
nor worse than another. However, compared to others, the existence of weak solutions
provides us some guarantees. Note also that the numerical simulation is as important as
the model itself, and consistency analysis of the scheme used should be also performed.
This an open problem left for future studies. In this work only a numerical assessment of
the convergence has been performed.
The NSTKE model behaves properly in the flat case, which validates our approach. How-
ever, the results are less good in the rough case. This does not mean that the model and
our approach have reached their limits, and the present study opens several questions.
We clearly do not have enough DNS in the rough case for the determination of `. More-
over, in this case, the assumption ` = `(z,Re?) must be called into question, in favour of
` = `(x, y, z, Re?). Last but not least, this first series of results shows that the topography
should be strongly taken into account in the calculation of the roughness coefficients, and
it remains an open question to know how to find a universal and simple way for doing this,
which is one of the main challenge in the field (see the “bulk algorithm” in Pelletier
[40] for instance).

Organization. This paper is is organized as follows. We carry out in Section 2 the
modeling of the new TKE boundary condition (1.5), based on a standard assumption
about the eddy viscosity in the subviscous layer and a Taylor expansion, following the
usual outline for deriving wall laws.
We prove in Section 3 an existence result to the resulting NSTKE system. We briefly
review the state of the art about NSTKE systems. Then we carefully set the functional
spaces and the norm we use (see Lemma ??), that alllows us to define the notion of weak

2In the process, we also calculate the values of the constants Cv and Ck involved in the eddy viscosities
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solutions for this system (see (3.63), (3.64), (3.65) below), following the same pattern as in
Chapter 7 in Chacon-Lewandowski [15], One of the main characteristics of the problem
is the equation for k which is an elliptic equation with a right hand side (r.h.s) in L1 whose
boundary condition is a non linear Neumann Boundary condition. Such elliptic equations
with r.h.s in L1 and nonlinear Neuman BC have not been consider before so far we know.
This is why we prove in Lemma 3.2 below an estimate à la Boccardo-Gallouët [10] for
such equations, which is the main novelty in this analysis part.
Section 4 is devoted to display several DNS, that yields to numerical formula for the
Prandtl mixingh length ` (see (4.17) and (4.18) below), as well as the setting of the
constants.
We show in Section 5 the results of the simulations from the NSTKE model, using the
recursive algorithm given in subsection 5.1, both in the flat and in the rough cases. We
also carry out a numerical convergence analysis of the algorithm.

2 Boundary condition modeling

The aim of this section is the derivation of the new boundary condition (1.5) for the
turbulent kinetic energy, denoted by the acronym TKE, that is

(2.1) − µt
∂k

∂n
= αkk

√
k at z = z0

Before doing this, we need to set up carefully the geometrical framework. Then we recall
the classical log law of the boundary layer mean velocity profile.

2.1 Geometry and boundary layers assumptions

The computational box Ω is defined by (see figure 2)

Ω = [0, Lx]× [0, Ly]× [0, Lz].

For simplicity, we assume that the flow field (v, p, k) satisfies periodic boundary conditions
in the x and y directions. To be more specific, (v, p, k) is defined on IR2 × [0, Lz], and
when it is at least of class C2, for ψ = v, p, k,

(2.2) ∀ (m,n) ∈ IN2, ∀ (x, y, z) ∈ Ω, ψ(x+ nLx, y +mLy, z) = ψ(x, y, z).

To carry out the modeling process, we assume that in the boundary layer, the mean
velocity v has a constant direction, v = (u, 0, 0), and is homogeneous in the x-y axes.
Therefore, u = u(z), which is a standard assumption.
It is generally accepted (Chacon-Lewandowski [15], Lewandowski [29], Mohammadi-
Pironneau [35], Pope [42]) that there exists 0 < z0 << z1 such that in the absence of
stratification or buoyancy effects, u has in [0, z1] the following profile,

∀ z ∈ [0, z0], u(z) =
u?
κ

z

z0
,(2.3)

∀ z ∈ [z0, z1], u(z) =
u?
κ

(
log

(
z

z0

)
+ 1

)
,(2.4)

where u? denotes the friction velocity, given by

(2.5) u? =

√
ν
∂u

∂z
(0),

and κ is the Van Karmàn constant, the numerical value of which is estimated between
0.35 and 0.42 (Foken [21]). Here z1 denotes the height of the boundary layer.
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Figure 2: 3D Representation of Ω

2.2 Boundary condition for the TKE

We model in this section a boundary condition for the TKE at z = z0, alternative to (1.4).
In order to proceed, we first must:

i) Determine the eddy diffusion coefficient µt in [0, z0],

ii) Settle the profile of the TKE k in the same region, in which we assume k = k(z).

i) According to standard use, we assume that in [0, z0], the flow is driven by the mixing
length ` and the friction velocity u?, and that

` = κz.

Therefore, as z and u? are dimensionally independent, (z, u?) is a dimensional basis (see
Chacon-Lewandowski [15, Chapter 3]). We deduce from straightforward calculation
based on dimensional analysis the usual formula:

(2.6) ∀ z ∈ [0, z0], µt(z) = κµu?z,

where κµ is a dimensionless constant.
ii) It is natural to set k(0) = 0 and k(z0) = u2(z0), which yields, by (2.3),

(2.7) k(0) = 0, k(z0) =
u2
?

κ2
.

Following (2.3) we enforce k to be linear in the viscous sublayer3, which leads by (2.7) to

(2.8) ∀ z ∈ [0, z0], k(z) =
u2
?

κ2

z

z0
.

We derive from these modeling hypotheses, the following result.

Proposition 2.1. Assume that (2.8) and (2.6) hold. Then the following expansion holds:

(2.9) ∀ z ∈ ]0, z0], µt
dk

dz
= κκµ

(z0

z

) 1
2
k
√
k + o(z).

3Notice that, even though it seems reasonable, this is an arbitrary choice, and that another choice would
yield another boundary condition.
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Proof. We expand k(z) between 0 and z:

(2.10) k(0) = k(z)− z dk
dz

(z) + o(z).

By (2.8), we get

(2.11) z
dk

dz
(z) =

u2
?

κ2

(
z

z0

)
+ o(z).

We combine (2.6) and (2.11), and we get

(2.12) µt
dk

dz
(z) =

κµ
κ2
u3
?

(
z

z0

)
+ o(z).

The relation (2.8) can be rewritten for z > 0 as

u? = κ
(z0

z

) 1
2
√
k(z),

that we insert in (2.12) to eliminate u?, which yields (2.9).

When we neglect the remaining term in (2.9), we get at Γb,c = {z = z0} the following
boundary condition for k:

(2.13) µt
dk

dz
= αkk

√
k,

where αk = κκµ. By symmetry, a similar analysis can be carried out at the top of the
computational box. Therefore, we can summarize the results in the following general
setting:

(2.14) − µt
∂k

∂n
= αkk

√
k at IR2 × ({z = z0} ∪ {z = Lz − z0}) = Gc.

Remark 2.1. Note that according to formula (1.6), the boundary condition (2.14) can be
rewritten as

(2.15) − µt
∂k

∂n
= αk`ε.

This is as if at the computational boundary Gc, we decided that the TKE is damped by the
mean dissipation of the fluctuation scaled by the mixing length, which is in coherence with
the TKE equation and some way of a physical interpretation.

2.3 Synthesis of equations

This subsection aims to summerize the geometry, the equations and the boundary condi-
tions. Let Omc denotes the infinite strip

(2.16) Omc = IR2 × [z0, Lz − z0],

and Gc its top and bottom

(2.17) Gc = IR2 × ({z = z0} ∪ {z = Lz − z0}) .
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The modeling above introduces the following boundary value problem:
(2.18)

(v · ∇) v − ν∆v −∇ · (νt(k))Dv) +∇p = f in Omc,
∇ · v = 0 in Omc,

v · ∇k − µ∆k −∇ · (µt(k)∇k) = νt(k)|Dv|2 − `−1k
√
|k| in Omc,

−[(2ν + νt(k))Dv · n]τ = αv|v|v on Gc,
v · n = 0 on Gc,

−(µ+ µt(k))∇k · n = αkk
√
|k| on Gc,

with periodic boundary conditions in the x and y axes, as defined by (2.2). Roughly
speaking the structure of the momentum equation is

transport+ viscosity + eddy viscosity + pressure = source

to which the incompressibility constraint and the wall law are added. The structure of the
equation for the TKE is

transport+ diffusion + eddy diffusion = production of TKE - dissipation

to which the new boundary condition is added.

Remark 2.2. We have added a diffusion term in the equation for the TKE to avoid
degeneration issues in the TKE part of the system, where µ > 0 is a small stabilizing
mathematical parameter.

Remark 2.3. In the context of the modeling assumptions of this section, the wall law
(1.3) becomes

(2ν + νt)
∂u

∂z
= αvu

2 at z = z0,(2.19)

(2ν + νt)
∂u

∂z
= −αvu2 at z = Lz − z0.(2.20)

Remark 2.4. The coefficients αv > 0 and αk > 0 involved in the boundary conditions of
(2.18) must be set. This point is discussed in section 5.1 below.

3 Mathematical analysis of the NSTKE model

3.1 Brief state of the art

The goal of this section is to analyse the mathematical structure of the system (2.18),
that is the NSTKE model we have introduced above. We start by recalling some notable
bibliography facts about NSTKE models. The question is whether the NSTKE model
considered in this paper has a structure similar to those studied previously.
It was first studied by Lewandowski [30], where Ω ⊂ IRd (d = 2, 3) is a smooth bounded
domain, with homogeneous boundary condition in the whole boundary of Ω, that is v|∂Ω =
0 and k|∂Ω = 0, and where νt and µt are bounded continuous functions of k. Steady
state and evolutionary cases were considered in this paper, in which various existence and
stability results are proved.
In Buĺıček-Lewandowski-Málek [13], the model was studied in Ω ⊂ IR3, v satisfies the
(linear) Navier Law at ∂Ω, k satisfies mixed homogeneous Dirichlet/Neumann boundary
condition at ∂Ω, νt and µt are continuous functions of k, with growth condition at infinity,
covering the case νt, µt = O

(
k1/2

)
. In this paper, the k-equation is replaced by the

10



equation for the total energy e = 1/2|v|2 + k, and the existence of a weak solution to the
(v, p, e) system is proved.
In Chacon-Lewandowski [15], we have studied the NSTKE model in Ω ⊂ IR3 with the
boundary conditions (1.3) (wall law) and (1.4) (k∂Ω = |v|2) at the whole boundary. To
carry out this study, we have set k′ = k − |v|2 and considered the equation for k′ in
place of that for k. The advantage is that k′ satisfies an homogeneous Dirichlet boundary
conditions at ∂Ω, suggesting that the method developed in Lewandowski [30] might be
adapted. The disadvantage is that additional coupling terms appear in the equation for
k′.
In the steady state case, we have proved in Chacon-Lewandowski [15, Chapters 7] the
existence of a weak solution to the (v, p, k′) system when νt = νt(k) and µt = µt(k) are
continuous bounded function of k, by a very long and technical proof. When νt, µt =
O
(
k1/2

)
at infinity, we still get an existence result when the equality in the k′ equation is

replaced by a variational inequality. The method fails in the evolutionary case, which still
remains an open problem. In this evolutionary case, we have been able to obtain existence
results when k|∂Ω = 0 and v satisfies the wall law (1.3).
In comparison with the former studies, the boundary value problem (2.18) is characterized
by

i) mixed boundary conditions, in the sense that they are periodic in the x− y axes, and
of flux type in the z-axis (wall law, Neumann),

ii) the non linear Neumann boundary condition (2.14) for k in the z axis.

We will show in the next subsections how the NSTKE model (2.18) studied in this paper,
can be put in an abstract form similar to those studied previously. Therefore the previous
results, in particular those in Chacon-Lewandowski [15], can be applied to it, in order
to get the existence of weak solutions as stated in Theorem 3.1 below.

From now and throughout the rest of the paper we write v instead of v for the simplicity.

3.2 Variational formulation process

3.2.1 Truncation of the eddy coefficients

We focus to the boundary value problem (2.18), for a given mixing length ` and when the
eddy viscosity and diffusion are bounded, which corresponds to the typical case

(3.1) µt(k) = Tn(Cv`
√
k), νt(k) = Tn(Ck`

√
k),

where TN is the truncation fonction given by

(3.2) Tn(x) = x if |x| ≤ n, Tn(x) = n
x

|x| if |x| ≥ N.

Formally, these eddy coefficients converge to those initially given by (1.2) when n → ∞.
We will come back to this passage to the limit in the subsection 3.7 below.

3.2.2 Abstract writing of the system

A weak solution is the solution of a given variational problem. The main difficulty is to
find out what is the appropriate variational problem that corresponds to the system (2.18),
which combines PDE’s and boundary conditions.

11



We first write (2.18) in its abstract form, which integrates by the mean of operators, the
PDE’s and the boundary conditions in single equations in the following way.

— Momentum equation:

(3.3) B(v,v)︸ ︷︷ ︸
tansport

+ A(v)︸ ︷︷ ︸
viscosity

+ S(k; v)︸ ︷︷ ︸
eddy viscosity

+ G(v)︸ ︷︷ ︸
boundary term

+∇p = f ,

together with the incompressibilty constraint.

— TKE Equation:

(3.4) Be(v, k)︸ ︷︷ ︸
transport

+ Ae(k)︸ ︷︷ ︸
diffusion

+ Se(k; k)︸ ︷︷ ︸
eddy diffusion

+ Ge(k)︸ ︷︷ ︸
boundary term

= P (v, k)︸ ︷︷ ︸
production of TKE

− ε(k)︸︷︷︸
dissipation

where we have set:

(3.5) P (v, k) = νt(k)|Dv|2, ε(k) = `−1k
√
|k|.

Once this is done, we are in order to introduce the following dual operators, where (w, q, l)
is what we call the test vector and (·, ·) denotes appropriate duality products that we will
define later:
(3.6)

transport operators: b(v; v,w) = (B(v,v),w), be(v; k, l) = (Be(v, k), l),
viscosity/diffusion operators: a(v,w) = (A(v),w), ae(k, l) = (Ae(k), l),
eddy operators: s(k; v,w) = (S(k; v),w), se(k; k, l) = (Se(k; k), l),
boundary terms: g(v,w) = (G(v),w), ge(v,w) = (Ge(v),w).

The determination of these operators yields the variational formulations of the NSTKE
model that we study. The solutions to the variational problem which we obtain, are weak
solutions of this model.

3.2.3 Expression of the operators

The method for determining the variational formulation of the PDE’s system with bound-
ary conditions (2.18), is to take the dot product of the momentum equation by w, to
multiply the TKE equation by l and to integrate by parts. To do so, we need carreful
geometrical definitions about the computational domain, restricted to a calculation box
called Ωc and given by:

Ωc = [0, Lx]× [0, Ly]× [z0, Lz − z0],(3.7)

Γb,c = [0, Lx]× [0, Ly]× {z = z0} (bottom),(3.8)

Γt,c = [0, Lx]× [0, Ly]× {z = Lz − z0} (top),(3.9)

Γc = Γb,c ∪ Γt,c (bottom ∪ top).(3.10)

Following a standard procedure in CFD, the transport operators are symmetrized in order
to verify the identities

(3.11) b(v,v,v) = 0, be(v, k, k) = 0,

in particular
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(3.12) b(v,v,w) =
1

2

(∫
Ωc

(v · ∇)v ·w −
∫

Ωc

(v · ∇)w · v
)
.

as well as

(3.13) be(z; k, l) =
1

2

[∫
Ωc

(v · ∇k)l − (v · ∇l, k)

]
,

We show in Lemma 3.1 that these operators match well with the transport involved in the
model, because of the incompressibility constraint.
We also will show in the next subsections that the natural definition for the other operators
are the following:

(3.14)



a(v,w) = ν

∫
Ωc

∇v : ∇w, ae(k, l) = µ

∫
Ωc

∇k · ∇l,

s(k; v,w) =

∫
Ωc

νt(k)Dv : Dw, se(k; q, l) =

∫
Ωc

µt(k)∇q · ∇l,

g(v,w) = αv

∫
Γc

v|v|w, ge(k, l) = αk

∫
Γc

k
√
k l.

We notice that when the fields (v, k) and (w, l) are of class C1 in the computational
domain, the integrals involved in the definitions (3.12), (3.13) and (3.14) are well defined.

3.2.4 Toward a variational formulation

The machinery behind the determination of weak solutions is based on functional analysis,
the main results of which are verified in Banach spaces, whose norms are Lp norms of the
functions and/or their derivative. However C1 functions spaces are not Banach spaces for
such norms, and we must use Lebesgue and Sobolev spaces. From there, the challenge is
the determination of the appropriate spaces E1, F1 and G1 where to look for the unknowns,
and E2, F2 and G2 where to take the vector tests, so that the variational formulation of
our problem gets:

(3.15) Find (v, p, k) ∈ E1 × F1 ×G1 such that for all (w, q, l) ∈ E2 × F2 ×G2,

1 Momentum equation:

(3.16) b(v; v,w)︸ ︷︷ ︸
tansport

+ a(v,w)︸ ︷︷ ︸
viscosity

+ s(k; v,w)︸ ︷︷ ︸
eddy viscosity

+ g(v,w)︸ ︷︷ ︸
boundary term

− (p,∇ ·w)︸ ︷︷ ︸
pressure

= (f ,w)︸ ︷︷ ︸
source term

2) incompressibilty condition:

(3.17) (q,∇ · v) = 0,

3) TKE Equation:

(3.18) be(v; k, l)︸ ︷︷ ︸
transport

+ ae(k, l)︸ ︷︷ ︸
diffusion

+ se(k; k, l)︸ ︷︷ ︸
eddy diffusion

+ ge(k, l)︸ ︷︷ ︸
boundary term

= (P (v, k), l)︸ ︷︷ ︸
production term

− (ε(k), l)︸ ︷︷ ︸
dissipation term

.

This formulation will be completed by the subsection 3.6. The difficulty is to carrefully
construct the functional spaces involved in the formulation, which is the aim of the next
subsections.
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3.3 Functional space where to look for the velocity

From now, the working assumptions are the following:

(3.19)


(i) The mixing length ` = `(x)is a given strictly non negative
bounded continuous function,

(ii) ν > 0, µ > 0, αv > 0, αk > 0 are constants,

(iii) the eddy viscosity νt = νt(k) ≥ 0 and µt = µt(k) ≥ 0
are continuous bounded function of k.

The goal of this section is to carrefully construct the Sobolev space where we will look
for the velocity, which will be defined as the product of Sobolev spaces. What makes the
problem difficult is the fact that we work with mixed boundary conditions for the velocity
v, which is naturally broken down into its horizontal component vh = (vx, vy) and its
vertical component vz, each component to be treated differently.

3.3.1 Energy balance

The starting point of the process is the energy balance, that we obtain by taking formally
w = v as test in equation (3.16), combined with the constraint ∇ · v = 0 and the relation
(3.11), so that the pressure and the transport terms vanish. Therefore the energy balance
is:

(3.20) ν

∫
Ωc

|∇v|2 +

∫
Ωc

νt(k)|Dv|2 + αv

∫
Γc

|v|3 = (f ,v),

which indicates that we have to construct a space that looks like W 1,2(Ωc)
3, with the x−y

periodicity and the fact that v ·n = vz = 0 at Γc in addition. Moreover, to take advantage
of the energy balance (3.20), this space should be normed by the norm4

(3.21) N(v) =

(∫
Ωc

|∇v|2
)1/2

+

(∫
Γc

|v|2
)1/2

,

which is equivalent to the usual norm on the space W 1,2(Ωc)
3,

(3.22) ||v||1,2,Ωc =

(∫
Ωc

|∇v|2
)1/2

+

(∫
Ωc

|v|2
)1/2

,

see in Buĺıček-Málek-Rajagopal [14].
As we know from the Hölder inequality that

(3.23)

∫
Γc

|v|2 ≤ meas(Γc)
1/3

(∫
Γc

|v|3
)2/3

,

then the energy balance (3.20) yields, because νt is nonnegative, αv, ν > 0,

(3.24) N(v) ≤ C(αv, ν,Ωc)||f ||,

for the norm of f in the dual space of W 1,2(Ωc)
3.

4For the simplicity and when no risk of confusion occurs, we indentify v at Γc to his trace, without
changing the notation. When necessary, we will use the usual notation for the trace, that is trv.
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Remark 3.1. Let 1 ≤ p < ∞. The trace operator is surjective from tr = H1
π →

W 1,1−1/p(Γc). Therefore, following Buĺıček-Málek-Rajagopal [14], it also can be seen that,
given any 1 ≤ q ≤ q∗∗, where q∗∗ is the critical exponent exponent in the Sobolev injection
W 1,1−1/p(Γc) ↪→ Lq(Ωc), the norm given by

(3.25) ||ψ|| =
(∫

Ωc

|∇ψ|p
)1/p

+

(∫
Γc

|ψ|q
)1/q

is a norm on H1
π equivalent to the usual one.

3.3.2 x− y periodic Lebesgue and Sobolev spaces

Lebesgue and Sobolev spaces are oftently constructed as the completion of C∞-function
spaces. In order to take the x−y periodicity into account, we consider the following space:
(3.26)

W =
{
ψ ∈ C∞(IR2 × [z0, Lz − z0], IR) s.t.

∀ (m,n) ∈ IN2, ∀ (x, y, z) ∈ Ωc, ψ(x+ nLx, y +mLy, z) = ψ(x, y, z)
}
,

which means the smooth function defined in the strip z0 ≤ z ≤ Lz − z0, periodic in the
(x, y)-axes by the [0, Lx]× [0, Ly] box.

Given any ψ ∈ W, we still denote by ψ its restriction to Ωc, so far no risk of confusion
occurs. It can be easily checked that the standard Lp norm on Ωc and the norm N given
by (3.21), are norms on W, because of the periodicity.
We define:

• The space Lpπ, the completion of W with respect to the Lp norm on Ωc,

• The space H1
π, the completion of W with respect to the norm N given by (3.21).

From now, we denote by || · ||s,p,Ωc the standard W s,p norm on Ωc. In particular, || · ||0,p,Ωc
is the Lp norm. We also will make no distinction between the norm N given by (3.21) and
the usual W 1,2 norm given (3.22), which will be both be denoted by || · ||1,2,Ωc so far no
risk of confusion occurs.

We also will consider the W 1,p
π , which is the completion of W with respect of the W 1,p

norm on Ωc.

3.3.3 Vertical homogeneous space to treat the vertical component.

In order to treat the fact that vz = 0 at Γc, we will need the following space:

(3.27)
W0 = {ψ ∈ W s.t.

∃ δ > 0, ∀ (x, y) ∈ IR2, ∀z ∈ [z0, z0 + δ] ∪ [Lz − z0 − δ, Lz − z0],
ψ(x, y, z) = 0}.

In other word,W0 is the set of functions inW vanishing in a neighbourhood of the bottom
z = z0 and the top z = Lz − z0.

Let H1
π,0 denotes the closure of W0 in H1

π.
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By simply adapting a standard argument to this situation it is easy checked that given
any ψ ∈W 1,2

π , then
ψ ∈ H1

π,0 if and only if ψ|Γc = 0,

see for instance in Brézis [12]. Moreover, the following Poincaré’s inequality holds

(3.28) ∀ψ ∈ H1
π,0, ||ψ||0,2,Ωc ≤ CΩc ||∇ψ||0,2,Ωc ,

where CΩc is a constant that only depends on Ωc. Note that in view of the geometry of
Ωc, a straightforward calculation using Fubini’s theorem allows to check that (3.28) can
be improved by:

(3.29) ∀ψ ∈W 1,2
π,0 , ||ψ||0,2,Ωc ≤ CLz ||

∂ψ

∂z
||0,2,Ωc ,

3.3.4 Space for the velocity.

The boundary condition v · n = 0 at z = z0 and z = Lz − z0 must be considered in the
functional setting. Let w = (wx, wy, wz) be a vector field defined over IR2 × [z0, Lz − z0]
that satisfies

w · n|z=z0 = w · n|z=Lz−z0 = 0,

then
wz(x, y, z0) = wz(x, y, Lz − z0) = 0.

In other words, wz|Γc = 0. Therefore, according to this point and from above, we are led
to seek for the velocity in the space

(3.30) W = H1
π ×H1

π ×H1
π,0.

3.4 Properties of the operators

From now, the source term f in (2.18) is in the dual space W ′. We aim in this section to
justify the introduction of the operators given by (3.14), to study their main properties,
as well as to study the properties of the transport operators.

3.4.1 Turbulent operator

In this section, we construct simultaneously the eddy viscosity-diffusion operators a(v,w)
and ae(k, l), and the boundary terms g(v,w) and ge(k, l) by the Stokes formula.

Let A = A(x) denotes a C1 (x, y)-periodic matrix, positive definite uniformly in x =
(x, y, z) ∈ Ωc = IR2 × [z0, Lz − z0], that is

(3.31) ∀u ∈ IR3, ∀x ∈ Ωc, (A(x)u,u) ≥ ν|u|2.

Let ψ, φ ∈ W. By the Stokes formula over Ωc, which is a Lipchitz domain, we have

(3.32)

∫
Ωc

−∇ · (A∇ψ)φ = −
∫
∂Ωc

φA∇ψ · n +

∫
Ωc

A∇ψ · ∇φ.

Using the notations of figure 2, we decompose the integral on ∂Ωc as

(3.33)

∫
∂Ωc

=

∫
Γc

+

∫
Γe

+

∫
Γs

+

∫
Γlg

+

∫
Γlr
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We have: n|Γe = −n|Γs and n|Γlg = −n|Γlr . As φA∇ψ is a C1 function, periodic in the
(x, y)-axes, we also have φA∇ψ|Γe = φA∇ψ|Γs as well as φA∇ψ|Γlg = φA∇ψ|Γlr . There-
fore, aside the term on Γc, all other terms in the boundary integral (3.33) are vanishing,
hence (3.32) yields

(3.34) (−∇ · (A∇ψ)φ, φ) =

∫
Ωc

−∇ · (A∇ψ)φ = −
∫

Γc

φA∇ψ · n +

∫
Ωc

A∇ψ · ∇φ.

Unfortunately, the operator {
W → Lp(Γc),
ψ → tr(A∇ψ) · n

is not bounded, whatever the choice of p ≥ 1. Therefore, Formula (3.34) cannot be
extended for any ψ and φ in W 1,p

π spaces. However, the structure of our problem suggests
to introduce the following. Let F : IR → IR be a function which satisfies the growth
condition

(3.35) |F (ψ)| ≤ C(1 + |ψ|q),

for some q that be specified later, and let us consider

MF = {ψ ∈ W; tr(A∇ψ) · n = −F (ψ)}.

Let MF denotes the adherence of MF with respect to the W 1,p topology. For ψ ∈ MF ,

φ ∈W 1,p′
π , the equality (3.34) becomes

(3.36) (−∇ · (A∇ψ)φ, φ) =

∫
Γc

φF (ψ) +

∫
Ωc

A∇ψ · ∇φ.

We observe on one hand that as ∇ψ ∈ Lp(Ωc) and ∇φ ∈ Lp
′
(Ωc), the volume integral

in (3.36) is also well defined as soon as A ∈ Lp′(Ωc). On a second hand, straightforward
calculations based on Hölder and Sobolev inequalities, yield the following rules for the
right choice of q to make the boundary integral well defined in (3.36):

(3.37)


if 1 ≤ p < 3/2, q ≤ p?? =

2p

3− p = qc,

if p = 3/2, q < 2 = qc,

if 3/2 < p < 3, q ≤ 3

3− p = qc.

In the equation for v5, A = (2ν + νt(k))Id, p = 2 and

(3.38) F (v) = αv|v|v.

then q = 2 and qc = 3. This case is well covered by the classification (3.37). In the
k-equation, A = (µ+ µt(k))Id, p = 3/2−,

(3.39) F (k) = αkk
√
|k|,

then q = 3/2 and qc = 2, which is also well covered by the classification (3.37).

5Things are a little bit more technical with vector fields and laws such as (1.3), but the calculation and
the final result are similar to the scalar case, changing ∇ by D, and thus we will not repeat it.
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3.4.2 Transport operators

Let’s remember that as we are not working with a space of free divergence field, following
Chacon-Lewandowski [15, Chapter 6], we use the transport operator b(z; v,w) in the
momentum equation, defined by

(3.40) b(z; v,w) =
1

2

(∫
Ωc

(z · ∇)v ·w −
∫

Ωc

(z · ∇)w · v
)
.

By similar calculations as those carried out in section (3.4.1) and arguments of the proof
of Lemma 6.3 in Chacon-Lewandowski [15], we easily get:

Lemma 3.1. The form (z,v,w)→ b(z; v,w) verifies the following properties.

i) b is trilinear and continuous on (H1
π)3, then on W , and in particular,

(3.41) ∀ z, v, w ∈ (H1
π)3, |b(z; v,w)| ≤ C ‖z‖1,2,Ωc ‖v‖1,2,Ωc ‖w‖1,2,Ωc ,

for some constants C only depending on Ω.

ii) b is antisymmetric,

(3.42) ∀ z, v, w ∈ (H1
π)3, b(z; v,w) = −b(z; w,v),

iii) we also have

(3.43) ∀ z, w ∈ (H1
π)3, b(z; w,w) = 0.

iv) For any z ∈W such that ∇ · z = 0 (in L2
π), we have

(3.44) ∀v, w ∈ (H1
π)3, b(z; v,w) =

∫
Ωc

(z · ∇) v ·w,

as well as

(3.45) ∀w ∈ (H1
π)3, b(z; z,w) = −

∫
Ωc

z⊗ z : ∇w.

The transport operator be involved in the TKE equation, that is

(3.46) be(z; k, l) =
1

2
[(z · ∇k, l)− (z · ∇l, k)] ,

where6

∫
Ωc

φψ = (φ, ψ), satisfies the same properties as the operator b. Moreover, following

Stampacchia [49], we also have for any C1 piecewise function H that vanishes at 0,

(3.47) be(v, k,H(k)) = 0.

We have just taken an important step because, from the above, we are now able to specify
the spaces for the velocity and the pressure and the corresponding tests introduced in the
subsection 3.2.4, by setting

(3.48) E1 = E2 = W, F1 = F2 = L2
π,

where W is specified by (3.30).

6More generally, given any Banach space E, ψ ∈ E, φ ∈ E′, then so far no risk of confusion occurs,
(φ, ψ) denotes the duality product between φ and ψ.
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3.5 Treatment of the TKE equation

Basically, the TKE-equation (3.18) is an transport-diffusion equation with a right hand
side in L1 (see for instance Boccardo-Diaz-Giachetti-Murat, [9], Boccardo-Murat
[11] and in Lewandowski [29, Chapter 5]). Indeed, we deduce from the energy balance
(3.20) combined with the inequality (3.23),

(3.49) C||v||1,2,Ω +

∫
Ωc

νt(k))|Dv|2 ≤ (f ,v),

where C is a constant that depend on αv, ν and Γc.
Therefore, by Young inequality, (3.49) yields

(3.50)
C

2
||v||2W +

∫
Ωc

νt(k)|Dv|2 ≤ 1

2C
||f ||W ′ .

Hence the production term P (k,v) = νt(k)|Dv|2 does belong to L1(Ωc).

Lemma 3.2. For all 1 ≤ q < 3/2, there exists a constant Cq = Cq(αv, ν,Ωc, ||f ||W ′) such
that any solution k to (3.18) satisfies the a priori estimate

(3.51) ||k||1,q,Ωc ≤ Cq.

Proof. The proof is divided into two steps. We first find a uniform estimate of ||trk||0,3/2,Γc .
Then we derive from the Boccardo-Gallouët [10] inequality an estimate of ||∇k||0,q,Ω
that yields the conclusion.

Step 1. Estimate at the boundary. Given any ε > 0, let Sε be the odd function defined by

(3.52)

{
Sε(x) = ε−1x if x ∈ [0, ε],
Sε(x) = 1 if x ∈ [ε,∞[.

We chose l = Sε(k) as test in (3.18), taking into account that:

• by (3.47), be(v, k, Sε(k)) = 0,

• because S′ε ≥ 0 and µt ≥ 0, ae(k, Sε(k) ≥ 0,

• (ε(k), Sε(k)) = ε−1

∫
|k|≤1/ε

`−1|k|3/2 +

∫
|k|≥1/ε

`−1|k|1/2 ≥ 0,

• |Sε(k)| ≤ 1,

we have by (3.50),

(3.53)

∫
Ωc

S′ε(k)|∇k|2 + αk

∫
Γc

k|k| 12Sε(k) ≤
∫

Ωc

P (v, k)Sε(k) ≤ C||f ||W ′

As Sε is non decreasing, S′ε(k)|∇k|2 ≥ 0. Hence (3.53) yields

(3.54) αk

∫
Γc

k|k| 12Sε(k) ≤ C||f ||W ′ ,

which gives by Fatou’s Lemma, since Sε(k)→ sign(k) where k 6= 0 as ε→ 0,∫
Γc∩{k 6=0}

|k| 32 ≤ lim inf
ε→0

∫
Γc∩{k 6=0}

k|k| 12Sε(k) ≤ C||f ||W ′ ,
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leading to

(3.55)

∫
Γc

|k| 32 ≤ C||f ||W ′ ,

hence a uniform L3/2 estimate for k at Γc.

Step 2. Estimate inside Ω. Given any n ∈ IN, let Hn : IR → IR be the odd continuous
Lipchitz function defined by

(3.56)


Hn(x) = 0 if x ∈ [0, n],
Hn(x) = x− n if x ∈ [n, n+ 1],
Hn(x) = 1 if x ∈ [n+ 1,∞[.

Taking Hn(k) as test in (3.18) yields, by similar arguments,

(3.57)

∫
Ωc

H ′n(k)|∇k|2 + αk

∫
Γc

k|k| 12Hn(k) ≤
∫

Ωc

P (k,v)Hn(k) ≤ C||f ||W ′

As Hn is odd, k|k| 12Hn(k) ≥ 0. Therefore, (3.49) yields

(3.58)

∫
n≤|k|≤n+1

|∇k|2 ≤ C||f ||W ′ .

From this estimate, we can use the result of Boccardo-Gallouët [10] turnkey. There-
fore, for all q < 3/2, for all ε > 0, there exists Cε (that depends on q and C||f ||W ′), such
that

(3.59) ||∇k||q0,q,Ωc ≤ Cε + ε||k||
q?(2−q)

2
0,q?,Ωc

.

Hence according to Remark 3.1 combined with the Sobolev inequality and (3.55),

(3.60)
||∇k||q0,q,Ωc ≤ Cε + εS

q?(2−q)
2 (||∇k||0,q,Ωc + ||trk||0,3/2,Γc)

q?(2−q)
2

≤ Cε + εS
q?(2−q)

2 (||∇k||0,q,Ωc + (C||f ||W ′)2/3)
q?(2−q)

2 .

The conclusion follows from (3.60) because q? (2−q)
2 < q.

We set in what follows:

(3.61) W
1, 3

2

−

π =
⋂

r<3/2

W 1,r
π , W 1,3+

π =
⋃
ρ>3

W 1,ρ
π ,

which specifies now the space where to look for the TKE k and the corresponding tests.

3.6 Main result

The results above allow to complete the variational problem corresponding to the system
(2.18) introduced in the subsection 3.2.4, and to clarify the statement of the main theo-
retical result in this paper. According from above, the variational formula of subsection
3.2.4 gets:

(3.62) Find (v, p, k) ∈W × L2
π ×H

1, 3
2

−

π s.t. for all (w, q, l) ∈W × L2
π ×H1,3+

π ,
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b(v; v,w) + a(v,w) + s(k; v,w) + g(v,w)− (p,∇ ·w) = (f ,w),(3.63)

(q,∇ · v) = 0,(3.64)

be(v; k, l) + ae(k, l) + se(k; k, l) + ge(k, l) = (P (k,v)− ε(k), l).(3.65)

Any solution to the variational problem (3.63)-(3.63)-(3.63) is a weak solution to the system
(2.18). The calculation carried out before ensures that any strong solution to (2.18) is a
weak solution. Conversely, it is easily checked that if (v, p, k) is a weak solution which in
addition satisfies (v, p, k) ∈ (H2

π)3 ×H1
π ×H2

π, and νt, µt are C1 functions, then (v, p, k)
is also a strong solution to (2.18), and the following holds true:

Theorem 3.1. Assume that assumptions 3.19 hold. Then System (2.18) has a weak

solution (v, p, k) ∈W × L2
π ×H1, 3

2

−
.

The analysis carried out above shows that the weak formulation of system (2.18) is formu-
lated as that considered in Chacon-Lewandowski [15, Chapter 7], which was one of our
goal. Therefore, the proof is similar to that of Theorem 7.1 in Chacon-Lewandowski
[15]7. We use a fixed point method, which requires a compactness property. The main in-
gredient to get it, is the energy method. Roughly speaking, it consists in proving that given
a sequence of solution (vj , pj , kj)j∈IN to the variational problem (3.62)-(3.63)-(3.64)-(3.65),
then from this sequence we can extract a subsequence, still denoted by (vj , pj , kj)j∈IN,

which weakly converges to some (v, p, k) in W × L2
π ×H1, 3

2

−
and such that

(3.66) lim
j→∞

P (kj ,vj) = P (k,v) strongly in L1
π,

so that we can pass to the limit in the production term, which is the source of difficulty.

Remark 3.2. It is easily proved by standard arguments that the TKE k is non negative.

3.7 From bounded to unbounded eddy viscosities

It remains to say some words about the problem of unbounded eddy coefficients raised in
the subsection 3.2.1. Any n being given, we can consider

(3.67) µnt (k) = Tn(Cv`
√
k), νnt (k) = Tn(Ck`

√
k).

According to Theorem 3.1, there is a solution (vn, pn, kn) to the problem with µnt (k) and
νnt (k) as eddy coefficients. Thereofore, we can prove that from the sequence (vn, pn, kn)n∈IN,
we can extract a subsequence, still denoted by (vj , pj , kj)j∈IN, which weakly converges to

some (v, p, k ∈ W × L2
π × H1, 3

2

−
. From there, we are able to pass to the limit in the

momentum equation, but not in the TKE equation because we are not able to prove that
(3.66) is satisfied, and we only obtain a variational inquality, so that the limit satisfies,
when νt = Cv`k

√
k, µt = Ck`k

√
k,

(3.68) for all (w, q, l) ∈W × L2
π ×H1,3+

π ,

b(v; v,w) + a(v,w) + s(k; v,w) + g(v,w)− (p,∇ ·w) = (f ,w),(3.69)

(q,∇ · v) = 0,(3.70)

be(v; k, l) + ae(k, l) + se(k; k, l) + ge(k, l) ≤ (P (k,v)− ε(k), l).(3.71)

7In fact it is much more simpler in this case, since we do not have many additional terms coming from
the boundary condition, in which v is involved. These terms are replaced by the boundary term ge(k, l),
which is easily treated, just as the term g(v,w) in the v-equation.
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It does not seem useful to give more technical development, since in practice k remains
bounded, and the turbulent coefficients coincide with their truncated versions for a certain
n large enough.

4 Direct Numerical Simulations

We perform and validate in this section several DNS, in order to derive a universal formula
for the mixing length ` as a function of the frictional Reynolds number

(4.1) Re? =
u?H

ν
,

the friction velocity u? being given by (2.5), H = Lz/2. The frictional Reynolds number
is the main control parameter in this study. To close the set of parameters, we enforce u
to be equal to 1 at z = H. We will use the following standard relation between u? and
Re?:

(4.2) u? =

(
1

0.41
logRe? + 5.5

)−1

,

which is a byproduct of the log law. Therefore, Re? yields u? and then ν from (4.1)
re-written as

(4.3)
ν

u?
=

H

Re?
.

Note that ν/u? is the natural length scale of the flow.

4.1 Settings and results

To begin with, we set data and parameters for the simulations.

i) Software and equations. The direct numerical simulations (DNS) are performed by using
the parallelised flow solver Incompact3d (see at https://www.incompact3d.com/). The
numerical schemes implemented in this software are detailed in Laizet-Lamballais [25],
Laizet-Li [26] Lele [28]. The equations, solved in Ω = [0, Lx]× [0, Ly]× [0, Lz], are8:

(4.4)


∂tv +

1

2
[∇ · (v ⊗ v) + (v · ∇)v]−∇ · (ν∇v) +∇p = f ,

∇ · v = 0,
v|z=0 = v|z=Lz = 0, v periodic in the x− y axes,
v|t=0 = v0.

The source term f is constant and given by

(4.5) f =

(
u2
∗
H
, 0, 0

)
.

ii) The initial data. The initial data v0 is a random perturbation of the field

(4.6) U(x, y, z) =

((
z̃

H

) 1
7

, 0, 0

)
,

8numerically more convenient, theoretically equivalent to the standard Navier-Stokes equations
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where z̃ = min(z, 2H − z). The corresponding profile coincides more or less with the log
profile, without the singularity at z = 0 and z = Lz. In order to get a flow that is not too
trivial and looks like a turbulent flow, we take v0 such that

(4.7) v0 = U + 0.125η(x, y, z̃, ω)

((
z̃

H

) 1
7

, 1, 1

)
.

The function η ∈ [−1, 1] is a zero mean Gaussian random variable: at each point (x, y, z)
and each run labeled by ω, the code randomly picks a number η(x, y, z, ω), thanks to a
standard numerical random generator. This field is not divergence-free, but the code auto-
matically correct this error at the first time step, through the incompressibility condition.

iii) Parameters of the simulations. They are the same as those of Moser-Kim-Mansour
[37], which is our benchmark. We have performed four DNS: three of them are in the flat
case (see figure 2), for Re? = 180, 360, 550, and one in the rough case (see figure 1) for
Re? = 180.
Let ∆t denotes the time step, T the final time of the simulation, (nx, ny, ny) determines
the mesh size, which means that the discretization space-step ∆a in the a-axis (a = x, y, z)
is given by

∆a =
La
na
.

Run (Lx, Ly, Lz) (nx, ny, nz) ∆t T

DNS-FLAT-180 (4π, 4/3π, 2) (128, 128, 128) 0.005 3600ν/u2
?

DNS-FLAT-360 (2π, 2/3π, 2) (256, 128, 192) 0.0025 3600ν/u2
?

DNS-FLAT-550 (2π, 2/3π, 2) (256, 256, 257) 0.00125 1800ν/u2
?

DNS-ROUGH -180 (4π, 4/3π, 2) (128, 128, 128) 0.005 3600ν/u2
?

Table 1: Parameters for each DNS

Since the Kolmogorov scale is getting smaller as Re? increases, the computational cost is
dramatically expensive for large Re?. This is why the dimensions of the computational
boxes in DNS-FLAT-360 and 550 are smaller than the dimensions in DNS-FLAT-180.

iv) Results in the flat case.9 Our results are reported in figure 3 where we have plotted
the mean adimensionalized streamwise component of the velocity as well as the results
of Moser et all Moser-Kim-Mansour [37]. In particular, if vDNS = (uDNS, vDNS, wDNS)
denotes the calculated field by the DNS,

(4.8) u(z) =
1

Tnxny

T/∆t∑
n=0

nx∑
j=0

ny∑
k=0

uDNS

(
n∆t, j

Lx
nx
, k
Ly
ny
, z

)
.

We observe a very good correspondence between our results of those of Moser-Kim-
Mansour [37], at least in average. This validates our DNS in the flat case, which allows
us to think that our DNS in the rough case10, outlined below, is accurate.

v) The rough case. The rough topography displayed in figure 1 is built in three steps as
follows.

9For the simplicity, the overline always means an average which will be specified case by case, to avoid
the risks of confusion. We also may use 〈 · 〉 for time averages.

10So far we know, there is no available data in the literature for such a rough case.
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Figure 3: Streamwise velocity profile compared to those provided by Moser-Kim-
Mansour [37].

1) We construct regularly spaced Gaussian domes centered at (xi, yi) with random heights
Λ̃i and variances σi, leading to the primary topography z = Λ̃(x, y) given by

(4.9) Λ̃(x, y) =
N∑
i=1

Λ̃ie
−[(x−xi)2+(y−yi)2)]/(4σ2

i ).

2) This topography remains regular. In order to make it more chaotic, we follow the idea
of Rossi [43] and we pick Gaussian domes Λj again, as well as random angles θj and
aspect ratio aj . Then we perturb Λ̃(x, y) as follows:

(4.10) Λ(x, y) = Λ̃(x, y) +
N∑
j=1

Λje
−[[cj(x−xj)+sj(y−yj)]2/a2j+[cj(y−yj)−sj(x−xj)]2a2j ]/(4σ2

j )),

where cj = cos(θj), sj = sin(θj), aj . The Λj ’s, the θj ’a and the aj ’s are all Gaussian as
well.

3) The roughness field is normalized such that max(Λ(x, y)) = hmax = 0.1. Therefore,
the bottom is the surface given by: z = Λ(x, y).

To perform the simulation, we use the “immersed boundary method” (IBM), initially
developed by Peskin [41] (see also Lewandowski-Pichot [33]). This consists of solving
the Navier-Stokes equation in Ω = [0, Lx]× [0, Ly]× [0, Lz], by adding in the Navier-Stokes
equations (4.4) the additional source term

(4.11) − 1

ε
1{0≤z≤Λ(x,y)}v,
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for a small value of ε, which does not change the standard results and analysis about the
Navier-Stokes equations11. This additional term enforces v to be negligible for z ≤ Λ(x, y),
and does not affect the system in the domain Λ(x, y) ≤ z ≤ Lz. The results of the
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Figure 4: Streamwise velocity profile compared to a log profile.

simulation are reported in figure 4. We also have plotted on the same figure the log profile
given by

h(z) =
1

0.31
ln
( z

0.025

)
+ 7.0.

Our simulation yields a mean streamwise profile that perfectly matches with this log law
for z ∈ [0.3, 0.8], thereby validating our DNS.

4.2 Determination of the mixing length and the constants

The aim of this section is to derive from the DNS a formula to determine the mixing
length `. We also settle the values of the constants Cv and Ck involved in the boundary
conditions at Γc for v and k.

4.2.1 General methodology

Let E denotes the total mean dissipation, given by

(4.12) E = 2ν|∇v|2.

It is common in turbulence modeling to assume that ` is a function of k and E , that is
` = `(k,E ). A straightforward dimensional analysis yields the formula

(4.13) ` =
k
√
|k|

E
,

on which the determination of ` is based. We assume that ` does not depend on x and y.
Therefore in this framework, the means are calculated from the data by the same formula

11The comprehensive mathematical analysis of the IBM is carried out in Lewandowski-Pichot [33].
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as (4.8). To be more specific, if Ψ is any field related to the flow, ΨDNS the corresponding
calculated field, then

(4.14) Ψ(z) =
1

Tnxny

T/∆t∑
n=0

nx∑
j=0

ny∑
k=0

ΨDNS

(
n∆t, j

Lx
nx
, k
Ly
ny
, z

)
.

Of course, only numerical values of Ψ at z = qLz/nz (q = 0, · · · , nz) can be calculated by
(4.14). Based on this, our procedure is the following:

i) we compute v = v(z) by (4.14),

ii) at each grid point, we form the field v′vert = vDNS − v,

iii) we extract from the data the numerical TKE denoted by kvert, given at each z =
qLz/nz by the quantity kvert(z) = (1/2)|v′vert|2(z),

iv) by the standard finite difference scheme, we calculate Evert = Evert(z) by (4.12),

v) we get at each z = qLz/nz the mixing length ` = `(z) by forming the quotient
kvert(z)

√
kvert(z)/Evert(z).

Remark 4.1. The function kvert(z) calculated above is the horizontal mean of the TKE.
This is the appropriate quantity for the determination of `, according to the horizontal
homogeneity assumption. To calculate the full TKE from the DNS, we must use the time
average over the simulation time:

(4.15) 〈ψ〉(x) =
1

T

T/∆T∑
n=0

ψDNS(n∆T,x),

where x = (x, y, z). Then the Reynolds decomposition is written as vDNS = 〈v〉 + v′DNS,
yielding

(4.16) kDNS(x) = (1/2)〈|v′DNS|2〉.

We have plotted in figure 5 the curves of ` we have obtained by this way, in terms of the
non dimensional variable z′ = z/H.

4.2.2 Universal formula for the mixing length

We observe that the mixing length is increasing in the beginning of the turbulent layer
(until z ≈ 0.6) and slighly decreases until z = 1. Our goal is to interpolate these curves
to get a universal formula in terms of the Re? and z, by an empirical method.
Figure 5 suggests to seek for exponential profils. However, it is usually accepted that near
z = 0, ` is of the form ` = κz. Therefore, we multiply this exponential profile by an
hyperbolic tangent function, which is an approximation of the Heaviside function. Finally,
since ` is non-zero within the viscous sublayer, we add a term that depends on the natural
length scale ν/u? = H/Re?. These considerations have led us to introduce the following
empirical formula by trial and error:

(4.17) ` = K tanh
(
A
(
Re?

z

H
−B

))
exp

−Re2
?

( z
H
− zi
H

)2

2σ

+ 75
H

Re?
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Figure 5: Profils of ` calculated from the DNS

where zi = 0.6Hm. In the rough case, by comparing the red line to the dark line in
figure 5 (DNS-FLAT 180 and DNS-ROUGH 180 ) we apply a correction that takes the
topography into account, which gives:

(4.18) ` = K tanh

(
A

(
Re?

z + zR
H

−B
))

exp

−Re2
?

(
z + zR
H

− zi
H

)2

2σ

+ 75
H

Re?

where zR = 0.05Hm is the mean value of the roughness, estimated from Figure 5. It
remains to settle the coefficients A, B, σ and K. They are sought to be function of Re?
only. As we shall show it in the following, we get the following laws for large values of Re?
(valid from Re? = 900, depending on the coefficients):

A = 3.05Re0.065
∗ ,(4.19)

B = 0,(4.20)

σ = 0.3Re1.05
∗ ,(4.21)

K = 0.32Re0.12
∗ .(4.22)

Moreover, it is accepted that near z = 0, ` = κz where κ is the von Kármán constant.
However, according to figure 7, although ` follows well a linear law near z = 0, its slope
looks non constant when Re? varies. Indeed, we obtain from our graphs (see Figure 12
below) the following law, valid from Re? ≈ 800:

(4.23) κ = κ(Re?) = 0.25(Re?)
0.32 hence ` = 0.25(Re?)

0.32z.

However, we observe in Figure 12 that the usual law is valid for instance when Re? = 180.
The law (4.17) must be checked for high values of Re?, which is done by applying the
algorithm to the results of Moser and al in Figure 7, and also yields the laws satisfied by
the coefficients A, B, σ and K for high values of Re?, also used in the rough case.
In Figures 8 and 9, we have plotted the values of the constants A and B.
Figure 10 shows that the coefficient σ follows a linear law for all Re?, hence (4.19).
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Figure 6: Dotted lines draw the mixing length calculated from the DNS, Crosses draw
curves from formula (4.17) and (4.18)

4.2.3 Determination of the constants

We recall that the eddy viscosities/diffusion νt and µt are given by

νt(k) = Cv`
√
k, µt(k) = Ck`

√
k.

Now that we know how to compute ` thanks to (4.17), we are able to estimate the constants
Cv and Ck as follows. In this section, 〈ψ〉 denotes the time average over the time simulation
defined by (4.15), and the TKE k in the formulae below is given by (4.16). Because of the
horizontal homogeneity assumption, we focus on the vertical components of the Reynolds
stress, linked to the eddy coefficients by:

(4.24) 〈u′DNSw
′
DNS〉 = νt

∂〈uDNS〉
∂z

= Cv`
√
kDNS

∂〈uDNS〉
∂z

,

and

(4.25) 〈e′DNSw
′
DNS〉 = µt

∂kDNS

∂z
= Ck`

√
kDNS

∂kDNS

∂z
.

Hence, Cv is the value that minimizes the error in (4.24) whereas Ck is the value that
minimizes the error in (4.25). By the least square method, Cv is such that

(4.26)

N∑
i=1

(
〈u′DNSw

′
DNS〉(xi)− Cv`(zi)

√
kDNS(xi)

∂〈uDNS〉
∂z

(xi)

)2

is minimum, and Ck is such that

(4.27)
N∑
i=1

(
〈e′DNSw

′
DNS〉(xi)− Ck`(zi)

√
kDNS(xi)

∂kDNS

∂z
(xi)

)2

is minimum, where {x1, · · · ,xN} denotes the grid points set, xi = (xi, yi, zi). This opti-
mization problem has been solved by the brute-force method [3], based on the results of
DNS-FLAT 180, DNS-FLAT 550 and the corresponding profiles for `. We get:

(4.28) Ck = 0.15 Cv = 0.105
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Figure 8: A = A(Re?). The green dotted line is the 0.065 slope.

Remark 4.2. We find in [35, Chapter 4]: Cv = Ck = 0.09. However, these values have
been calibrated for the full k − E model, which can explain the slight difference with our
results.
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102 103 104

Re∗

101

102

103

104

σ

Figure 10: σ = σ(Re?). The green doted line is the 1.05 slope.
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Figure 12: κ = κ(Re?). The green dotted line is the 0.32 slope.
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5 NSTKE simulations and conclusions

5.1 Algorithm and settings

Our code is based on the SIMPLEC algorithm (Patankar [39], Issa [23]), that we have
adapted to the NSTKE equations, leading to encode the following iterations. At step n,
(vn−1, pn−1, kn−1) being known, we first solve the velocity equation
(5.1)

(vn−1 · ∇) vn −∇ ·
[
(2ν + νt(k

n−1))Dvn
]

+∇pn−1 = f in Omc,
∇ · vn = 0 in Omc,

−[(2ν + νt(k
n−1))Dvn · n]τ = αv|vn−1|vn on Gc,

vn · n = 0 on Gc,

which is a standard elliptic equation, with the added difficulties presented by the incom-
pressibility constraint and the boundary condition vn · n|Gc = 0. Once vn is calculated,
we solve the TKE equation:
(5.2) vn · ∇kn −∇ · [(µ+ µt(k

n−1)∇kn] = νt(k
n−1)|Dvn|2 − kn

√
|k|n−1

`
in Omc,

−(µ+ µt(k
n−1))

∂kn

∂n
= αkk

n
√
|k|n−1 on Gc.

Finally, the pressure is calculated by the Poisson equation:
(5.3)

∆pn = −∇ ·
(
∇ · (vn ⊗ vn−1)−∇ ·

[
(2ν + νt(k

n−1))Dvn
]
− f
)

in Omc,
∂pn

∂n
= 0 on Gc.

System (5.1)-(5.2)-(5.3) for a given n, satisfies periodic boundary conditions in the x− y
axes. The source term f is given by (4.5). We implement this scheme in the OpenFoam
solver (see at https://www.openfoam.com), based on the second order finite volumes
method (see in Eymard-Gallouet-Herbin [19]).

Remark 5.1. Although we observe a good numerical convergence (see section 5.2.3 below),
we have no mathematical proof of the convergence of this scheme to the NSTKE model,
which is a difficult open question. Usually, we know that such scheme does converge when
the eddy viscosity is close to a constant and when the source term is small enough in some
sense (see in Lewandowski [32]). However, it is likely that the homogeneous Neumann
boundary condition for the pressure in the equation (5.3) may yield serious complications
in a mathematical convergence analysis.

We have carried out four simulations in the flat case for high Reynolds numbers, namely
Re? = 990, 2000, 5200, 10000. Then we have tested the rough case for Re? = 5200, 10000.
The mixing length is given by (4.17) (flat case) and (4.18) (rough case), the constants Cv
and Ck by (4.28). The iterations (5.1)-(5.2)-(5.3) are initialized by

(5.4) v0 = (u0, 0, 0), u0 = 1ms−1; k0 = 10−3m2s−2; p0 = 0Pa.

The parameter settings are given in Table 2. The coefficients αv and αk have been deter-
mined up to Re? = 5000 by solving the minimization problem

(5.5) min{||vNSTKE − vDNS||22 + ||kNSTKE − kDNS||22}.
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Run (Lx, Ly, Lz) (nx, ny, nz) αv αk
NSTKE-FLAT-990 (6.28, 4.18, 2) (16, 16, 32) 0.000125 0.04

NSTKE-FLAT-2000 (6.28, 4.18, 2) (16, 16, 32) 0.0000525 0.01

NSTKE-FLAT-5200 (6.28, 4.18, 2) (16, 16, 32) 0.000035 0.0005

NSTKE-FLAT-10000 (6.28, 4.18, 2) (16, 16, 64) 0.000035 0.0005

NSTKE-ROUGH-5200 (6.28, 4.18, 2) (32, 24, 64) 0.000035 0.0005

NSTKE-ROUGH-10000 (6.28, 4.18, 2) (32, 24, 64) 0.00035 0.0005

Table 2: Parameters settings

The resolution of problem (5.5) is based on a standard dichotomy algorithm (see for
instance in Teghem [50]). We have kept the same values for Re? = 10000, in the flat case
as well as in the rough case, in the absence of DNS. Notice that the mesh sizes in this case
are much more coarser than those used for the DNS, which is an undeniable advantage
of the model. However, considering that the height of the viscous sublayer is negligible
compared to this resolution, we have taken z0 = 0 in the simulations for the flat case. The
number of iterations is of order 1000.

5.2 Numerical Results in the flat case

5.2.1 Streamwise velocity

The results we get are compared to those of the high Reynolds numbers DNS provided
in Lee-Moser [27], up to Re? = 5200. Experiments of turbulent channel flow at the
high friction velocity based Reynolds number of 10000 does not currently exist in litera-
ture, to the extent of the authors knowledge. The existence of the logarithmic profile for
channel flow at a friction velocity based Reynolds of 8000 for which data has been pub-
lished from Yamamoto-Tsuji [52]. As a consequence, the velocity profile is compared to
the logarithmic profile such as the studies of neutral atmospheric boundary layer Chow-
Street-Xue-Ferziger [16].

The NSTKE model yields a departure from the log law. However, things seem better
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Figure 13: NSTKE Flat case. Non dimensional streamwise velocity

when Re? increases, which may be only a trend reversal near the bottom. To corroborate
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Figure 14: NSTKE Flat case. Comparison of the non dimensional mean shear Φ computed
by the NSTKE model for the High Reynolds number simulations.
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Figure 15: NSTKE Flat case. Turbulent kinetic energy

these observations, we have calculated the non dimensional mean shear defined by

(5.6) Φ =
κz

u∗

∂u

∂z
,

which is equal to 1 when the profile is logarithmic. The results are plotted in Figure 14.
The streamwise velocity given by the NSTKE model has a serious lack of shear at the top
and the bottom of the boundary layer.

5.2.2 Turbulent kinetic energy

The turbulent kinetic energy is plotted on Figure 15, compared with the DNS results.The
model overestimates the TKE at the bottom of the boundary layer.
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Figure 16: Convergence analysis.

5.2.3 Convergergence analysis

The convergence of the SIMPLEC algorithm for the NSTKE problem is shown in figure 16
for the Re? = 900, 2000, 5200 cases. The black lines indicates the slope of the decreasing
rate, which is proportional to n−2/3 for the first 300 iterations and increases up to n−8

until n = 1000, which is a good convergence result.

5.2.4 Corrected mixing length

The previous sections show that the NSTKE model does not perfectly reproduce the
standard boundary layer profiles. It may come from the mixing length formula (4.17) and
the law (4.19) that determines the main coefficient in the formula for `, denoted by A. To
fix this issue, we have replaced A by another coefficient of the form λA, the best choice of
λ being equal to 0.608, after some simulations. As shown by the figure (17), the corrected
model accurately reproduces the log profile up to z = 0.7H, which is quite satisfactory.
About the TKE, it does not change much, in particular at high Reynolds number.
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Figure 17: NSTKE Flat case. Mean shear Φ with the corrected mixing length profile.
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Figure 18: NSTKE Flat case. Turbulent kinetic energy with the corrected mixing length
profile.

5.3 Numerical results in the rough case

The simulation is carried out from z0 = 0.1. This is as if we have put a flat plate over
the domes, starting the simulation from z0 as in the flat case, the information about
the topography being contained in the formula for `, the boundary condition and the
corresponding coefficients. We have applied the same correction for the coefficient A in
formula (4.18) as in the flat case (see section 5.2.4 above). The results are reported in
Figure 19, Figure 20 and Figure 21, following the same order as in the flat case. Without
any DNS, the only way to analyse the results is the comparison with log profiles. We
observe a departure from the log law outside the interval [0.5, 0.7]. Considering the TKE
profiles, the intensity of the turbulence for Re? = 5000 and Re? = 5000 looks to be different
only from z/H = 0.5.
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Figure 19: NSTKE Rough case. Non dimensional streamwise velocity.
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Figure 21: NSTKE Rough case. Turbulent kinetic energy

5.4 Some conclusions and perspectives

The NSTKE model yields satisfactory results in the flat case, although we had to adjust
the formula calculated from the DNS for `. The treatment of the pressure in the SIM-
PLEC algorithm could be questionable, in particular because of the boundary condition
(5.3). Further simulation are probably necessary with another treatment of the pressure,
following what was done in Chacon-Lewandowski [15, Chapters 13], where similar sim-
ulations for low Reynolds numbers are performed by the variational multi-scale method
and a perturbation of the incompressibility constrain to resolve the pressure.
In the rough case, the present study cannot be considered as fully conclusive, but as a first
step towards a general methodology to tackle this class of difficult numerical problems.
These simulations suggest that the topography must be taken into account for the deter-
mination of the coefficients αv et αk in the boundary conditions (1.3) and (2.13), which
has not been done already. The question is how to do that? Moreover, it is likely that `
does not depend on z only, but also on x, y in a way that depends on the topography. To
fix this, several other DNS are necessary in the rough case, for the highest possible Re?,
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expecting for a generic formula for `(x, y, z, Re?), as well as αa(x, y, z, Re?) (a = v, k).
This will be the subject of a next study.
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[13] M. Buĺıček, R. Lewandowski, and J. Málek. On evolutionary Navier-Stokes-Fourier
type systems in three spatial dimensions. Comment. Math. Univ. Carolin., 52(1):89–
114, 2011.

38
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