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HARDY-SOBOLEV INEQUALITIES WITH SINGULARITIES ON NON SMOOTH BOUNDARY: HARDY CONSTANT AND EXTREMALS. PART I: INFLUENCE OF LOCAL GEOMETRY

Let Ω be a domain of R n , n ≥ 3. The classical Caffarelli-Kohn-Nirenberg inequality rewrites as the following inequality: for any s ∈ [0, 2] and any γ <

, there exists a constant K(Ω, γ, s) > 0 such that

) for γ cannot be improved: moreover, the optimal contant K(Ω, γ, s) is independent of Ω and there is no extremal for (HS). But when 0 ∈ ∂Ω, the situation turns out to be drastically different since the geometry of the domain impacts :

• the range of γ's for which (HS) holds;

• the value of the optimal constant K(Ω, γ, s);

. As an intermediate result, we prove the symmetry of some solutions to singular pdes that has an interest on its own.
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4 and s ∈ [0, 2], there exists K > 0 such that (2)

for all u ∈ D 1,2 (Ω). More generally, for any 0 ≤ s ≤ 2 and any γ ∈ R, we define

, for u ∈ D 1,2 (Ω) \ {0}, and we define

(Ω)\{0} achieves the infimum µ γ,s (Ω), and if µ γ,s (Ω) > 0, then, up to a constant, u is a solution to (1). We address the following questions:

(Q1) For which values of γ ∈ R does (2) hold for some K > 0 and all u ∈ D 1,2 (Ω)? In other words, when do we have µ γ,s (Ω) > 0? (Q2) Is the best constant achieved? In other words, is µ γ,s (Ω) achieved by some u ∈ D 1,2 (Ω), u ≡ 0?

The answer to the first question (Q1) depends on the Hardy constant. Define

The classical Hardy inequality reads γ

and therefore, we have that γ H (Ω) ≥ (n-2) 2

4

. As a consequence, interpolating the Hardy inequality (4) and Sobolev inequalitie ((2) with γ = s = 0), we get that γ < γ H (Ω) ⇒ µ γ,s (Ω) > 0.

When 0 ∈ Ω is an interior point, it is classical that γ H (Ω) = γ H (R n ) = (n-2) 2

1. Introduction 2. The best Hardy constant and Hardy Sobolev Inequality 3. Regularity and approximate solutions 4. Symmetry of the extremals for µ γ,s (R k+,n-k ) 5. Existence of extremals: the case of small values of γ 6. Proof of Theorem 1.3 References

Introduction

Let Ω be a domain of R n , n ≥ 3, s ∈ [0, 2) and let us consider the following problem:

     -∆u -γ |x| 2 u = u 2 (s)-1 |x| s in Ω, u > 0 in Ω, u = 0 on ∂Ω, (1) 
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1 where γ ∈ R, 2 (s) := 2(n-s) n-2 is the critical Hardy-Sobolev exponent and ∆ is the Euclidean Laplacian that is ∆ = div(∇). This equation makes sense for u ∈ D 1,2 (Ω), that is the completion of C ∞ c (Ω) with respect to the norm u → ∇u 2 . The motivation for considering equation [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] arises from the problem of existence of extremals for the Caffarelli-Kohn-Nirenberg (CKN) inequalities [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]. The Caffarelli-Kohn-Nirenberg inequalities are equivalent to the Hardy-Sobolev inequality (see [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]): for any γ < (n-2) 2 . We consider the case 0 ∈ ∂Ω. The study of this type of nonlinear singular problems when 0 ∈ ∂Ω was initiated by Ghoussoub-Kang [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF] and studied by Chern-Lin [START_REF] Chern | Minimizers of Cafarelli-Kohn-Nirenberg inequalities with the singularity on the boundary[END_REF] and Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF] when Ω is a smooth domain. As a byproduct, we prove the existence of solutions to a perturbation of the initial equation via the Mountain Pass Lemma.

In this work, we tackle the more intricate case of a non smooth domain. We restrict ourselves to domains modeled locally on R k + × R n-k for all k ∈ {1, ..., n}. We define the model cone at P ∈ Ω as

C P (Ω) := lim t→0 1 t
--→ P M t / t → M t is a curve of Ω and the limit exists .

When Ω is smooth, C x0 (Ω) = R n if x 0 ∈ Ω. Still in the smooth case, C x0 (Ω) is a half-space bounded by the tangent space at x 0 if x 0 ∈ ∂Ω. Moreover, when x 0 ∈ ∂Ω, then ∂C x0 (Ω) is exactly the tangent space at x 0 .

Definition 1. We fix 1 ≤ k ≤ n. Let Ω be a domain of R n . We say that x 0 ∈ ∂Ω is a singularity of type (k, n -k) if there exist U, V open subsets of R n such that 0 ∈ U , 0 ∈ V and there exists φ ∈ C ∞ (U, V ) a diffeomorphism such that φ(0) = x 0 and

φ(U ∩ R k + × R n-k ) = φ(U ) ∩ Ω and φ(U ∩ ∂ R k + × R n-k ) = φ(U )
∩ ∂Ω, with the additional hypothesis that the differential at 0 dφ 0 is an isometry.

As one checks, we have that C 0 (Ω) = dφ 0 (R k + × R n-k ), and then C 0 (Ω) is isometric to R k + × R n-k . In the sequel, we write for convenience R k+,n-k := R k + × R n-k for all k ∈ {1, ..., n}. For example: When Ω is smooth, boundary points are all of type (1, n -1). A general conical sigularity is as in Figure 1. We assume that 0 is a singularity of type (k, n -k). We write the cone as C 0 (Ω) = {rσ; r > 0, σ ∈ D} having 0 as a vertex included in R n , where D is the trace of the cone on the sphere S n-1 . More generally, given D ⊂ S n-1 , define the cone C := {rσ; r > 0, σ ∈ D} . Then we have that

• If D is the sphere S n-1 , then C = R n \{0}.

• If D is the half-sphere S n-1 + , then C is the half-space R 1+,n-1 := R n + .

• If D = S n-1 ∩ R k+,n-k , then C = R k+,n-k for all k ∈ {1, ..., n}. For such cones, see Ghoussoub-Moradifam [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF], the Hardy constant is

γ H (C) = (n -2) 2 4 + λ 1 (D),
such that λ 1 (D) is the first eigenvalue of Laplacien on D ⊂ S n-1 with Dirichlet boundary condition. In particular, γ H (R k+,n-k ) = (n+2k-2) 2 4

where λ 1 (D) = k(n + k -2) for all k ∈ {1, ..., n}. The model cone is the relevant object to consider to understand the Hardy constant of Ω: Proposition 1.1. Let Ω be a bounded domain of R n . We assume that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. Then γ H satisfies the following properties:

(i) (n-2) 2 4 < γ H (Ω) ≤ γ H (C 0 (Ω)) . (ii) γ H (Ω) = γ H (C 0 (Ω))
for every Ω such that 0 ∈ ∂Ω and Ω ⊂ C 0 (Ω). (iii) If γ H (Ω) < γ H (C 0 (Ω)), then it is attained in D 1,2 (Ω) . (iv) For every > 0, there exists R k+,n-k Ω R n with a boundary singularity at 0 of type (k, n -k)

such that γ H (R k+,n-k ) -≤ γ H (Ω ) ≤ γ H (R k+,n-k ) .
The study of the Hardy constant for itself is reminiscent in the litterature. Without being exhaustive, we refer to Fall [START_REF] Moustapha | On the Hardy-Poincaré inequality with boundary singularities[END_REF], Fall-Musina [START_REF] Moustapha | Hardy-Poincaré inequalities with boundary singularities[END_REF] and the references therein. We now tackle the second question (Q2), that is the existence of extremals for [START_REF] Bartsch | Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities[END_REF]. In this framework, the following result is classical: Theorem 1.1. Let Ω ⊂ R n be a bounded domain such that 0 ∈ ∂Ω is a singularity of type (k, n -k). Assume that γ < γ H (R k+,n-k ), 0 ≤ s ≤ 2, and µ γ,s (Ω) < µ γ,s (R k+,n-k ). Then there are extremals for µ γ,s (Ω). In particular, there exists a minimizer u in D 1,2 (Ω)\{0} that is a positive solution to the equation

(E)      -∆u -γ |x| 2 u = µ γ,s (Ω) u 2 (s)-1 |x| s in Ω, u > 0 in Ω, u = 0 on ∂Ω.
In other words, being below a critical threshold given by the model cone yields existence of extremals. Such a result is reminiscent in the functional inequalities of elliptic type since the work of Trudinger [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF] and Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] on the Yamabe problem. Related results for Hardy-Sobolev equations are in Bartsch-Peng-Zhang [START_REF] Bartsch | Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities[END_REF] and Pucci-Servadei [START_REF] Pucci | Existence, non-existence and regularity of radial ground states for p-Laplacain equations with singular weights[END_REF].

We now give sufficient conditions to get the existence condition. As for the Yamabe problem, we need to introduce some test-functions cooked up from a model space: here, it is the model cone. In the smooth case, that is k = 1, the test-functions yield a condition on the mean curvature to recover existence. In our non-smooth context, we must tackle two additional difficulties:

• The mean curvature is not defined, and we must define another geometric quantity.

• The extremals for the model space R k+,n-k are not smooth, and the proof of the symmetry in [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF] does not extend to our context.

We are able to recover symmetry via a version of the moving-plane method developed by Berestycki and Nirenberg [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]. Concerning the lack of mean curvature, we introduce a new geometric object.

Definition 2.

Let Ω ⊂ R n be a domain such that 0 ∈ ∂Ω is a singularity of type (k, n -k). We define

(5) Ω i := φ(U ∩ {x i > 0}) for all i = 1, ..., k,
where (φ, U ) is a chart as in the Definition 1. We have that:

(1) For all i = 1, ..., k, Ω i is smooth around 0 ∈ ∂Ω i .

(2) Up to permutation, the Ω i 's are locally independent of the chart φ.

(
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The Ω i 's define locally Ω: there exists δ > 0 such that

Ω ∩ B δ (0) = k i=1 Ω i ∩ B δ (0).
For example: Definition 3. Let S be a submanifold of R n . We let II S x0 be the second fundamental form at x 0 of S, that is

II S x0 : T x0 S × T x0 S × (T x0 S) ⊥ → R (X, Y, η) → II S (X, Y, η) = ∇ X Y -∇ X Y, η x0 .
The mean curvature vector at x 0 ∈ S is the vector H S x0 ∈ (T x0 S) ⊥ such that for all η ∈ (T x0 S) ⊥ , we have that

H S x0 , η x0 = Trace (X, Y ) → II S x0 (X, Y, η) .
For k ∈ {1, ..., n} and m = 1, .., k, we define -→ ν m : ∂Ω m → R n is the outer unit normal vector of the locally oriented Ω m around 0 where Ω m as in [START_REF] Cheikh-Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part 2: small dimensions and the global mass[END_REF] (see Definition 2): this definition makes sense locally around 0. In particular, we have -→ ν m (0) := (0, ..., 0, -1, 0, ..., 0) when dφ 0 = Id. We are in position to get an existence result for small values of γ:

Theorem 1.2. Let Ω be a bounded domain in R n (n ≥ 3) such that 0 ∈ ∂Ω is a singularity of type (k, n -k)
for some k ∈ {1, ..., n}. We fix 0 ≤ s < 2 and 0 ≤ γ < γ H (Ω). Assume that either s > 0, or that {s = 0, n ≥ 4 and γ > 0}. We assume that

0 ≤ γ ≤ γ H (R k+,n-k ) - 1 4 . 
Then there are extremals for µ γ,s (Ω) if

(6) GH γ,s (Ω) < 0 where, for Σ := ∩ k i=1 ∂Ω i , GH γ,s (Ω) is the generalized mean curvature GH γ,s (Ω) := c 1 γ,s k m=1 H Σ 0 , ν m + c 2 γ,s k i,m=1, i =m II ∂Ωm 0 ( ν i , ν i ) (7) +c 3 γ,s k p,q,m=1, |{p,q,m}|=3 II ∂Ωm 0 ( - → ν p , - → ν q )
and c 1 γ,s , c 2 γ,s , c 3 γ,s are positive explicit constants. By convention, each of the sums above is zero when empty.

The first term in GH γ,s (Ω) shows the influence of the mean curvature of Σ = ∩ k i=1 ∂Ω i at 0. The second and third sums outline the influence of the positions of the Ω m 's relatively to each other: these two terms do not appear in the smooth case, that is k = 1.

When k = 1, condition ( 6) reads H ∂Ω 0 , ν ∂Ω < 0. We then recover the condition of Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]. Our condition is local: only the local geometry of the boundary at 0 is relevant here. In the paper [START_REF] Cheikh-Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part 2: small dimensions and the global mass[END_REF], we deal with the case γ > γ H (R k+,n-k ) -1 4 : the test-functions then are different, and the existence condition is global.

For the sake of completeness, we now deal with the remaining cases, still for

γ ≤ γ H (R k+,n-k ) -1 4 . Theorem 1.3. Let Ω be a bounded domain in R n (n ≥ 3) with a singularity of type (k, n -k) at 0 for some k ∈ {1, ..., n}. Then (1) If γ ≤ 0, then µ γ,0 (Ω) = µ 0,0 (R n ), and there is no extremal. (2) If n = 3, 0 < γ ≤ γ H (R k+,n-k ) -1
4 and there are extremals for µ γ,0 (R k + × R 3-k ), then there are extremals for µ γ,0 (Ω) if GH γ,0 (Ω) < 0.

(3) If n = 3, 0 < γ and there are no extremals for µ γ,0 (R k+,3-k ), then there are extremals for µ γ,0 (Ω) if R γ (x 0 ) > 0 for some x 0 ∈ Ω.

The proof of Theorem 1.3 is similar to what was performed in Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF], and we will only sketch it in Section 6, where the interior mass R γ (x 0 ) will be defined in Proposition 6.1.

Our results are summarized in these tables:

Hardy Condition Dimension Geometric Condition Extremal 0 ≤ γ ≤ γ H (R k+,n-k ) -1 4 n ≥ 3 GH γ,s (Ω) < 0 Yes Table 1. Case s > 0. Hardy Condition Dimension Geometric Condition Extremal 0 < γ ≤ γ H (R k+,n-k ) -1 4 n = 3 n ≥ 4 GH γ,0 (Ω) < 0 and R γ (x 0 ) < 0 GH γ,0 (Ω) < 0 Yes Yes γ ≤ 0 n ≥ 3 No Table 2. Case s = 0.
In this paper, some regularity issues will be used very often. Our main tool will be the article [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] by Felli and Ferrero. We also refer to the historical reference Gmira-Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] and to the monograph [START_REF] Florica | A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials[END_REF] by Cirstea. As an intermediate step in our analysis, we will prove a symmetry result for the extremals of µ γ,s (R k+,n-k ): with the use of the moving-plane method (see Berestycki-Nirenberg [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]), we will obtain that the symmetries of the domain transfer to the extremals. This will be the object of Theorem 4.1.

The best Hardy constant and Hardy Sobolev Inequality

This section is devoted to the analysis of the Hardy constant γ H (Ω) and the proof of Proposition 1.1:

Proof of (i) of Proposition 1.1: By definition, (n-2) 2

4

= γ H (R n ) ≤ γ H (Ω). We assume by contradiction that

γ H (Ω) = γ H (R n ). We that have µ γ,2 (Ω) = γ H (Ω) -γ = (n-2) 2 4 -γ < µ γ,2 (R k+,n-k ) = (n+2k-2) 2 4 -γ. Theorem 1.1 yields µ γ,2 (Ω) is achieved by some u 0 ∈ D 1,2 (Ω)\{0}. Since u 0 ∈ D 1,2 (Ω) ⊂ D 1,2 (R n ), we get that γ H (R n ) is achieved in D 1,2 (R n ).
Replacing u 0 by |u 0 |, we assume that u 0 ≥ 0 on R n . The Euler-Lagrange equation and the maximum principle yield u 0 > 0 on R n , contradicting u 0 = 0 on ∂Ω. Therefore (n-2) 2

4

< γ H (Ω). For the other inequality, since Ω is a singularity of type (k, n -k) at 0, we choose a chart (U, φ) as in Definition 1. Without loss of generality, we assume that dφ 0 = Id and that C 0 (Ω) = R k+,n-k . Let η ∈ C ∞ c (U ) such that η(x) = 1 for x ∈ B δ (0), for some δ > 0 small enough, and consider (α ) >0 ∈]0, +∞[ such that α = o( ) as → 0. We define

ρ(x) := |x| -k-n-2 2 k i=1
x i for all x ∈ R k+,n-k .

Note that ρ /

∈ D 1,2 (R k+,n-k ). We fix β > 1 and define

ρ (x) =    | x | β ρ(x) if |x| < ρ(x) if < |x| < 1 | .x| -β ρ(x) if |x| > 1 .
Note that ρ ∈ D 1,2 (R k+,n-k ). For > 0, we define

u (y) = η(φ -1 (y))α 2-n 2 ρ (α -1 φ -1 (y)) for any y ∈ φ(U ) ∩ Ω, y = φ(x)
and 0 elsewhere. Immediate computations yield

R n \B -1 (0) ρ 2 |x| 2 dx = O(1) and B (0) ρ 2 |x| 2 dx = O(1). (8) R n \B -1 (0) |∇ρ | 2 dx = O(1) and B (0) |∇ρ | 2 dx = O(1)
when → 0. Since dφ 0 = Id, we have 8) yields [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] (Bδ(0

Ω |u (y)| 2 |y| 2 dy = R k+,n-k ∩U |u (φ(x))| 2 |φ(x)| 2 |Jac(φ(x))|dx = B δ (0)∩R k+,n-k |u (φ(x))| 2 |x| 2 |1 + O(|x|)|dx + O(1). (9) Writing B δ (0) = (B δ (0)\B -1 α (0)) ∪ (B -1 α (0)\B α (0)) ∪ (B α (0)), (
)\B -1 α (0))∩R k+,n-k |u (φ(x))| 2 |x| 2 dx = O(1) ; B α (0)∩R k+,n-k |u (φ(x))| 2 |x| 2 dx = O(1).
And,

(B -1 α (0)\B α (0))∩R k+,n-k |u (φ(x))| 2 |x| 2 (1 + O(|x|)) dx = W D,2 ln 1 2 + O(1), where W D,2 := 2 D | k i=1 x i | 2 dσ with D = S n-1 ∩ R k+,n-k (11) 
for all k ∈ {1, ..., n}. We combine (9), ( 10) and ( 11)

Ω |u (y)| 2 |y| 2 dy = W D,2 ln 1 2 + O(1) as → 0. ( 12 
)
Similar arguments yield ( 13)

Ω |∇u (y))| 2 dy = W D,2 ln 1 2 γ H (R k+,n-k ) + O(1) as → 0.
By the equations ( 12), ( 13), we get that

Ω |∇u (y))| 2 dy Ω |u (y)| 2 |y| 2 dy = γ H (R k+,n-k ) + o(1) as → 0,
and by the definition of γ H , we get that γ H (Ω) ≤ γ H (R k+,n-k ). This proves (i).

Proof of (ii): If Ω ⊂ C 0 (Ω), then the definition yields γ H (Ω) ≥ γ H (C 0 (Ω)). The reverse inequality is by (i), which yields (ii).

Proof of (iii): Is a particular case of Theorem 1.1 below when s = 2.

Proof of (iv): By Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF] we have the following lemma:

Lemma 2.1. Let (φ t ) t∈N ∈ C 1 (R n , R n ) be such that, lim t →+∞ ( φ t -Id R n ∞ + ∇(φ t -Id R n ) ∞ ) = 0 and φ t (0) = 0.
Let D ⊂ R n be a domain such that 0 ∈ ∂D (not necessarily bounded nor regular), and set D t := φ t (D), ∀t ∈ N.

Then 0 ∈ ∂D t , and

lim t →+∞ γ H (D t ) = γ H (D). Let φ ∈ C ∞ (R n-k ) be such that 0 ≤ φ ≤ 1, φ(0) = 0 et φ(x ) = 1 for all x ∈ R n-k such that |x | ≥ 1. For t ≥ 0, define φ t (x , x ) := (x 1 -tφ(x ), ..., x k -tφ(x ), x ) for all (x , x ) ∈ R k × R n-k . Set Ωt := φ t (R k+,n-k ). Lemma 2.1 yields lim t →0 γ H ( Ω t ) = γ H (R k+,n-k ) = (n + 2k -2) 2 4 .
Since φ ≥ 0 and φ(x

) = 1 for x ∈ R n-k , |x | ≥ 1, we have that R k+,n-k Ω t .
To finish the proof of (iv), we take Ω := Ω t with > 0, t > 0 small enough.

Proposition 2.1. Let γ < γ H (R k+,n-k ) for all k ∈ {1, ..., n} and s ∈ [0, 2]. Then, for all > 0 there exists c > 0 such that for all u ∈ D 1,2 (Ω), ( 14)

Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ µ γ,s (R k+,n-k ) -1 + Ω |∇u| 2 - γ |x| 2 u 2 dx + c Ω u 2 dx.
Proof of Proposition 2.1: We choose a chart (U, φ) as in Definition 1. Without loss of generality, we assume that dφ 0 = Id and then

C = C 0 (Ω) = R k+,n-k . Choose u ∈ C ∞ c (φ(B δ (0)) ∩ Ω) and define v := u • φ for all v ∈ C 1 c (B δ (0) ∩ C).
Define the metric g := φ -1 * Eucl, where Eucl is the Euclidean metric. We have that |φ(x)| = |x|(1 + O(|x|)) and |φ * Eucl -Eucl|(x) ≤ c|x| for all x ∈ R n small enough for some c > 0.

Step 1: fix > 0, we first claim that there exists δ > 0 such that for all

u ∈ C 1 c (φ(B δ (0)) ∩ Ω), (15) 
Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ µ γ,s (C) -1 + Ω |∇u| 2 - γ |x| 2 u 2 dx.
Proof of (15): We have that

Ω |u| 2 (s) |x| s dx 2 2 (s) = B δ (0)∩C |u • φ(x)| 2 (s) |Jac(φ(x))| |φ(x)| s dx 2 2 (s) ≤ (1 + cδ) B δ (0)∩C |v| 2 (s) |x| s dx 2 2 (s) ≤ (1 + cδ)µ γ,s (C) -1 B δ (0)∩C |∇v| 2 - γ |x| 2 v 2 dx ≤ (1 + cδ)µ γ,s (C) -1 |∇u| 2 g - γ |φ -1 (x)| 2 u 2 |Jac φ -1 (x)| dx ≤ (1 + c 1 δ)µ γ,s (C) -1 |∇u| 2 - γ |x| 2 u 2 dx + c 2 δ |∇u| 2 + u 2 |x| 2 dx
where the last three integrals are taken on φ(B δ (0)) ∩ Ω. This give us

Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ (1 + c 1 δ)µ γ,s (C) -1 Ω (|∇u| 2 - γ |x| 2 u 2 )dx + c 2 δ Ω (|∇u| 2 + u 2 |x| 2 )dx. For all v ∈ C 1 c (φ(B δ (0) ∩ Ω)), we get that Ω u 2 |x| 2 dx = B δ (0)∩C v 2 |x| 2 |1 + O(|x|)|dx ≤ (1 + c 1 δ) C v 2 |x| 2 dx, (16) 
and,

Ω |∇u| 2 dx = B δ (0)∩C |∇v| 2 φ * Eucl |1 + O(|x|)|dx ≥ (1 -c 2 δ) C |∇v| 2 dx, (17) 
where c 1 , c 2 > 0 are independent of δ and v. Since γ < γ H (R k+,n-k ), there exists c 0 > 0 for δ small enough, [START_REF] Pucci | Existence, non-existence and regularity of radial ground states for p-Laplacain equations with singular weights[END_REF] c -1

0 Ω |∇u| 2 dx ≤ Ω |∇u| 2 -γ u 2 |x| 2 dx ≤ c 0 Ω |∇u| 2 dx.
With ( 16), ( 17) and ( 18), we get (15) for δ > 0 small enough. This ends Step 1.

Step 2: We prove ( 14) for all u

∈ D 1,2 (Ω). Let η ∈ C ∞ c (R n ) and √ η, √ 1 -η ∈ C 2 (R n ) be such that η(x) = 1 if x ∈ B δ/2 (0) and η(x) = 0 if x / ∈ B δ (0). We define w p,|x| -s = Ω |w| p |x| s dx 1 p . We set p = 2 (s)/2. Hölder's inequality yield u 2 p,|x| -s = ηu 2 + (1 -η)u 2 p,|x| -s ≤ ηu 2 p,|x| -s + (1 -η)u 2 p,|x| -s ≤ √ ηu 2 2 (s),|x| -s + 1 -ηu 2 2 (s),|x| -s , for all u ∈ C ∞ c (Ω). Since √ ηu ∈ C 2 c (B δ ∩ C),
we use [START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF] and intregrate by parts

Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ µ γ,s (C) -1 + Ω |∇ √ ηu| 2 - γ |x| 2 ηu 2 dx + 1 -ηu 2 2 (s),|x| -s ≤ µ γ,s (C) -1 + Ω η |∇u| 2 - γ |x| 2 u 2 dx + 1 -ηu 2 2 (s),|x| -s + c Ω u 2 dx, (19) 
where c > 0 depends of > 0.

Case 1: s = 0. We claim that (20) µ γ,0 (Ω) ≤ µ 0,0 (R n )
We prove the claim. Fix x 0 ∈ Ω, x 0 = 0, and take

η ∈ C ∞ c (Ω) such that η(x) = 1 around of x 0 . For x ∈ Ω and > 0, we define u (x) := η(x) 2 +|x-x0| 2 n-2 2 for all x ∈ Ω. Classical computations in the spirit of Aubin [2] yield lim →0 Ω |∇u | 2 dx Ω u 2 * dx 2 2 * = µ 0,0 (R n ) and lim →0 Ω u 2
|x| 2 dx = 0. This yields (20), and the claim is proved. The Sobolev inequality yields

f 2 2n/(n-2) ≤ µ 0,0 (R n ) -1 ∇f 2 2 for all f ∈ D 1,2 (Ω) ⊂ D 1,2 (R n ). We combine these inequalities to get 1 -ηu 2 2 (s),|x| -s ≤ µ 0,0 (R n ) -1 Ω |∇( 1 -ηu)| 2 dx ≤ µ γ,s (C) -1 + Ω (1 -η)|∇u| 2 dx + c Ω u 2 dx. (21)
We use the equations ( 19) and ( 21)

Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ µ γ,s (C) -1 + Ω η |∇u| 2 - γ |x| 2 u 2 dx + µ γ,s (C) -1 + Ω (1 -η)|∇u| 2 dx + c Ω u 2 dx ≤ µ γ,s (C) -1 + Ω |∇u| 2 dx -µ γ,s (C) -1 + γ Ω\B δ 2 (0) η |x| 2 u 2 dx -µ γ,s (C) -1 + γ B δ 2 (0) η |x| 2 u 2 dx + c Ω u 2 dx ≤ µ γ,s (C) -1 + Ω |∇u| 2 dx -µ γ,s (C) -1 + γ B δ 2 (0) u 2 |x| 2 dx + c Ω u 2 dx ≤ µ γ,s (C) -1 + Ω |∇u| 2 - γ |x| 2 u 2 dx + c Ω u 2 dx.
Case 2: 0 < s < 2. We have that 2 < 2 (s) < 2 * , let ν > 0 and by interpolation inequality there exists

c ν > 0, such that 1 -ηu 2 2 (s),|x| -s ≤ C ν 1 -ηu 2 2 * + c ν 1 -ηu 2 2 ≤ C νµ 0,0 (R n ) -1 ∇( 1 -ηu) 2 2 + c ν 1 -ηu 2 2 .
We choose ν such that νµ 0,0

(R n ) -1 ≤ µ -1 γ,s (C) + , we get (22) 1 -ηu 2 2 (s),|x| -s ≤ µ -1 γ,s (C) + ∇( 1 -ηu) 2 2 + c ν 1 -ηu 2 2
. By ( 19) and ( 22)

Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ µ γ,s (C) -1 + Ω η |∇u| 2 dx - γ |x| 2 u 2 dx + µ -1 γ,s (C) + ∇( 1 -ηu) 2 2 + c ν 1 -ηu 2 2 + c Ω u 2 dx ≤ µ γ,s (C) -1 + Ω |∇u| 2 - γ |x| 2 u 2 dx + c Ω u 2 dx. Cas 3: s = 2. We have 2 (s) = 2 1 -ηu 2 2 (s),|x| -s = Ω\B δ/2 (0) 1 -η |x| 2 u 2 dx ≤ c δ Ω u 2 dx, (23) 
by the equations ( 19) and ( 23) we get the result. Proposition 2.2. Let Ω be a bounded domain such that 0 ∈ ∂Ω.

(i) If γ < γ H (R k+,n-k ), then µ γ,s (Ω) > -∞. (ii) If γ > γ H (R k+,n-k ), then µ γ,s (Ω) = -∞. (iii) If γ < γ H (Ω), then µ γ,s (Ω) > 0. (iv) If γ H (Ω) < γ < γ H (R k+,n-k ), then 0 > µ γ,s (Ω) > -∞. (v) If γ = γ H (Ω) < γ H (R k+,n-k ), then µ γ,s (Ω) = 0. Proof of Proposition 2.2: Proof of (i): Let γ < γ H (R k+,n-k ) and > 0 such that (1 + )γ ≤ γ H (R k+,n-k ). By Proposition 2.1 there exist c > 0 for any u ∈ D 1,2 (Ω) such that γ H (R k+,n-k ) Ω u 2 |x| 2 dx ≤ (1 + ) Ω |∇u| 2 + c Ω u 2 dx.
Since 2 (s) > 2 and Ω is bounded, Hölder inequality yields c 1 > 0 such that

Ω u 2 dx ≤ c 1 Ω u 2 (s) |x| s dx 2 2 (s) . ( 24 
)
If γ ≥ 0 and since (1 -γγ H (R k+,n-k ) -1 (1 + )) ≥ 0, by (24), we get

J Ω γ,s (u) = Ω |∇u| 2 -γ Ω u 2 dx |x| 2 Ω u 2 * (s) dx |x| s 2 2 * (s) ≥ -c 2 c γ γ H (R k+,n-k ) , then for any u ∈ D 1,2 (Ω) we have µ γ,s (Ω) > -∞. If γ < 0, then µ γ,s (Ω) ≥ µ 0,s (Ω) > 0 by Hardy-Sobolev inequality.
Proof of (ii): We take (u ) >0 as in the proof of Proposition 1.1 -(i). We get

J Ω γ,s (u ) =   γ H (R k+,n-k ) -γ W D,2 W 2 2 (s) D,2 + O(1)   ln( 1 2 ) 2-s n-s , As s < 2 and γ > γ H (R k+,n-k ), then lim →0 J Ω γ,s (u ) = -∞, and µ γ,s (Ω) = -∞.
Proof of (iii): We fix γ < γ H (Ω). For any u ∈ D 1,2 (Ω)\{0}, we have that

J Ω γ,s (u) = Ω |∇u| 2 -γ Ω u 2 |x| 2 dx Ω u 2 * (s) |x| s dx 2 2 * (s) ≥ 1 - γ γ H (Ω) µ 0,s (Ω),
and then µ γ,s (Ω) > 0.

Proof of (iv): We assume that γ H (Ω) < γ < γ H (R k+,n-k ), it follows from Proposition 1.1-(iii) that γ H (Ω) is attained by some u 0 . We get that µ γ,s (Ω) ≤ J Ω γ,s (u 0 ) < 0.

Proof of (v): We now assume that γ H (Ω) = γ < γ H (R k+,n-k ). Then µ γ,s (Ω) ≥ 0. Here again, Proposition 1.1 yields an extremal u 0 ∈ D 1,2 (Ω) for γ H (Ω). We get J Ω γ,s (u 0 ) = 0, and then µ γ,s (Ω) = 0. Sketch of the proof of Theorem 1.1. The proof is very classical and follows the proof of Proposition 6.2 in [START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF]. We only sketch it to outline the specific tools we use here.

Let (u k ) k∈N ∈ D 1,2 (Ω)\{0} be a minimizing sequence µ γ,s (Ω) such that u k 2 2 (s),|x| -s = 1. Using Proposition 2.1, we get that (u k ) k∈N is bounded in D 1,2 (Ω).
As a consequence, up to the extraction of a subsequence, there exists u ∈ D 1,2 (Ω) such that u k → u weakly in D 1,2 (Ω) and strongly in L 2 (Ω) as k → +∞. We write θ k := u k -u, so that θ k → 0 weakly in D 1,2 (Ω) and strongly in L 2 (Ω) as k → +∞. We apply the definition (3) of µ γ,s (Ω) to u and Proposition 2.1 to θ k for 0 > 0 small enough. It is then standard to get that θ k → 0 strongly in D 1,2 (Ω), and then u ≡ 0 is a minimizer for µ γ,s (Ω). As mentioned above, we refer to the proof of Proposition 6.2 in [START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF] for the method.

Regularity and approximate solutions

We say that u

∈ D 1,2 loc,0 (Ω) if there exists η ∈ C ∞ c (R n ) such that η ≡ 1 around 0 and ηu ∈ D 1,2 (Ω). We define U α (x) := |x| -α-k k i=1 x i . As one checks -∆U α - γ |x| 2 U α = 0 in R k+,n-k ⇔ α ∈ {α -, α + } where α ± = n -2 2 ± γ H (R k+,n-k ) -γ. Note that U α-∈ D 1,2 (R k+,n-k ) loc,0
. It is the model for more general equations:

Theorem 3.1 (Felli-Ferrero). (Optimal regularity) Let Ω be a domain of R n with a boundary singularity of type

(k, n -k) at 0. We fix γ < γ H (R k+,n-k ). We let f : Ω × R → R such that |f (x, v)| ≤ c|v| 1 + |v| 2 * (s)-2 |x| s for all x ∈ Ω, v ∈ R. Let u ∈ D 1,2 (R k+,n-k ) loc,0 , u > 0 be a weak solution to -∆u - γ + O(|x| τ ) |x| 2 u = f (x, u) in D 1,2 (Ω) loc,0
for some τ > 0. Then there exists K > 0 such that

λ α-u(λx) → K k i=1 x i |x| -α--k in B 1 (0) ∩ R k+,n-k , ( 25 
)
uniformly in C 1 as λ → 0.
This result is essentially in Felli-Ferrero [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF]. Applying Theorem 1.1 of Felli-Fererro [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] to u ∈ D 1,2 (Ω), and since u > 0, we get that

λ n-2 2 - (n-2) 2 4 +µ u(λx) → |x| -n-2 2 - (n-2) 2 4 +µ ψ x |x| as λ → 0 + ,
where µ is an eigenvalue of L γ := -∆ S n-1 -γ on S n-1 ∩ R k+,n-k with Dirichlet boundary condition and ψ : S n-1 → R is a nontrivial associated eigenfunction. Since u > 0, then ψ ≥ 0, and then ψ > 0, so

µ = k(n + k -2) -γ is the first eigenfunction and there exists K > 0 such that ψ(x) = K k i=1 x i . This yields (25). Lemma 3.1. Assume the u ∈ D 1,2 (R k+,n-k ) loc,0 is a weak solution of (26) -∆u -γ+O(|x| τ ) |x| 2 u = 0 in D 1,2 (R k+,n-k ) loc,0 , u = 0 on B 2δ ∩ ∂R k+,n-k ,
for some τ > 0. Assume there exists c > 0 such that

(27) |u(x)| ≤ c|x| -α for x → 0, x ∈ R k+,n-k .
(1) Then, there exists c 1 > 0 such that

|∇u(x)| ≤ c 1 |x| -α-1 as x → 0, x ∈ R k+,n-k . (2) If lim x→0 |x| α u(x) = 0, then lim x→0 |x| α+1 |∇u(x)| = 0.
Proof. For any X ∈ R k+,n-k , let (X j ) j ∈ R k+,n-k be such that lim X j = 0 as j → +∞. Take r j = |X j | and

θ j := Xj |Xj | ,we have lim j→+∞ r j = 0. Define ũj (X) := r α j u(r j X) for all j, X ∈ B R (0) ∩ R k+,n-k \{0}. Since u is a solution of the equation (26), we get -∆ũ j -γ+o(1) |X| 2 ũj = 0 in B R (0) ∩ R k+,n-k , ũj = 0 in B R (0) ∩ ∂R k+,n-k .
Here, o(1) → 0 in C 0 loc (R k+,n-k \{0}). Since lim j→+∞ X j = 0 and by (27), we get that |ũ j (X)| ≤ c|X| -α for all X ∈ B R (0) ∩ R k+,n-k and all j ∈ N. It follows from elliptic theory, that there exists ũ ∈ C 2 (R k+,n-k \{0}) such that ũj → ũ in C 1 loc (R k+,n-k \{0}). Take θ := lim j→+∞ θ j with |θ| = 1, we have that lim

j→+∞ |x j | α+1 ∂ m u(x j ) = ∂ m ũ(θ) for all m = 1, ..., n. (28) 
We assume that there exists (x j ) j ∈ R k+,n-k such that x j → 0 and |x j | α+1 |∇u(x j )| → +∞ as j → +∞. Take In this section we present the symmetry of the extremals for µ γ,s (R k+,n-k ). The proof of the symmetry carried out by Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF] in half space {x 1 > 0}. For γ < γ H (R k+,n-k ), s ∈ [0, 2), we consider the problem:

(29)      -∆u -γ |x| 2 u = u 2 (s)-1 |x| s in R k+,n-k , u ≥ 0 in R k+,n-k , u = 0 on ∂R k+,n-k . Theorem 4.1. For γ ≥ 0 and if u it is solution of the equation (29) in C 2 (R k+,n-k ) ∩ C(R k+,n-k \{0}) for all k ∈ {1, ..., n}, then u • σ = u for all isometries of R n such that σ(R k+,n-k ) = R k+,n-k . In particular: • There exists w ∈ C ∞ (]0, ∞[ k ×R n-k
) such that for all x 1 , ..., x k > 0 and for any x ∈ R n-k , we get that u(x 1 , ..., x k , x ) = w(x 1 , ..., x k , |x |). • u is a symmetric function of k variables: for all permutation s of the set of indices {1, ..., k}, we have u(x 1 , ..., x k , x k+1 , ..., x n ) = u(x s(1) , ..., x s(k) , x k+1 , ..., x n ).

We prove the theorem. We proceed as in Berestycki-Nirenberg [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] (see Ghoussoub-Robert [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF] and Fraenkel [START_REF] Fraenkel | An Introduction to Maximum Principles and Symmetry in Elliptic Problems[END_REF]). We write for convenience p := 2 (s) -1. We define

F := B 1 2 1 2 - → e 1 ∩ R k+,n-k and v(x) := |x| 2-n u -- → e 1 + x |x| 2 for all x ∈ F \{0},
with v(0) = 0 and -→ e 1 := (1, 0, ..., 0). Clearly, this is well defined. We have ∂F = F 1 ∪ F 2 where

F 1 := ∂B 1 2 ( 1 2 - → e1) ∩ R k+,n-k and F 2 := ∪ k j=2 B 1 2 ( 1 2 - → e 1 ) ∩ {x j = 0} . If x ∈ F 1 , then |x| 2 = x 1 , we have v(x) = 0 or if x ∈ F 2 , then v(x) = 0. Consequently, v(x) = 0 for all x ∈ ∂F \{0}. We have that - → e 1 ∈ ∂F . Since |x -|x| 2-→ e 1 | = |x||x -- → e 1 |, we have that -∆v = γ |x| 2 |x -- → e 1 | 2 v + v p |x| s |x -- → e 1 | s in F. (30) It follows from the assumptions on u that v ∈ C 2 (F ) ∩ C(F \{0, - → e 1 }).
We claim that:

v(x , -x n ) = v(x , x n ) for all x ∈ F, (31) 
where x := (x 1 , ..., x n-1 ). Theorem 4.1 will be mostly a consequence of this claim. Proof of (31). For λ ∈ R we define

T λ := {x ∈ R n ; x n = λ} ; x λ := (x , 2λ -x n ). Z(λ) := {x ∈ F ; x n < λ} ; Y (λ) := {x ∈ R n ; x λ ∈ Z(λ)}. Let -a := inf x∈F x n , so that Z(λ) is empty if and only if λ ≤ -a. Since |x λ | 2 -|x| 2 = 4λ(λ -x n ), ( 32 
)
we obtain that Y (λ) ⊂ F if λ ≤ 0. We adapt the moving-plane method. Take -a < λ < 0 and define

g λ (x) := v(x λ ) -v(x) for all x ∈ Z(λ).
We claim that v(x λ ) > v(x) for λ ∈ (-a, 0) and x ∈ Z(λ). (33)

We prove the claim (33). Since, λ < 0, (32

) yields {x ∈ Z(λ) ⇒ x λ ∈ F }. Since |x λ -|x λ | 2-→ e 1 | 2 -|x -|x| 2-→ e 1 | 2 = (|x λ | 2 -|x| 2 ) 1 + |x λ | 2 + |x| 2 -2x 1 ,
for all x ∈ R n , λ < 0 and by (32), we obtain that

|x λ -|x λ | 2-→ e 1 | 2 -|x -|x| 2-→ e 1 | 2 < 0 in Z(λ). ( 34 
)
We define

c λ (x) := v(x λ ) p -v(x) p v(x λ )-v(x) if v(x λ ) = v(x). pv p-1 (x) if v(x λ ) = v(x).
The equation (30) of v, γ ≥ 0 and (34) yield

-∆g λ = γ v(x) |x -|x| 2 - → e 1 | 2 - v(x λ ) |x λ -|x λ | 2 - → e 1 | 2 + v(x) p |x -|x| 2 - → e 1 | s - v(x λ ) p |x λ -|x λ | 2 - → e 1 | s < -γ g λ |x -|x| 2 - → e 1 | 2 -c λ (x) g λ |x -|x| 2 - → e 1 | s , then, -∆g λ + d λ g λ < 0 in Z(λ), (35) 
where

d λ (x) := γ|x -|x| 2-→ e 1 | -2 + c λ (x)|x -|x| 2-→ e 1 | -s . We have Z(λ) = F ∩ {x ∈ R n , x n < λ}, this gives that ∂Z(λ) ⊂ ∂F ∪ T λ . Therefore, g λ (x) ≥ 0 if x ∈ ∂Z(λ), (36) 
with the strict inequality when x ∈ ∂Z(λ)\T λ and x λ ∈ F and with equality when x ∈ ∂Z(λ) ∩ T λ . Again,

g λ (x) = 0 if x, x λ in ∂F \T λ .
Step 1: We prove (33) for λ + a > 0 close to 0. Since x ∈ Z(λ), we have x ∈ F and x n < λ. But λ < 0 thus x / ∈ {0, -→ e 1 }. On the other hand , we have 0 < |x| < 1 and We now prove (33) for x ∈ Z(λ). Here again, for any δ > 0, then |Z(λ)| ≤ δ for λ ∈ (-a, 0) close to -a. Moreover, Z(λ) is bounded and g λ verifies (35). The Maximum principle (Theorem 4.2 below) yields g λ > 0 in Z(λ) or g λ ≡ 0. We assume by contradiction that g λ ≡ 0. We fix x ∈ ∂F ∩ {x ∈ R n , x n < λ} such that v(x) = 0. The definition of g λ yields v(x λ ) = 0 and in addition x λ ∈ ∂F . Equation (32) (4λ(λ -x n ) = 0) yields λ = 0: contradiction with -a < λ < 0. This yields (33) and Step 1 is proved.

|d λ (x)| ≤ γ |x| 2 ||x| -1| 2 + c λ (x) |x| s ||x| -1| s . (37) But v ∈ C(F \{0, - → e 1 }), then is a c 0 > 0 such that 0 ≤ v(x) ≤ c 0 sur F \{0, - → e 1 }
We let (-a, β) be the largest open interval in (-∞, 0) such that

g λ > 0 in Z(λ) for all λ ∈ (-a, β).
Step 2: We claim that β = 0. We prove the claim. We assume β < 0 and we argue by contradiction. Since g λ (x) for all x ∈ Z(λ) and all λ ∈ (-a, β), letting λ → β, we get that g β ≥ 0 for x ∈ Z(β). As in the proof of Step 1, the case g β ≡ 0 is discarded and the maximum principle yields g β (x) > 0 for all x ∈ Z(β).

We fix δ > 0 that will be precised later. We let D ⊂ Z(β) be a smooth domain such that |Z(β)\D| < δ 2 . Thus g β (x) > 0 when x ∈ D. For 0 < ≤ 0 , we define G := Z(β + )\D. We let 0 > 0 small enough such that, for any ∈ (0, 0 ), we have that |G | < δ, β + < 0, and g β+ > 0 in D. Equation (35) yields,

-∆g β+ + d β+ g β+ < 0 in G .
With (36) and g β > 0 in D, we get that g β+ ≥ 0 on ∂G . Then, up to taking δ > 0 small enough, by Theorem 4.2 below, we get g β+ ≥ 0 for x ∈ G . As above, the strong maximum principle yields g β+ > 0 for x ∈ G . Consequently, g β+ > 0 in Z(β + ). This contradicts the maximality of β. Then β = 0 and g λ (x) > 0 for λ ∈ (-a, 0) and x ∈ Z(λ). This proves (33).

Step 3: Letting λ → 0 in (33), we get that v(x , -x n ) ≥ v(x , x n ) for all x ∈ F such that x n ≤ 0. By symmetry, we get the reverse inequality. This proves (31).

Proof of the first part of Theorem 4.1: Permuting x n and any x j , j ∈ {k + 1, ..., n}, it follows from (31) that v is symmetric with respect the hyperplane {x j = 0}. Coming back to the definition of u, we get the desired symmetry.

Proof of the second part of Theorem 4.1. As above, this will be a consequence ofa claim. We claim that

(38) u(x 1 , x 2 , x ) = u(x 2 , x 1 , x ) in R k+,n-k .
Proof of (38). We define

E + k := {x ∈ R k+,n-k ; x 1 -x 2 > 0} := D 1 ∩ D 2 ∩ ∩ k i=1 D i
where

D 1 := {x 1 + x 2 > 0} , D 2 := {x 1 -x 2 > 0} et D i := {x i > 0}.
We consider the isometry σ(x 29) of u, the isometry σ and the definition of v yield

) := ( x1+x2 √ 2 , x1-x2 √ 2 , x ) for x := (x 1 , x 2 , x ) ∈ R × R × (R k-2 + × R n-k ). We have that σ(E + k ) = R k+,n-k . We define v(x) := u • σ(x) for all x ∈ E + k . Equation (
-∆v - γ |x| 2 v = v p |x| s in E + k . ( 39 
)
For any x ∈ R n \{0}, we define the inversion i(x) = --→ e 1 + x |x| 2 . We note that: i -1 (D i ) = D i , and then

x ∈ i -1 (D 1 ) ⇔ x ∈ B 1 √ 2 1 2 ( - → e 1 + - → e 2 ) ; x ∈ i -1 (D 2 ) ⇔ x ∈ B 1 √ 2 1 2 ( - → e 1 -- → e 2 ) .
We define v(x) := |x| 2-n v(i(x)) for all x ∈ H := i -1 (E + k ), where v(0) = 0 and 0, -→ e 1 ∈ ∂H. Since v verifies (39) and by the definition of v, we obtain that

-∆v = γ |x| 2 |x -- → e 1 | 2 v + vp |x| s |x -- → e 1 | s .
We denote that v ∈ C 2 (H) ∩ C(H\{0, -→ e 1 }). Arguing as in the proof of (31), we get that v(x 1 , x 2 , x ) = v(x 1 , -x 2 , x ) for all x ∈ H. Coming back to v, and then u, we get (38). As noted above, this yields the second part of Theorem 4.1.

Theorem 4.2 (Maximum Principle for small domains). Let Ω ⊂ R n be open domain and a ∈ L ∞ (Ω) such that a ∞ ≤ M . Then there exists δ(M, n) > 0 such that we have the following: if |Ω| < δ and u ∈ H 1 (Ω) satisfies -∆u + au ≥ 0 weakly and u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

Proof. This result is cited in Berestycki-Nirenberg [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] and Fraenkel [START_REF] Fraenkel | An Introduction to Maximum Principles and Symmetry in Elliptic Problems[END_REF]. We give a short independent proof. Since -∆u + au ≥ 0 weakly, we have that

Ω ( ∇u, ∇ϕ + auϕ) dx ≥ 0 for all ϕ ∈ H 1 0 (Ω), ϕ ≥ 0.
We take ϕ := u -:= max{0, -u} ∈ H 1 0 (Ω). Since ∇u -= -1 u<0 ∇u a.e, we get

Ω |∇u -| 2 + au 2 -dx ≤ 0. Since u 2 -∈ L 2 2
(Ω), Hölder's inequality yields

Ω |∇u -| 2 dx ≤ a ∞ mes(Ω) 2 n u - 2 2 ≤ a ∞ δ 2 n u - 2 2 . ( 40 
)
On the other hand, it follows from Sobolev's inequality that µ 0,0 (R n ) u - 

:= µ 0,0 (R n ) -1 a ∞ 2 -n 2 , we obtain u - 2 2 = 0. Therefore u ≥ 0 in Ω.

Existence of extremals: the case of small values of γ

We estimates the functional J Ω γ,s at some natural test-functions. We let W ∈ D 1,2 (R k+,n-k ) be a positive extremal for µ γ,s (R k+,n-k ). In other words,

J R k+,n-k γ,s (W ) = R k+,n-k |∇W | 2 -γ |x| 2 W 2 dx R k+,n-k |W | 2 (s) |x| s 2 2 (s) = µ γ,s (R k+,n-k ).
Therefore, there exists ξ > 0 such that (41)

     -∆W -γ |x| 2 W = ξ W 2 (s)-1 |x| s in R k+,n-k , W > 0 in R k+,n-k , W = 0 on ∂R k+,n-k .
They exist under the assumption that s > 0 or {s = 0, γ > 0 and n ≥ 4} (see Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]). By Theorem 3.1, there exists c > 0 such that For r > 0, we define Br := (-r, r) k × B n-k r (0), where B n-k r (0) is the ball of center 0 and radius r in R n-k . We take the chart (φ, U ) of Definition 1 so that

W (x) ≤ c|x| -α-as x → 0. ( 42 
φ( B3δ ∩ R k+,n-k ) = φ( B3δ ) ∩ Ω and φ( B3δ ∩ ∂R k+,n-k ) = φ( B3δ ) ∩ ∂Ω,
where δ > 0. We write the chart φ = (φ 1 , φ 2 , ..., φ n ) and the pull-back metric g ij (x) := (φ * Eucl (x)) ij = (∂ i φ(x), ∂ j φ(x)) for all i, j = 1, ..., n. The Taylor formula of g ij (x) arround 0 writes (45)

g ij (x) = δ ij + H ij + O(|x| 2 ) with H ij := n l=1 [∂ il φ j (0) + ∂ jl φ i (0)]x l .
As x → 0, the inverse metric g -1 = (g ij ) expands as

g -1 = Id n -(H ij ) 1≤i,j≤n + O(|x| 2
), and the volume element is

(46) |Jac(φ)(x)| = 1 + n i,j=1 ∂ ji φ j (0)x i + O(|x| 2 ),
as x → 0. For any > 0, we define

(47) W (x) := η -n-2 2 W -1 • • φ -1 (x) for all x ∈ φ( B3δ )
∩ Ω and 0 elsewhere, where η ∈ C ∞ c (R n ) is such that η(x) = 1 for x ∈ Bδ (0) and η(x) = 0 for x / ∈ B2δ (0). Theorem 1.2 will be the consequence of the following estimates:

Proposition 5.1. Let 0 ≤ γ < γ H (R k+,n-k ) = (n+2k-2) 2 4
, and assume that there are extremals for µ γ,s (R k+,n-k ). Then there exists c β γ,s positives constants where β = 1, ..., 3 and for all k ∈ {1, ..., n} and m = 1, ..., k such that: (1) For γ < γ H (R k+,n-k ) - 1 4 , we have that

J Ω γ,s (W ) = µ γ,s (R k+,n-k ) (1 + GH γ,s (Ω) + o( )) . (48) (2) For γ = γ H (R k+,n-k ) -1
4 , we have that

J Ω γ,s (W ) = µ γ,s (R k+,n-k ) 1 + GH γ,s (Ω) ln 1 + o ln 1 . ( 49 
)
with GH γ,s (Ω) as in [START_REF] Florica | A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials[END_REF].

Proof. Take Bδ,+ k := Bδ ∩ R k+,n-k . For any family (a ) >0 ∈ R, we define

Θ γ (a ) := o(a ) if γ < γ H (R k+,n-k ) -1 4 , O(a ) if γ = γ H (R k+,n-k ) -1 4 .
as → 0.

In order to get lighter computations, we take the following conventions: the integral symbol means B -1 δ,+ k , and

A α := B -1 δ ∩ {x α = 0}.
Step 1: We claim that

Ω |∇W | 2 dx = R k+,n-k |∇W | 2 dx + 1≤i≤k;j≥1 ∂ ji φ j (0) |∇W | 2 x i dx -2 k m=1 (A 1,m + A 2,m + ∂ mm φ m (0) ∂ m W ∂ m W x m dx + i≥1;i =m [∂ mi φ i (0) ∂ i W ∂ m W x i dx + ∂ im φ i (0) ∂ i W ∂ i W x m dx] + k p=1;p =m k q=p+1;q =m [∂ qp φ m (0) ∂ m W ∂ q W x p dx + ∂ pq φ m (0) ∂ m W ∂ p W x q dx]) + Θ γ ( ) as → 0
where or m = 1, ..., k, we define x 0,m := (x 1 , ..., 0 m , ..., x k , x k+1 , ..., x n ) and

A 1,m := k i=1;i =m ∂ ii φ m (0) B -1 δ,+ k ∂ m W x i ∂ i W dx. A 2,m := n i=k+1 ∂ ii φ m (0) B -1 δ,+ k ∂ m W x i ∂ i W dx. B 1,m := k i≥1;i =m ∂ ii φ m (0) B -1 δ,+ k |W | 2 * (σ) |x| σ x m |x| 2 x 2 i dx. B 2,m := n i=k+1 ∂ ii φ m (0) B -1 δ,+ k |W | 2 * (σ) |x| σ x m |x| 2 x 2 i dx.
Note that

(50) α + -α -> 1 ⇔ γ < γ H (R k+,n-k ) -1 4 α + -α -= 1 ⇔ γ = γ H (R k+,n-k ) -1 4
Proof of Step 1: By (43) and (44), there exists c 1 > 0 such that

|∇W (x)| ≤ c 1 α+-n-2 2 |x| -1-α+ for any x ∈ Ω. (51) Therefore, φ(( B3δ \ Bδ) ∩R k+,n-k ) |∇W | 2 dx ≤ c 2 1 2α+-n+2 φ(( B3δ \ Bδ) ∩R k+,n-k ) |x| -2-2α+ dx since 2α + -n + 2 = α + -α -, we get that φ(( B3δ \ Bδ) ∩R k+,n-k ) |∇W | 2 dx = Θ γ ( ) as → 0. Then, Ω |∇W | 2 dx = Bδ,+ k |∇(W • φ)| 2 φ * Eucl |Jac(φ)|dx + Θ γ ( ) as → 0.
It follows from (45) and for any θ ∈ (0, 1] that

Ω |∇W | 2 dx = |∇(W • φ)| 2 Eucl |Jac(φ)|dx - i,j≥1 H ij ∂ i (W • φ)∂ j (W • φ)|Jac(φ)|dx +O Bδ,+ k |x| 1+θ |∇(W • φ)| 2 dx + Θ γ ( ) as → 0.
Using (45), we get i,j≥1 H ij = 2 i,j,l≥1 ∂ il φ j (0)x l , and then

Ω |∇W | 2 dx = Bδ,+ k |∇(W • φ)| 2 Eucl |Jac(φ)|dx -2 i,j,l≥1 ∂ ij φ l (0) Bδ,+ k ∂ l (W • φ)∂ i (W • φ)x j |Jac(φ)|dx + O Bδ,+ k |x| 1+θ |∇(W • φ)| 2 dx + Θ γ ( ) (52)
as → 0. The two equations ( 46), (47) and the change of variable x := y yield as → 0,

B -1 δ,+ k |∇(W • φ)| 2 Eucl |Jac(φ)|dx = B -1 δ,+ k |∇W | 2 dx + 1≤i≤k;j≥1 ∂ ji φ j (0) B -1 δ,+ k |∇W | 2 x i dx + k+1≤i≤n;j≥1 ∂ ji φ j (0) |∇W | 2 x i dx + O |x| 2 |∇(W • φ)| 2 dx , (53) 
and

Bδ,+ k ∂ l (W • φ)∂ i (W • φ)x j |Jac(φ)|dx = ∂ l W ∂ i W x j dx + O |x| 2 |∇(W • φ)| 2 dx . ( 54 
)
Plugging together (52), ( 53), (54) yields

Ω |∇W | 2 dx = |∇W | 2 dx + 1≤i≤k;j≥1 ∂ ji φ j (0) |∇W | 2 x i dx + k+1≤i≤n;j≥1 ∂ ji φ j (0) |∇W | 2 x i dx -2 i,j,l≥1 ∂ ij φ l (0) ∂ l W ∂ i W x j dx +O( |x| 1+θ |∇(W • φ)| 2 dx) + Θ γ ( ) as → 0. • If γ = γ H (R k+,n-k ) -1 4 , we choose θ ∈ (0, 1). • If γ < γ H (R k+,n-k ) -1
4 , we choose 0 < θ < α + -α --1 (see (50)). Therefore, it follows from (51) that we have as → 0 that,

Bδ,+ k |x| 1+θ |∇(W • φ)| 2 dx = Θ γ ( ). ( 55 
)
Since γ ≥ 0, we use the symmetry of W (see Theorem 4.1). For i ≥ k + 1, W and R k+,n-k are invariant by x → (x 1 , ..., -x i , ..., x n ), then a change of variables yields (56)

B -1 δ,+ k |∇W | 2 x i dx = - B -1 δ,+ k |∇W | 2 x i dx = 0.
This equality and (55) yield

Ω |∇W | 2 dx = B -1 δ,+ k |∇W | 2 dx + 1≤i≤k;j≥1 ∂ ji φ j (0) B -1 δ,+ k |∇W | 2 x i dx -2 i,j,l≥1 ∂ ij φ l (0) B -1 δ,+ k ∂ l W ∂ i W x j dx + Θ γ ( ) as → 0. ( 57 
)
The inequation (44) and -2 -

2α + + n = -(α + -α -) yields, R k+,n-k \ B -1 δ,+ k |∇W | 2 dx ≤ c 2 R k+,n-k \ Bδ,+ k |x| -2-2α+ dx ≤ c 1 α+-α-, therefore, B -1 δ,+ k |∇W | 2 dx = R k+,n-k |∇W | 2 dx + Θ γ ( ) as → 0. (58)
Using again the symmetry of W as in (56), we get i,j,l≥1

∂ ij φ l (0) B -1 δ,+ k ∂ l W ∂ i W x j dx = k m=1 (A 1,m + A 2,m + ∂ mm φ m (0) B -1 δ,+ k ∂ m W ∂ m W x m dx + i≥1;i =m ∂ mi φ i (0) ∂ i W ∂ m W x i dx + ∂ im φ i (0) ∂ i W ∂ i W x m dx + k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) ∂ m W ∂ q W x p dx + ∂ pq φ m (0) ∂ m W ∂ p W x q dx ).
Combining (57), (58) and the last equation, we get Step 1.

Step 2: We fix σ ∈ [0, 2]. We claim that

Ω |W | 2 (σ) |x| σ dx = R k+,n-k |W | 2 (σ) |x| σ dx + 1≤i≤k;j≥1 ∂ ji φ j (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i dx - σ 2 k m=1 B 1,m + B 2,m + ∂ mm φ m (0) B -1 δ,+ k |W | 2 (σ) |x| σ x m |x| 2 x 2 m dx +2 i≥1;i =m ∂ mi φ i (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i |x| 2 x m x i dx +2 k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) B -1 δ,+ k |W | 2 (σ) |x| σ x m |x| 2 x q x p dx   + Θ γ ( ).
Proof of Step 2: Equations ( 43) and (44) yield

|W (x)| ≤ c α+-n-2
2 |x| -α+ for all > 0 and x ∈ Ω, (59) this implies,

φ( B3δ \ Bδ) ∩Ω |W | 2 (σ) |x| σ dx ≤ c 2 (σ) 2 (σ)(α+-n-2 2 ) φ( B3δ \ Bδ) ∩Ω |x| -α+2 (σ)-σ dx
and then, since 2 (σ) ≥ 2 and α + + α -= n -2, we get that

φ( B3δ \ Bδ) ∩Ω |W | 2 (σ) |x| σ dx = Θ γ ( ).
Therefore,

Ω |W | 2 (σ) |x| σ dx = Bδ,+ k |W • φ| 2 (σ) |φ(x)| σ |Jac(φ)|dx + Θ γ ( ) as → 0. ( 60 
)
We choose θ ∈ (0, 1) as follows.

• If γ < γ H (R k+,n-k )-1 4 or {γ = γ H (R k+,n-k )-1 4 and σ < 2} we choose θ ∈ (0, (α + -α -) 2 (σ) 2 -1)∩(0, 1). • If γ = γ H (R k+,n-k ) -1
4 and σ = 2, we choose 0 < θ < 1. This choice makes sense due to (50). Since dφ 0 = Id, a Taylor expansion yields

(61) |φ(x)| -σ = |x| -σ   1 - σ 2|x| 2 i,j,l≥1 ∂ ij φ l (0)x l x i x j + O(|x| 1+θ )   as → 0.
Inequality (59) yields,

Bδ,+ k |W • φ| 2 (σ) |x| 1+θ |φ(x)| σ dx = Θ γ ( ).
The estimates (60) , ( 61) and the last equation get,

Ω |W | 2 (σ) |x| σ dx = Bδ,+ k |W • φ| 2 (σ) |x| σ |Jac(φ)|dx - σ 2 i,j,l≥1 ∂ ij φ l (0) Bδ,+ k |W • φ| 2 (σ) |x| σ x l |x| 2 x i x j |Jac(φ)| dx + Θ γ ( ). ( 62 
)
In view of (46), (47) and the change of variable x := y yield as → 0,

Bδ,+ k |W | 2 (σ) |x| σ |Jac(φ)|dx = B -1 δ,+ k |W | 2 (σ) |x| σ dx + 1≤i≤k;j≥1 ∂ ji φ j (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i dx + k+1≤i≤n;j≥1 ∂ ji φ j (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i dx + Θ γ ( ). (63)
And, (64)

Bδ,+ k |W | 2 (σ) |x| σ x l |x| 2 x i x j |Jac(φ)|dx = B -1 δ,+ k |W | 2 (σ) |x| σ x l |x| 2 x i x j dx + Θ γ ( ).
Plugging together (62), ( 63), (64) yields,

Ω |W | 2 (σ) |x| σ dx = B -1 δ,+ k |W | 2 (σ) |x| σ dx + 1≤i≤k;j≥1 ∂ ji φ j (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i dx + k+1≤i≤n;j≥1 ∂ ji φ j (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i dx - σ 2 i,j,l≥1 ∂ ij φ l (0) B -1 δ,+ k |W | 2 (σ) |x| σ x l |x| 2 x i x j dx + Θ γ ( ).
By equation (44), we have

R k+,n-k \ B -1 δ,+ k |W | 2 (σ) |x| σ dx = Θ γ ( ).
Since γ ≥ 0, using the symmetry of W as in (56) and the last equation,

Ω |W | 2 (σ) |x| σ dx = R k+,n-k |W | 2 (σ) |x| σ dx + 1≤i≤k;j≥1 ∂ ji φ j (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i dx - σ 2 i,j,l≥1 ∂ ij φ l (0) B -1 δ,+ k |W | 2 (σ) |x| σ x l |x| 2 x i x j dx + Θ γ ( ). ( 65 
)
We use again the symmetry of W , i,j,l≥1

∂ ij φ l (0) B -1 δ,+ k |W | 2 (σ) |x| σ x l |x| 2 x i x j dx = k m=1 (B 1,m + B 2,m
+∂ mm φ m (0)

B -1 δ,+ k |W | 2 (σ) |x| σ x m |x| 2 x 2 m dx + i≥1;i =m [∂ mi φ i (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i |x| 2 x m x i dx + ∂ im φ i (0) B -1 δ,+ k |W | 2 (σ) |x| σ x i |x| 2 x i x m dx] + k p=1;p =m k q=p+1;q =m [∂ qp φ m (0) B -1 δ,+ k |W | 2 (σ) |x| σ x m |x| 2 x q x p dx + ∂ pq φ m (0) B -1 δ,+ k |W | 2 (σ) |x| σ x m |x| 2 x p x q dx]).
Replace the last equation in (65), we get Step 2.

Step 3: We now prove (48) and (49). We fix m ∈ {1, ..., k}. For: i = 1, ..., n; l = k + 1, ..., n; p = 1, ..., k and q = p + 1, ..., k such that i, p, q = m, we define

M p,m := B -1 δ,+ k ∂ m W x p ∂ p W dx and M l,m := B -1 δ,+ k ∂ m W x l ∂ l W dx. K i,m := B -1 δ,+ k ∂ i W ∂ m W x i dx and J i,m := B -1 δ,+ k ∂ i W ∂ i W x m dx. L m,p,q := B -1 δ,+ k ∂ m W ∂ p W x q dx and N m,p,q := B -1 δ,+ k ∂ m W ∂ q W x p dx. I m := B -1 δ,+ k ∂ m W ∂ m W x m dx.
Lemma 5.1. Here ξ > 0 and s ∈ [0, 2], we have as → 0 that:

2I m = B -1 δ,+ k x 2 m |x| 2 x m ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 dx + ξ 1 - 2 2 (s) B -1 δ,+ k x m W 2 (s) |x| s dx + Θ γ (1). 2M p,m = B -1 δ,++ x 2 p |x| 2 x m ξ s 2 (s) |W | 2 (s) |x| s + γ W 2 |x| 2 dx - B -1 δ ∩{xm=0} x 2 p |∂ m W | 2 2 dσ + Θ γ (1). 2M l,m = B -1 δ,++ x 2 l |x| 2 x m ξ s 2 (s) |W | 2 (s) |x| s + γ W 2 |x| 2 dx - B -1 δ ∩{xm=0} x 2 l |∂ m W | 2 2 dσ + Θ γ (1). K i,m + J i,m = B -1 δ,+ k x 2 i |x| 2 x m ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 dx + 1 2 - 1 2 (s) ξ B -1 δ,+ k x m W 2 (s) |x| s dx + Θ γ (1). L m,p,q + N m,p,q = B -1 δ,+ k x q x p |x| 2 x m ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 dx - 1 2 B -1 δ ∩{xm=0} x q x p (∂ m W ) 2 dx + Θ γ (1).
Proof of Lemma 5.1. We first state two preliminary remarks. First (66)

∂ B -1 δ ∩R k+,n-k W 2 + |x|W |∇W | + |x| 2 |∇W | 2 dx = Θ γ (1).
Another remark we will use often is that (67)

∂ i W (x) = 0 if x j = 0, j = i, j ≤ k
We want to calculate the value of

I m = B -1 δ,+ k ∂ m W ∂ m W x m dx = B -1 δ,+ k (∂ m W ) 2 ∂ m ( x 2 m 2 )dx.
For any domain D, we define ν as the outer normal vector at a boundary point of D when this is makes sense. For any j = 1, ..., n, ν j denote the jth coordinate. In the sequel, the normal vector will be defined except on lower dimensional portions of the boundary and the computations will be valid. On {x α = 0} = ∂{x α > 0}, the outer normal vector is (0, ..., -1, ..., 0) = (ν α,i ) i=1,...,n where ν i,j := -δ ij for i = 1, ..., k and j ≥ 1. Since W (x 0,m ) = 0, (66) and integrations by parts yield

I m = - B -1 δ,+ k x 2 m ∂ m W ∂ mm W dx + ∂( B -1 δ,+ k ) x 2 m (∂ m W ) 2 2 ν m dx = - B -1 δ,+ k x 2 m ∂ m W [∆W - i≥1;i =m ∂ ii W ]dx + O ∂ B -1 δ ∩R k+,n-k |x| 2 |∇W | 2 dx = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx + i≥1;i =m B -1 δ,+ k x 2 m ∂ m W ∂ ii W dx + Θ γ (1) = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx - i≥1;i =m B -1 δ,+ k x 2 m ∂ im W ∂ i W dx + i≥1;i =m ∂( B -1 δ,+ k ) x 2 m ∂ m W ∂ i W ν i dx + Θ γ (1) = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx - i≥1;i =m B -1 δ,+ k x 2 m ∂ m ( (∂ i W ) 2 2 )dx + i≥1;i =m k α=1 B -1 δ ∩{xα=0} x 2 m ∂ m W ∂ i W ν α,i dσ + Θ γ (1).
Using again the integrations by parts and (66), we get

I m = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx - i≥1;i =m B -1 δ,+ k x 2 m ∂ m ( (∂ i W ) 2 2 )dx + Θ γ (1) = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx + i≥1;i =m B -1 δ,+ k x m (∂ i W ) 2 dx - i≥1;i =m k α=1 B -1 δ ∩{xα=0} x 2 m (∂ i W ) 2 2 ν α,m dx + Θ γ (1) = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx + B -1 δ,+ k x m (|∇W | 2 -(∂ m W ) 2 )dx + Θ γ (1) = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx + B -1 δ,+ k x m |∇W | 2 dx - B -1 δ,+ k x m (∂ m W ) 2 dx + Θ γ (1) = B -1 δ,+ k x 2 m ∂ m W (-∆W )dx + B -1 δ,+ k x m |∇W | 2 dx -I m + Θ γ (1). 
With equation (41), we then get

(68) 2I m = B -1 δ,+ k x 2 m ∂ m W ξ W 2 (s)-1 |x| s + γ W |x| 2 dx + B -1 δ,+ k x 2 m |∇W | 2 dx + Θ γ (1). 
Integrating by parts, using that W vanishes on ∂R k+,n-k , we get that

B -1 δ,+ k x 2 m ∂ m W W 2 (σ)-1 |x| σ dx = B -1 δ,+ k x 2 m |x| -σ ∂ m W 2 (σ) 2 (σ) dx = - B -1 δ,+ k ∂ m (x 2 m |x| -σ ) W 2 (σ) 2 (σ) dx + ∂( B -1 δ,+ k ) x 2 m |x| -σ W 2 (σ) 2 (σ) ν m dx = - 2 2 (σ) B -1 δ,+ k x m W 2 (σ) |x| σ dx + σ 2 (σ) B -1 δ,+ k x 2 m x m W 2 (σ) |x| σ+2 dx + Θ γ (1) (69) 
as → 0. We claim that (70)

B -1 δ,+ k x m |∇W | 2 dx = γ B -1 δ,+ k x m W 2 |x| 2 dx + ξ B -1 δ,+ k x m W 2 (s) |x| s dx + Θ γ (1).
Proof of (70). We multiply equation ( 41) by x m W and integrate by parts to get

B -1 δ,+ k x m |∇W | 2 dx = -∇(x m )W ∇W dx + ∂ x m W ∂ ν W dx + γ x m W 2 |x| 2 dx + ξ x m W 2 (s) |x| s dx = -∇(x m )∇ W 2 2 dx + ∂ x m W ∂ ν W dx + γ x m W 2 |x| 2 dx + ξ x m W 2 (s) |x| s dx = - ∂ W 2 2 ∂ ν x m dx + ∂ x m W ∂ ν W dx + γ x m W 2 |x| 2 dx + ξ x m W 2 (s) |x| s dx (71)
where all integrals are taken on B -1 δ,+ k or ∂ B -1 δ,+ k . Since W vanishes on ∂R k+,n-k and by (66), we have

∂ B -1 δ,+ k x m W ∂ ν W dx = ∂ B -1 δ ∩R k+,n-k x m W ∂ ν W dx = Θ γ (1). (72) And, ∂ B -1 δ,+ k W 2 2 ∂ ν x m dx = ∂ B -1 δ ∩R k+,n-k W 2 2 ∂ ν x m dx = Θ γ (1). ( 73 
)
Then (71), ( 72) and ( 73) yields (70).

Combining (68), (69) and (70), we obtain

2I m = ξ - 2 2 (s) B -1 δ,+ k x m W 2 (s) |x| s dx + s 2 (s) B -1 δ,+ k x 2 m x m W 2 (s) |x| s+2 dx + γ - B -1 δ,+ k x m W 2 |x| 2 dx + B -1 δ,+ k x 2 m x m W 2 |x| 2+2 dx + B -1 δ,+ k x m |∇W | 2 dx + Θ γ (1) = B -1 δ,+ k x 2 m |x| 2 x m [ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 ]dx -ξ 2 2 (s) B -1 δ,+ k x m W 2 (s) |x| s dx -γ B -1 δ,+ k x m W 2 |x| 2 dx + B -1 δ,+ k x m |∇W | 2 dx + Θ γ (1)
And then

2I m = B -1 δ,+ k x 2 m |x| 2 x m ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 dx -ξ 2 2 (s) B -1 δ,+ k x m W 2 (s) |x| s dx -γ B -1 δ,+ k x m W 2 |x| 2 dx + B -1 δ,+ k x m ξ W 2 (s) |x| s + γ W 2 |x| 2 dx + Θ γ (1),
by the last equality, we obtain the value of I m . We now fix m, p ∈ {1, ..., k} such that p = m. Integrating by parts, we get that

M p,m = B -1 δ,+ k ∂ m W x p ∂ p W dx = B -1 δ,+ k ∂ m W ∂ p x 2 p 2 ∂ p W dx = - B -1 δ,+ k x 2 p 2 ∂ p (∂ m W ∂ p W )dx + ∂( B -1 δ,+ k ) ∂ m W x 2 p 2 ∂ p W ν p dx,
with ν i,j := -δ ij for i = 1, ..., k and j ≥ 1, since W (x 0,m ) = 0, we have that

M p,m = - B -1 δ,+ k x 2 p 2 ∂ p (∂ m W ∂ p W )dx + B -1 δ ∩∂R k+,n-k ∂ m W x 2 p 2 ∂ p W ν p dσ +O R k+,n-k ∩∂ B -1 δ |x| 2 |∇W | 2 dσ = - B -1 δ,+ k x 2 p 2 ∂ p (∂ m W ∂ p W )dx + k α=1 B -1 δ ∩{xα=0} ∂ m W x 2 p 2 ∂ p W ν α,p dσ +O R k+,n-k ∩∂ B -1 δ |x| 2 |∇W | 2 dσ = - B -1 δ,+ k x 2 p 2 [∂ mp W ∂ p W + ∂ m W ∂ pp W ]dx + Θ γ (1) = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - B -1 δ,+ k x 2 p 2 ∂ m |∂ p W | 2 2 dx + j≥1;j =p B -1 δ,+ k x 2 p 2 ∂ m W ∂ jj W dx + Θ γ (1) = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - ∂( B -1 δ,+ k ) x 2 p 4 |∂ p W | 2 ν m dσ + j≥1;j =p B -1 δ,+ k x 2 p 2 ∂ m W ∂ jj W dx + Θ γ (1) = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - k α=1 B -1 δ ∩{xα=0} x 2 p 4 |∂ p W | 2 ν α,m dσ + j≥1;j =p B -1 δ,+ k x 2 p 2 ∂ m W ∂ jj W dx + Θ γ (1)
And then

M p,m = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - j≥1;j =p B -1 δ,+ k x 2 p 2 ∂ jm W ∂ j W dx + j≥1;j =p k α=1 B -1 δ ∩{xα=0} x 2 p 2 ∂ m W ∂ j W ν α,j dσ + Θ γ (1).
So we have

M p,m = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - j≥1;j =p B -1 δ,+ k ∂ m ( x 2 p 4 |∂ j W | 2 )dx + B -1 δ ∩{xm=0} x 2 p 2 |∂ m W | 2 ν m,m dσ + Θ γ (1) = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - j≥1;j =p k α=1 B -1 δ ∩{xα=0} x 2 p 4 |∂ j W | 2 ν α,m dσ + B -1 δ ∩{xm=0} x 2 p 2 |∂ m W | 2 ν m,m dσ + Θ γ (1) = B -1 δ,+ k x 2 p 2 ∂ m W [-∆W ]dx - B -1 δ ∩{xm=0} x 2 p 4 |∂ m W | 2 dσ + Θ γ (1).
Moreover, using (41), we have that

M p,m = B -1 δ,+ k x 2 p 2 ∂ m W γ |x| 2 W + ξ W 2 (s)-1 |x| s dx - B -1 δ ∩{xm=0} x 2 p |∂ m W | 2 4 dσ + Θ γ (1). 
Using again that W vanishes on ∂R k+,n-k , we get that

B -1 δ,+ k x 2 p ∂ m W W 2 * (σ) -1 |x| σ dx = B -1 δ,+ k x 2 p |x| -σ ∂ m W 2 * (σ) 2 * (σ) dx = σ 2 * (σ) B -1 δ,+ k x 2 p x m |x| σ+2 W 2 * (σ) dx + O ∂ B -1 δ ∩R k+,n-k |x| 2-σ W 2 * (σ) dσ = σ 2 * (σ) B -1 δ,+ k x 2 p x m |x| σ+2 W 2 * (σ)
dx + Θ γ (1) as → 0.

Moreover,

M p,m = B -1 δ,+ k x 2 p x m 2|x| 2 ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 - B -1 δ ∩{xm=0} x 2 p |∂ m W | 2 4 dσ + Θ γ (1).
The proof is similiar for M l,m for all l ≥ k + 1. Fix m ∈ {1, ..., k} and i ≥ 1 such that i = m, we have that

K i,m : = B -1 δ,+ k ∂ i W ∂ m W x i dx = B -1 δ,+ k ∂ i W ∂ m W x i ∂ m x m dx.
Integrating by parts again and using (67), we get

K i,m = -x i x m ∂ i W ∂ mm W dx -x i x m ∂ m W ∂ mi W dx + k α=1 A α x i x m ∂ m W ∂ i W ν α,m dx + Θ γ (1) = x i x m ∂ i W (-∆W )dx + j≥1;j =m x i x m ∂ i W ∂ jj W dx - 1 2 x i x m ∂ i (∂ m W ) 2 dx + Θ γ (1) = x i x m ∂ i W (-∆W )dx -x m ∂ i W ∂ i W dx - j≥1;j =m x i x m ∂ ij W ∂ j W dx + 1 2 x m (∂ m W ) 2 dx - 1 2 k α=1 A α x i x m (∂ m W ) 2 ν α,i dx + Θ γ (1) = x i x m ∂ i W (-∆W )dx -J i,m - 1 2 j≥1;j =m x i x m ∂ i (∂ j W ) 2 dx + 1 2 x m (∂ m W ) 2 dx + Θ γ (1) = x i x m ∂ i W (-∆W )dx -J i,m + 1 2 j≥1;j =m x m (∂ j W ) 2 dx - 1 2 j≥1;j =m k α=1 A α x i x m (∂ j W ) 2 ν α,i dx + 1 2 x m (∂ m W ) 2 dx + Θ γ (1) = x i x m ∂ i W (-∆W )dx -J i,m + 1 2 j≥1;j =m B -1 δ,+ k x m (∂ j W ) 2 dx + 1 2 x m (∂ m W ) 2 dx + Θ γ (1) = x i x m ∂ i W (-∆W )dx -J i,m + 1 2 x m |∇W | 2 dx + Θ γ (1),
since W is a solution to (41), then there exists ξ > 0 such that

K i,m + J i,m = B -1 δ,+ k x i x m ∂ i W ξ W 2 (s)-1 |x| s + γ W |x| 2 dx + 1 2 B -1 δ,+ k x m |∇W | 2 dx + Θ γ (1).
Since W vanishes on ∂R k+,n-k , we get

B -1 δ,+ k x i x m ∂ i W W 2 (σ)-1 |x| σ dx = 1 2 (σ) B -1 δ,+ k x i x m |x| σ ∂ i (W 2 (σ) )dx = - 1 2 (σ) B -1 δ,+ k x m W 2 (σ) |x| σ dx + σ 2 (σ) B -1 δ,+ k x 2 i x m W 2 (σ) |x| σ+2 dx + Θ γ (1).
Then with (70)

K i,m + J i,m = B -1 δ,+ k x 2 i |x| 2 x m ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 dx + 1 2 - 1 2 (s) ξ B -1 δ,+ k x m W 2 (s) |x| s dx + Θ γ (1).
Fix m ∈ {1, ..., k}, p ∈ {1, ..., k} and q ∈ {p + 1, ..., k} such that p, q = m. We get

L m,p,q : = B -1 δ,+ k ∂ m W ∂ p W x q dx = B -1 δ,+ k ∂ m W ∂ p W x q ∂ p x p dx.
Using again the integrations by parts, (66) and (67), we get

L m,p,q = -x q x p ∂ m W ∂ pp W dx -x p x q ∂ p W ∂ mp W dx + k α=1 A α x q x p ∂ m W ∂ p W ν α,p dx + Θ γ (1) = x q x p ∂ m W (-∆W )dx + j≥1;j =p x q x p ∂ m W ∂ jj W dx - 1 2 x q x p ∂ m (∂ p W ) 2 dx + Θ γ (1) = x q x p ∂ m W (-∆W )dx - B -1 δ,+ k x p ∂ m W ∂ q W dx - j≥1;j =p x p x q ∂ jm W ∂ j W dx + j≥1;j =p k α=1 A α x q x p ∂ m W ∂ j W ν α,j dx - 1 2 k α=1 A α x q x p (∂ p W ) 2 ν α,m dx + Θ γ (1) = x q x p ∂ m W (-∆W )dx -N m,p,q - 1 2 j≥1;j =p x p x q ∂ m (∂ j W ) 2 dx + A m x q x p (∂ m W ) 2 ν m,m dx + Θ γ (1) = x q x p ∂ m W (-∆W )dx -N m,p,q - 1 2 j≥1;j =p k α=1 A α x q x p (∂ j W ) 2 ν α,m dx + A m x q x p (∂ m W ) 2 ν m,m dx + Θ γ (1) = x q x p ∂ m W (-∆W )dx -N m,p,q + 1 2 A m x q x p (∂ m W ) 2 ν m,m dx + Θ γ (1),
with A α := B -1 δ ∩ {x α = 0}, other integrals being taken on B -1 δ,+ k . With (41), we then get

L m,p,q + N m,p,q = B -1 δ,+ k x q x p ∂ m W ξ W 2 (s)-1 |x| s + γ W |x| 2 dx + 1 2 B -1 δ ∩{xm=0} x q x p (∂ m W ) 2 ν m,m dx + Θ γ (1).
Integrating by parts, using that W vanishes on ∂R k+,n-k , for σ ∈ [0, 2], we get that

B -1 δ,+ k x q x p ∂ m W W 2 (σ)-1 |x| σ dx = B -1 δ,+ k x q x p |x| -σ ∂ m W 2 (σ) 2 (σ) dx = σ 2 (σ) B -1 δ,+ k x q x p x m W 2 (σ) |x| σ+2 dx + Θ γ (1) as → 0.
And then

L m,p,q + N m,p,q = B -1 δ,+ k x q x p x m |x| 2 ξ s 2 (s) W 2 (s) |x| s + γ W 2 |x| 2 - 1 2 B -1 δ ∩{xm=0} x q x p (∂ m W ) 2 dx + Θ γ (1).
This ends the proof of Lemma 5.1.

We define (all integrals are taken on B -1 δ,+ k )

A := 1≤i≤k;j≥1 ∂ ji φ j (0) |∇W | 2 x i dx -γ |W | 2 |x| 2 x i dx -2 k m=1 k i=1;i =m ∂ ii φ m (0) ∂ m W x i ∂ i W dx + γ |W | 2 |x| 2 x m |x| 2 x 2 i dx -2 k m=1 n i=k+1 ∂ ii φ m (0) ∂ m W x i ∂ i W dx + γ |W | 2 |x| 2 x m |x| 2 x 2 i dx -2 k m=1 ∂ mm φ m (0) ∂ m W ∂ m W x m dx + γ |W | 2 |x| 2 x m |x| 2 x m x m dx -2 k m=1 i≥1;i =m ∂ mi φ i (0) ∂ i W ∂ m W x i dx + γ |W | 2 |x| 2 x i |x| 2 x m x i dx -2 k m=1 i≥1;i =m ∂ im φ i (0) ∂ i W ∂ i W x m dx + γ |W | 2 |x| 2 x i |x| 2 x i x m dx + k m=1 k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) -2 ∂ m W ∂ q W x p dx + γ |W | 2 |x| 2 x m |x| 2 x q x p dx + k m=1 k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) -2 ∂ m W ∂ p W x q dx + γ |W | 2 |x| 2
x m |x| 2 x p x q dx and B :=

1≤i≤k;j≥1 ∂ ji φ j (0) |W | 2 (s) |x| s x i dx - s 2 k m=1 k i=1;i =m ∂ ii φ m (0) |W | 2 (s) |x| s x m |x| 2 x 2 i dx - s 2 k m=1 n i=k+1 ∂ ii φ m (0) |W | 2 (s) |x| s x m |x| 2 x 2 i dx - s 2 k m=1 ∂ mm φ m (0) |W | 2 (s) |x| s x m |x| 2 x 2 m dx -s k m=1 i≥1;i =m ∂ mi φ i (0) |W | 2 (s) |x| s x 2 i |x| 2 x m dx -s k m=1 k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) |W | 2 (s) |x| s x m |x| 2 x q x p dx
Steps 1 and 2 and (59) yield

Ω |∇W | 2 -γ |W | 2 |x| 2 dx = R k+,n-k |∇W | 2 -γ |W | 2 |x| 2 dx + A + Θ γ ( ), Ω W 2 (s) |x| s dx = R k+,n-k W 2 (s) |x| s dx + B + Θ γ ( ) It follows from (41) that R k+,n-k |∇W | 2 -γ W 2 |x| 2 dx = ξ R k+,n-k W 2 (s) |x| s dx.
Since W is an extremal for the Euclidean inequality, we have that

R k+,n-k (|∇W | 2 -γ |x| 2 W 2 )dx R k+,n-k W 2 (s) |x| s dx 2 2 (s) = µ γ,s (R k+,n-k ).
Note that, for γ ≤ γ H (R k+,n-k ) - 1 4 , we have that lim →0 A = lim →0 B = 0. Therefore, the above estimates yield

J Ω γ,s (W ) = µ γ,s (R k+,n-k ) 1 + 1 ξ R k+,n-k W 2 (s) |x| s dx A - 2ξ 2 (s) B + Θ γ ( ) .
In the following formula, all the integrals are on B -1 δ,+ k and F (x

) := γ W 2 |x| 2 + ξ W 2 (s) |x| s .
Using the notations of Step 3 and Lemma 5.1, we get

A - 2ξ 2 (s) B = k i=1 j ∂ ji φ j (0)ξ 1 - 2 2 (s) |W | 2 (s) |x| s x i dx + k m=1 k i=1, i =m ∂ ii φ m (0) -2M im + x 2 i |x| 2 x m F (x) dx + k m=1 n i=k+1 ∂ ii φ m (0) -2M im + x 2 i |x| 2 x m F (x) dx + k m=1 ∂ mm φ m (0) -2I m + x 2 m |x| 2 x m F (x) dx + k m=1 i≥1;i =m ∂ mi φ i (0) -2K im + x 2 i |x| 2 x m F (x) dx + k m=1 i≥1;i =m ∂ mi φ i (0) -2J im + x 2 i |x| 2 x m F (x) dx + k m=1 k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) -2N m,p,q + x p x q |x| 2 x m F (x) dx + k m=1 k p=1;p =m k q=p+1;q =m ∂ qp φ m (0) -2L m,p,q + x p x q |x| 2 x m F (x) dx = k i=1 j ∂ ji φ j (0)ξ 1 - 2 2 (s) |W | 2 (s) |x| s x i idx + 1 2 k m=1 k i=1, i =m ∂ ii φ m (0) B -1 δ ∩{xm=0} x 2 i |∂ m W | 2 dσ + 1 2 k m=1 n i=k+1
∂ ii φ m (0)

B -1 δ ∩{xm=0} x 2 i |∂ m W | 2 dσ -ξ 1 - 2 2 (s)
∂ mm φ m (0) ∂ qp φ m (0).

B -1 δ,+ k x m W 2 (s) |x| s dx -ξ 1 - 2 2 (s) i≥1;i =m ∂ im φ i (0) B -1 δ,+ k
We distinguish two cases: We are left with writing the expressions of Cases 1 and 2 intrinsically. We refer to Definition 3. For any 1 ≤ i 1 , i 2 ≤ n such that i 1 , i 2 = m, we have Point (1): we assume that s = 0 and γ ≤ 0. It follows from the definition that µ γ,0 (Ω) ≥ µ 0,0 (R n ). With the reverse inequality (20), we get that µ γ,0 (Ω) = µ 0,0 (R n ). If there was an extremal for µ γ,0 (Ω), it would also be a extremal for µ 0,0 (R n ), with no compact support, contradicting the boundedness of Ω. This proves (1) of Theorem 1.3. 

∂ i1i2 φ m (0) = -- → ν m (0), ∂ i1i2 φ(0) = ∂ i1 ( - → ν m • φ)(0)

Point (3):

We assume that n = 3, s = 0, γ > 0 and there is no extremal for µ γ,0 (R k + × R 3-k ). In this situation, see Proposition 1.3 of [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF], we have that µ γ,0 (R k + × R 3-k ) = µ 0,0 (R 3 ). The following proposition is as in [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]: Proposition 6. (Ω \ {x 0 }) loc,0 , that is unique up to multiplication by a constant. Moreover, for any x 0 ∈ Ω, there exists a unique R γ (x 0 ) ∈ R independent of the choice of G and c G > 0 such that

G(x) = c G 1 |x -x 0 | + R γ (x 0 ) + o(1) as x → x 0 .

Figure 1 .

 1 Figure 1. Case: k = 3,n -k = 0.

Figure 2 .

 2 Figure 2. Case k = 2, n -k = 0.

  θ j = xj |xj | and we have lim j→+∞ |∇ũ j (θ j )| = +∞ contradiction with (28). The case when lim x→0 |x| α u(x) = 0 goes similarly.

4 .

 4 Symmetry of the extremals for µ γ,s (R k+,n-k )

.

  The definition of c λ (x) and (37), then there exists c 1 > 0 such that |d λ (x)| ≤ c 1 for all x ∈ Z(λ) and λ < 0. Next, g λ verifies (35). For any δ > 0, if λ ∈ (-a, 0) is close to -a, then |Z(λ)| ≤ δ. It follows from Theorem 4.2 that for λ close to -a, we have g λ (x) ≥ 0 for x ∈ Z(λ).

2 2 ≤ ∇u - 2 2

 22 . With (40) and δ

  ) It follows from Lemma 3.1, that there exists c > 0 such that (43) |∇W (x)| ≤ c|x| -1-α-as x → 0. Define now the Kelvin transform W (x) := |x| 2-n W ( x |x| 2 ), since W satisfies (41), then W also satisfies (41). By (42), (43) and the definition of W we get, W (x) ≤ c|x| -α+ and |∇W (x)| ≤ c|x| -1-α+ as |x| → +∞. (44)

B -1 δ ∩{xm=0} x q x p |∂ m W | 2 ∂

 2 qp φ m (0)B -1 δ ∩{xm=0} x q x p |∂ m W | 2 dσWith the symmetries of W (see Theorem 4.1), there exists α , β , τ > 0 such thatB -1 δ ∩{xm=0} x 2 i |∂ m W | 2 dσ = α if i = 1, ..., k, i = m B -1 δ ∩{xm=0} x 2 i |∂ m W | 2 dσ = β if i = k + 1, ..., n B -1 δ ∩{xm=0} x q x p |∂ m W | 2 dσ = τ if p, q, m ∈ {1, ..., k} are distinctThen, we get that

Case 1 :∂B -1 δ ∩{xm=0} x 2 i 2 dσB -1 δ ∩{xm=0} x 2 iB -1 δ ∩{xm=0} x 2 i

 12222 γ < γ H (R k+,n-k ) -1 4 , that is α + -α -> 1. It follows from the pointwise control (43) that x → |x| 2 |∇W | 2 ∈ L 1 (R k+,n-k ∩ {x m = 0}), therefore lim →0 α = 2c 2 γ,s := R k+,n-k ∩{xm=0} x 2 i |∂ m W | 2 dσ > 0 if i = 1, ..., k, i = m lim →0 β = 2c 1 γ,s := R k+,n-k ∩{xm=0} x 2 i |∂ m W | 2 dσ > 0 if i = k + 1, ..., n lim →0 τ = c 3 γ,s := R k+,n-k ∩{xm=0} x q x p |∂ m W | 2 dσ > 0 if p, q, m ∈ {1, ..., k} distinct. Consequently, qp φ m (0) + o(1) Case 2: γ = γ H (R k+,n-k ) -1 4 , that is α + -α -= 1. It follows from (25) that lim λ→0 λ α-|x| α-+k ∂ m W (λx) = K j .As in the proof of (44), a Kelvin transform yieldslim λ→+∞ λ α+ |x| α++k ∂ m W (λx) = K k j=1,j =m x j on {x m = 0}. |∂ m W | 2 dx = 2c 2 γis independent of i ∈ {1, .., k}, i = m. We prove the claim. Since n -2 -2α + = -1, we have |∂ m W | 2 dx = ( B -1 δ \ B1)∩{xm=0} x 2 i |∂ m W | 2 dx + O(1) = f (r) := S n-2 ∩({xm=0}∩R k+,n-k ) r 2α+ σ 2 i |∂ σ,m W (rσ)| 2 dσ.It follows from the uniform convergence in (74) that lim r→+∞ f (r) = 2c 2 γ,s . Then (74) and (76) yield (75) and then the claim.Similarly, there exists explicit constants c 2 γ,s , c 3 γ,s > 0 such that |∂ m W | 2 dσ = 2c 1 γ,s ln 1 + o ln 1 ;B -1 δ ∩{xm=0}x q x p |∂ m W | 2 dσ = c 3 γ,s ln 1 + o ln 1 for i ≥ k + 1 and p, q, m ∈ {1, ..., k} all distinct. Therefore

( 6 .

 6 , ∂ i2 φ(0) = II ∂Ωm 0 (∂ i1 φ, ∂ i2 φ) := II m i1i2 . For p = m, we have -→ ν p ∈ (T 0 ∂Ω m ) ⊥ and k p,q,m=1, |{p,q,m}|=3 ν i , ν i )Theorem 1.2 is a straightforward application of Theorem 1.1 and Proposition 5.1. Proof of Theorem 1.3

Point ( 2 )

 2 : Point (2) of Theorem 1.3 is a straightforward application of Theorem 1.1 and Proposition 5.1.

1 .

 1 Let Ω ⊂ R 3 be an open domain such that 0 ∈ ∂Ω. Fix x 0 ∈ Ω. If γ ∈ (0, γ H (Ω)), then the equation -∆G -γ |x| 2 G = 0 ; G > 0 in Ω \ {x 0 } G = 0 on ∂Ω \ {0} has a solution G ∈ C 2 (Ω \ {x 0 }) ∩ D 2 1

The proof is similar to the proof of Proposition 10.1 in [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]. Cooking-up some test-functions (u ) >0 as in Lemma 10.2 of [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF], we get that µ γ,0 (Ω) ≤ J Ω γ,s (u ) < µ 0,0 (R 3 ) = µ γ,0 (R 3 ) when R γ (x 0 ) > 0 for some x 0 ∈ Ω. Point (3) of Theorem 1.3 is then a consequence of Theorem 1.1.