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HARDY-SOBOLEV INEQUALITIES WITH SINGULARITIES ON NON SMOOTH

BOUNDARY: HARDY CONSTANT AND EXTREMALS. PART I: INFLUENCE OF

LOCAL GEOMETRY

HUSSEIN CHEIKH ALI

Abstract. Let Ω be a domain of Rn, n ≥ 3. The classical Caffarelli-Kohn-Nirenberg inequality rewrites as the

following inequality: for any s ∈ [0, 2] and any γ <
(n−2)2

4
, there exists a constant K(Ω, γ, s) > 0 such that(∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤ K(Ω, γ, s)

∫
Ω

(
|∇u|2 − γ

u2

|x|2

)
dx, (HS)

for all u ∈ D1,2(Ω) (the completion of C∞c (Ω) for the relevant norm). When 0 ∈ Ω is an interior point, the

range (−∞, (n−2)2

4
) for γ cannot be improved: moreover, the optimal contant K(Ω, γ, s) is independent of Ω

and there is no extremal for (HS). But when 0 ∈ ∂Ω, the situation turns out to be drastically different since

the geometry of the domain impacts :
• the range of γ’s for which (HS) holds;

• the value of the optimal constant K(Ω, γ, s);
• the existence of extremals for (HS).

When Ω is smooth, the problem was tackled by Ghoussoub-Robert [16] where the role of the mean curvature

was central. In the present paper, we consider nonsmooth domain with a singularity at 0 modeled on a cone.
We show how the local geometry induced by the cone around the singularity influences the value of the Hardy

constant on Ω. When γ is small, we introduce a new geometric object at the conical singularity that generalizes

the ”mean curvature”: this allows to get extremals for (HS). The case of larger values for γ will be dealt in
the forthcoming paper [5]. As an intermediate result, we prove the symmetry of some solutions to singular pdes

that has an interest on its own.
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1. Introduction

Let Ω be a domain of Rn, n ≥ 3, s ∈ [0, 2) and let us consider the following problem:
−∆u− γ

|x|2u = u2?(s)−1

|x|s in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1)
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2 HUSSEIN CHEIKH ALI

where γ ∈ R, 2?(s) := 2(n−s)
n−2 is the critical Hardy-Sobolev exponent and ∆ is the Euclidean Laplacian that

is ∆ = div(∇). This equation makes sense for u ∈ D1,2(Ω), that is the completion of C∞c (Ω) with respect
to the norm u 7→ ‖∇u‖2. The motivation for considering equation (1) arises from the problem of existence of
extremals for the Caffarelli-Kohn-Nirenberg (CKN) inequalities [1]. The Caffarelli-Kohn-Nirenberg inequalities

are equivalent to the Hardy-Sobolev inequality (see [16]): for any γ < (n−2)2

4 and s ∈ [0, 2], there exists K > 0
such that

(2)

(∫
Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤ K
∫

Ω

(
|∇u|2 − γ u

2

|x|2

)
dx,

for all u ∈ D1,2(Ω). More generally, for any 0 ≤ s ≤ 2 and any γ ∈ R, we define

JΩ
γ,s(u) :=

∫
Ω
|∇u|2dx− γ

∫
Ω

u2

|x|2 dx(∫
Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

,

for u ∈ D1,2(Ω) \ {0}, and we define

µγ,s(Ω) = inf
u∈D1,2(Ω)\{0}

JΩ
γ,s(u).(3)

If u ∈ D1,2(Ω)\{0} achieves the infimum µγ,s(Ω), and if µγ,s(Ω) > 0, then, up to a constant, u is a solution to
(1). We address the following questions:

(Q1) For which values of γ ∈ R does (2) hold for some K > 0 and all u ∈ D1,2(Ω)? In other words, when do
we have µγ,s(Ω) > 0?

(Q2) Is the best constant achieved? In other words, is µγ,s(Ω) achieved by some u ∈ D1,2(Ω), u 6≡ 0?

The answer to the first question (Q1) depends on the Hardy constant. Define

(4) γH(Ω) := µ0,2(Ω) = inf

{∫
Ω
|∇u|2dx∫

Ω
u2

|x|2 dx
;u ∈ C∞c (Ω)\{0}

}
.

The classical Hardy inequality reads γH(Rn) = (n−2)2

4 and therefore, we have that γH(Ω) ≥ (n−2)2

4 . As a
consequence, interpolating the Hardy inequality (4) and Sobolev inequalitie ((2) with γ = s = 0), we get that

γ < γH(Ω) ⇒ µγ,s(Ω) > 0.

When 0 ∈ Ω is an interior point, it is classical that γH(Ω) = γH(Rn) = (n−2)2

4 . We consider the case 0 ∈ ∂Ω.
The study of this type of nonlinear singular problems when 0 ∈ ∂Ω was initiated by Ghoussoub-Kang [12] and
studied by Chern-Lin [6] and Ghoussoub-Robert [16] when Ω is a smooth domain. As a byproduct, we prove
the existence of solutions to a perturbation of the initial equation via the Mountain Pass Lemma.

In this work, we tackle the more intricate case of a non smooth domain. We restrict ourselves to domains
modeled locally on Rk+ × Rn−k for all k ∈ {1, ..., n}. We define the model cone at P ∈ Ω as

CP (Ω) :=

{
lim
t→0

1

t

−−→
PMt/ t 7→Mt is a curve of Ω and the limit exists

}
.

When Ω is smooth, Cx0
(Ω) = Rn if x0 ∈ Ω. Still in the smooth case, Cx0

(Ω) is a half-space bounded by the
tangent space at x0 if x0 ∈ ∂Ω. Moreover, when x0 ∈ ∂Ω, then ∂Cx0

(Ω) is exactly the tangent space at x0.

Definition 1. We fix 1 ≤ k ≤ n. Let Ω be a domain of Rn. We say that x0 ∈ ∂Ω is a singularity of type
(k, n − k) if there exist U, V open subsets of Rn such that 0 ∈ U , 0 ∈ V and there exists φ ∈ C∞(U, V ) a
diffeomorphism such that φ(0) = x0 and

φ(U ∩
(
Rk+ × Rn−k

)
) = φ(U) ∩ Ω and φ(U ∩ ∂

(
Rk+ × Rn−k

)
) = φ(U) ∩ ∂Ω,

with the additional hypothesis that the differential at 0 dφ0 is an isometry.
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As one checks, we have that C0(Ω) = dφ0(Rk+ × Rn−k), and then C0(Ω) is isometric to Rk+ × Rn−k. In the
sequel, we write for convenience

Rk+,n−k := Rk+ × Rn−k for all k ∈ {1, ..., n}.

For example: When Ω is smooth, boundary points are all of type (1, n− 1). A general conical sigularity is as in

Figure 1. Case: k = 3,n− k = 0.

Figure 1. We assume that 0 is a singularity of type (k, n−k). We write the cone as C0(Ω) = {rσ; r > 0, σ ∈ D}
having 0 as a vertex included in Rn, where D is the trace of the cone on the sphere Sn−1. More generally, given
D ⊂ Sn−1, define the cone C := {rσ; r > 0, σ ∈ D} . Then we have that

• If D is the sphere Sn−1, then C = Rn\{0}.
• If D is the half-sphere Sn−1

+ , then C is the half-space R1+,n−1 := Rn+.

• If D = Sn−1 ∩ Rk+,n−k, then C = Rk+,n−k for all k ∈ {1, ..., n}.
For such cones, see Ghoussoub-Moradifam [13], the Hardy constant is

γH(C) =
(n− 2)2

4
+ λ1(D),

such that λ1(D) is the first eigenvalue of Laplacien on D ⊂ Sn−1 with Dirichlet boundary condition. In

particular, γH(Rk+,n−k) = (n+2k−2)2

4 where λ1(D) = k(n+ k − 2) for all k ∈ {1, ..., n}. The model cone is the
relevant object to consider to understand the Hardy constant of Ω:

Proposition 1.1. Let Ω be a bounded domain of Rn. We assume that 0 ∈ ∂Ω is a singularity of type (k, n− k)
for some k ∈ {1, ..., n}. Then γH satisfies the following properties:

(i) (n−2)2

4 < γH(Ω) ≤ γH(C0(Ω)) .
(ii) γH(Ω) = γH(C0(Ω)) for every Ω such that 0 ∈ ∂Ω and Ω ⊂ C0(Ω).
(iii) If γH(Ω) < γH(C0(Ω)), then it is attained in D1,2(Ω) .
(iv) For every ε > 0, there exists Rk+,n−k ( Ωε ( Rn with a boundary singularity at 0 of type (k, n − k)

such that γH(Rk+,n−k)− ε ≤ γH(Ωε) ≤ γH(Rk+,n−k) .

The study of the Hardy constant for itself is reminiscent in the litterature. Without being exhaustive, we
refer to Fall [8], Fall-Musina [9] and the references therein.
We now tackle the second question (Q2), that is the existence of extremals for (3). In this framework, the
following result is classical:

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain such that 0 ∈ ∂Ω is a singularity of type (k, n− k). Assume
that γ < γH(Rk+,n−k), 0 ≤ s ≤ 2, and µγ,s(Ω) < µγ,s(Rk+,n−k). Then there are extremals for µγ,s(Ω). In
particular, there exists a minimizer u in D1,2(Ω)\{0} that is a positive solution to the equation

(E)


−∆u− γ

|x|2u = µγ,s(Ω)u
2?(s)−1

|x|s in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

In other words, being below a critical threshold given by the model cone yields existence of extremals. Such
a result is reminiscent in the functional inequalities of elliptic type since the work of Trudinger [19] and Aubin
[2] on the Yamabe problem. Related results for Hardy-Sobolev equations are in Bartsch-Peng-Zhang [3] and
Pucci-Servadei [18].
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We now give sufficient conditions to get the existence condition. As for the Yamabe problem, we need to
introduce some test-functions cooked up from a model space: here, it is the model cone. In the smooth case,
that is k = 1, the test-functions yield a condition on the mean curvature to recover existence. In our non-smooth
context, we must tackle two additional difficulties:

• The mean curvature is not defined, and we must define another geometric quantity.
• The extremals for the model space Rk+,n−k are not smooth, and the proof of the symmetry in [16] does

not extend to our context.

We are able to recover symmetry via a version of the moving-plane method developed by Berestycki and
Nirenberg [4]. Concerning the lack of mean curvature, we introduce a new geometric object.

Definition 2. Let Ω ⊂ Rn be a domain such that 0 ∈ ∂Ω is a singularity of type (k, n− k). We define

(5) Ωi := φ(U ∩ {xi > 0}) for all i = 1, ..., k,

where (φ,U) is a chart as in the Definition 1. We have that:

(1) For all i = 1, ..., k, Ωi is smooth around 0 ∈ ∂Ωi.
(2) Up to permutation, the Ωi’s are locally independent of the chart φ.
(3) The Ωi’s define locally Ω: there exists δ > 0 such that

Ω ∩Bδ(0) =

k⋂
i=1

Ωi ∩Bδ(0).

For example:

Figure 2. Case k = 2, n− k = 0.

Definition 3. Let S be a submanifold of Rn. We let IISx0
be the second fundamental form at x0 of S, that is{

IISx0
: Tx0

S × Tx0
S × (Tx0

S)⊥ → R
(X,Y, η) 7→ IIS(X,Y, η) = 〈∇XY −∇XY, η〉x0 .

The mean curvature vector at x0 ∈ S is the vector ~HS
x0
∈ (Tx0

S)⊥ such that for all η ∈ (Tx0
S)⊥, we have that

〈 ~HS
x0
, η〉x0

= Trace
(
(X,Y ) 7→ IISx0

(X,Y, η)
)
.

For k ∈ {1, ..., n} and m = 1, .., k, we define −→ν m : ∂Ωm → Rn is the outer unit normal vector of the locally
oriented Ωm around 0 where Ωm as in (5) (see Definition 2): this definition makes sense locally around 0. In
particular, we have −→ν m(0) := (0, ..., 0,−1, 0, ..., 0) when dφ0 = Id. We are in position to get an existence result
for small values of γ:

Theorem 1.2. Let Ω be a bounded domain in Rn(n ≥ 3) such that 0 ∈ ∂Ω is a singularity of type (k, n − k)
for some k ∈ {1, ..., n}. We fix 0 ≤ s < 2 and 0 ≤ γ < γH(Ω). Assume that either s > 0, or that {s = 0, n ≥
4 and γ > 0}. We assume that

0 ≤ γ ≤ γH(Rk+,n−k)− 1

4
.

Then there are extremals for µγ,s(Ω) if

(6) GHγ,s(Ω) < 0
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where, for Σ := ∩ki=1∂Ωi, GHγ,s(Ω) is the generalized mean curvature

GHγ,s(Ω) := c1γ,s

k∑
m=1

〈 ~HΣ
0 , ~νm〉+ c2γ,s

k∑
i,m=1, i 6=m

II∂Ωm
0 (~νi, ~νi)(7)

+c3γ,s

k∑
p,q,m=1, |{p,q,m}|=3

II∂Ωm
0 (−→ν p,−→ν q)

and c1γ,s, c
2
γ,s, c

3
γ,s are positive explicit constants. By convention, each of the sums above is zero when empty.

The first term in GHγ,s(Ω) shows the influence of the mean curvature of Σ = ∩ki=1∂Ωi at 0. The second and
third sums outline the influence of the positions of the Ωm’s relatively to each other: these two terms do not
appear in the smooth case, that is k = 1.

When k = 1, condition (6) reads 〈 ~H∂Ω
0 , ~ν∂Ω〉 < 0. We then recover the condition of Ghoussoub-Robert [16].

Our condition is local: only the local geometry of the boundary at 0 is relevant here. In the paper [5], we deal
with the case γ > γH(Rk+,n−k)− 1

4 : the test-functions then are different, and the existence condition is global.

For the sake of completeness, we now deal with the remaining cases, still for γ ≤ γH(Rk+,n−k)− 1
4 .

Theorem 1.3. Let Ω be a bounded domain in Rn(n ≥ 3) with a singularity of type (k, n − k) at 0 for some
k ∈ {1, ..., n}. Then

(1) If γ ≤ 0, then µγ,0(Ω) = µ0,0(Rn), and there is no extremal.
(2) If n = 3, 0 < γ ≤ γH(Rk+,n−k) − 1

4 and there are extremals for µγ,0(Rk+ × R3−k), then there are
extremals for µγ,0(Ω) if GHγ,0(Ω) < 0.

(3) If n = 3, 0 < γ and there are no extremals for µγ,0(Rk+,3−k), then there are extremals for µγ,0(Ω) if
Rγ(x0) > 0 for some x0 ∈ Ω.

The proof of Theorem 1.3 is similar to what was performed in Ghoussoub-Robert [16], and we will only sketch
it in Section 6, where the interior mass Rγ(x0) will be defined in Proposition 6.1.

Our results are summarized in these tables:

Hardy Condition Dimension Geometric Condition Extremal
0 ≤ γ ≤ γH(Rk+,n−k)− 1

4 n ≥ 3 GHγ,s(Ω) < 0 Yes

Table 1. Case s > 0.

Hardy Condition Dimension Geometric Condition Extremal

0 < γ ≤ γH(Rk+,n−k)− 1
4

n = 3
n ≥ 4

GHγ,0(Ω) < 0 and Rγ(x0) < 0
GHγ,0(Ω) < 0

Yes
Yes

γ ≤ 0 n ≥ 3 No

Table 2. Case s = 0.

In this paper, some regularity issues will be used very often. Our main tool will be the article [10] by Felli and
Ferrero. We also refer to the historical reference Gmira-Véron [17] and to the monograph [7] by Cirstea. As
an intermediate step in our analysis, we will prove a symmetry result for the extremals of µγ,s(Rk+,n−k): with
the use of the moving-plane method (see Berestycki-Nirenberg [4]), we will obtain that the symmetries of the
domain transfer to the extremals. This will be the object of Theorem 4.1.
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2. The best Hardy constant and Hardy Sobolev Inequality

This section is devoted to the analysis of the Hardy constant γH(Ω) and the proof of Proposition 1.1:

Proof of (i) of Proposition 1.1: By definition, (n−2)2

4 = γH(Rn) ≤ γH(Ω). We assume by contradiction that

γH(Ω) = γH(Rn). We that have µγ,2(Ω) = γH(Ω)− γ = (n−2)2

4 − γ < µγ,2(Rk+,n−k) = (n+2k−2)2

4 − γ. Theorem

1.1 yields µγ,2(Ω) is achieved by some u0 ∈ D1,2(Ω)\{0}. Since u0 ∈ D1,2(Ω) ⊂ D1,2(Rn), we get that γH(Rn)
is achieved in D1,2(Rn). Replacing u0 by |u0|, we assume that u0 ≥ 0 on Rn. The Euler-Lagrange equation and

the maximum principle yield u0 > 0 on Rn, contradicting u0 = 0 on ∂Ω. Therefore (n−2)2

4 < γH(Ω).

For the other inequality, since Ω is a singularity of type (k, n− k) at 0, we choose a chart (U, φ) as in Definition
1. Without loss of generality, we assume that dφ0 = Id and that C0(Ω) = Rk+,n−k. Let η ∈ C∞c (U) such that
η(x) = 1 for x ∈ Bδ(0), for some δ > 0 small enough, and consider (αε)ε>0 ∈]0,+∞[ such that αε = o(ε) as
ε→ 0. We define

ρ(x) := |x|−k−
n−2
2

k∏
i=1

xi for all x ∈ Rk+,n−k.

Note that ρ /∈ D1,2(Rk+,n−k). We fix β > 1 and define

ρε(x) =

 |
x
ε |
βρ(x) if |x| < ε

ρ(x) if ε < |x| < 1
ε

|ε.x|−βρ(x) if |x| > 1
ε .

Note that ρε ∈ D1,2(Rk+,n−k). For ε > 0, we define

uε(y) = η(φ−1(y))α
2−n
2

ε ρε(α
−1
ε φ−1(y)) for any y ∈ φ(U) ∩ Ω, y = φ(x)

and 0 elsewhere. Immediate computations yield∫
Rn\Bε−1 (0)

ρ2
ε

|x|2
dx = O(1) and

∫
Bε(0)

ρ2
ε

|x|2
dx = O(1).(8) ∫

Rn\Bε−1 (0)

|∇ρε|2dx = O(1) and

∫
Bε(0)

|∇ρε|2dx = O(1)

when ε→ 0. Since dφ0 = Id, we have∫
Ω

|uε(y)|2

|y|2
dy =

∫
Rk+,n−k∩U

|uε(φ(x))|2

|φ(x)|2
|Jac(φ(x))|dx

=

∫
Bδ(0)∩Rk+,n−k

|uε(φ(x))|2

|x|2
|1 +O(|x|)|dx+O(1).(9)

Writing Bδ(0) = (Bδ(0)\Bε−1αε(0)) ∪ (Bε−1αε(0)\Bεαε(0)) ∪ (Bεαε(0)), (8) yields

(10)

∫
(Bδ(0)\Bε−1αε

(0))∩Rk+,n−k

|uε(φ(x))|2

|x|2
dx = O(1) ;

∫
Bεαε (0)∩Rk+,n−k

|uε(φ(x))|2

|x|2
dx = O(1).

And,

(11)

∫
(Bε−1αε

(0)\Bεαε (0))∩Rk+,n−k

|uε(φ(x))|2

|x|2
(1 +O(|x|)) dx = WD,2 ln

1

ε2
+O(1),

where WD,2 := 2
∫
D
|
∏k
i=1 xi|2dσ with D = Sn−1 ∩ Rk+,n−k for all k ∈ {1, ..., n}. We combine (9), (10) and

(11) ∫
Ω

|uε(y)|2

|y|2
dy = WD,2 ln

1

ε2
+O(1) as ε→ 0.(12)

Similar arguments yield

(13)

∫
Ω

|∇uε(y))|2dy = WD,2 ln
1

ε2
γH(Rk+,n−k) +O(1) as ε→ 0.
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By the equations (12), (13), we get that∫
Ω
|∇uε(y))|2dy∫
Ω
|uε(y)|2
|y|2 dy

= γH(Rk+,n−k) + o(1) as ε→ 0,

and by the definition of γH , we get that γH(Ω) ≤ γH(Rk+,n−k). This proves (i).

Proof of (ii): If Ω ⊂ C0(Ω), then the definition yields γH(Ω) ≥ γH(C0(Ω)). The reverse inequality is by (i),
which yields (ii).

Proof of (iii): Is a particular case of Theorem 1.1 below when s = 2.

Proof of (iv): By Ghoussoub-Robert [16] we have the following lemma:

Lemma 2.1. Let (φt)t∈N ∈ C1(Rn,Rn) be such that,

lim
t 7→+∞

(‖φt − IdRn‖∞ + ‖∇(φt − IdRn)‖∞) = 0 and φt(0) = 0.

Let D ⊂ Rn be a domain such that 0 ∈ ∂D (not necessarily bounded nor regular), and set Dt := φt(D), ∀t ∈ N.
Then 0 ∈ ∂Dt, and limt7→+∞ γH(Dt) = γH(D).

Let φ ∈ C∞(Rn−k) be such that 0 ≤ φ ≤ 1, φ(0) = 0 et φ(x′′) = 1 for all x′′ ∈ Rn−k such that |x′′| ≥ 1. For

t ≥ 0, define φt(x
′, x′′) := (x1− tφ(x′′), ..., xk − tφ(x′′), x′′) for all (x′, x′′) ∈ Rk ×Rn−k. Set Ω̃t := φt(Rk+,n−k).

Lemma 2.1 yields

lim
t 7→0

γH(Ω̃t) = γH(Rk+,n−k) =
(n+ 2k − 2)2

4
.

Since φ ≥ 0 and φ(x′′) = 1 for x′′ ∈ Rn−k, |x′′| ≥ 1, we have that Rk+,n−k ( Ω̃t. To finish the proof of (iv), we

take Ωε := Ω̃t with ε > 0, t > 0 small enough.

Proposition 2.1. Let γ < γH(Rk+,n−k) for all k ∈ {1, ..., n} and s ∈ [0, 2]. Then, for all ε > 0 there exists
cε > 0 such that for all u ∈ D1,2(Ω),

(14)

[∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

≤
(
µγ,s(Rk+,n−k)−1 + ε

) ∫
Ω

(
|∇u|2 − γ

|x|2
u2

)
dx+ cε

∫
Ω

u2dx.

Proof of Proposition 2.1: We choose a chart (U, φ) as in Definition 1. Without loss of generality, we assume
that dφ0 = Id and then C = C0(Ω) = Rk+,n−k. Choose u ∈ C∞c (φ(Bδ(0)) ∩ Ω) and define v := u ◦ φ for
all v ∈ C1

c (Bδ(0) ∩ C). Define the metric g := φ−1∗Eucl, where Eucl is the Euclidean metric. We have that
|φ(x)| = |x|(1 +O(|x|)) and |φ∗Eucl − Eucl|(x) ≤ c|x| for all x ∈ Rn small enough for some c > 0.

Step 1: fix ε > 0, we first claim that there exists δ > 0 such that for all u ∈ C1
c (φ(Bδ(0)) ∩ Ω),

(15)

[∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

(
|∇u|2 − γ

|x|2
u2

)
dx.

Proof of (15): We have that[∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

=

[∫
Bδ(0)∩C

|u ◦ φ(x)|2?(s)|Jac(φ(x))|
|φ(x)|s

dx

] 2
2?(s)

≤ (1 + cδ)

[∫
Bδ(0)∩C

|v|2?(s)

|x|s
dx

] 2
2?(s)

≤ (1 + cδ)µγ,s(C)−1

∫
Bδ(0)∩C

(
|∇v|2 − γ

|x|2
v2

)
dx

≤ (1 + cδ)µγ,s(C)−1

∫ (
|∇u|2g −

γ

|φ−1(x)|2
u2

)
|Jac φ−1(x)| dx

≤ (1 + c1δ)µγ,s(C)−1

∫ (
|∇u|2 − γ

|x|2
u2

)
dx+ c2δ

∫ (
|∇u|2 +

u2

|x|2

)
dx



8 HUSSEIN CHEIKH ALI

where the last three integrals are taken on φ(Bδ(0)) ∩ Ω. This give us[∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

≤ (1 + c1δ)µγ,s(C)−1

∫
Ω

(|∇u|2 − γ

|x|2
u2)dx+ c2δ

∫
Ω

(|∇u|2 +
u2

|x|2
)dx.

For all v ∈ C1
c (φ(Bδ(0) ∩ Ω)), we get that∫

Ω

u2

|x|2
dx =

∫
Bδ(0)∩C

v2

|x|2
|1 +O(|x|)|dx ≤ (1 + c1δ)

∫
C

v2

|x|2
dx,(16)

and, ∫
Ω

|∇u|2dx =

∫
Bδ(0)∩C

|∇v|2φ∗Eucl|1 +O(|x|)|dx ≥ (1− c2δ)
∫
C

|∇v|2dx,(17)

where c1, c2 > 0 are independent of δ and v. Since γ < γH(Rk+,n−k), there exists c0 > 0 for δ small enough,

(18) c−1
0

∫
Ω

|∇u|2dx ≤
∫

Ω

(
|∇u|2 − γ u

2

|x|2

)
dx ≤ c0

∫
Ω

|∇u|2dx.

With (16), (17) and (18), we get (15) for δ > 0 small enough. This ends Step 1. �

Step 2: We prove (14) for all u ∈ D1,2(Ω).

Let η ∈ C∞c (Rn) and
√
η,
√

1− η ∈ C2(Rn) be such that η(x) = 1 if x ∈ Bδ/2(0) and η(x) = 0 if x /∈ Bδ(0). We

define ‖w‖p,|x|−s =
[∫

Ω
|w|p
|x|s dx

] 1
p

. We set p = 2?(s)/2. Hölder’s inequality yield

‖u2‖p,|x|−s = ‖ηu2 + (1− η)u2‖p,|x|−s

≤ ‖ηu2‖p,|x|−s + ‖(1− η)u2‖p,|x|−s ≤ ‖
√
ηu‖22?(s),|x|−s + ‖

√
1− ηu‖22?(s),|x|−s ,

for all u ∈ C∞c (Ω). Since
√
ηu ∈ C2

c (Bδε ∩ C), we use (15) and intregrate by parts[∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

(
|∇√ηu|2 − γ

|x|2
ηu2

)
dx+ ‖

√
1− ηu‖22?(s),|x|−s

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

η

(
|∇u|2 − γ

|x|2
u2

)
dx+ ‖

√
1− ηu‖22?(s),|x|−s + c

∫
Ω

u2dx,(19)

where c > 0 depends of ε > 0.

Case 1: s = 0. We claim that

(20) µγ,0(Ω) ≤ µ0,0(Rn)

We prove the claim. Fix x0 ∈ Ω, x0 6= 0, and take η ∈ C∞c (Ω) such that η(x) = 1 around of x0. For x ∈ Ω and

ε > 0, we define uε(x) := η(x)
(

ε
ε2+|x−x0|2

)n−2
2

for all x ∈ Ω. Classical computations in the spirit of Aubin [2]

yield

lim
ε→0

∫
Ω
|∇uε|2dx(∫

Ω
u2∗
ε dx

) 2
2∗

= µ0,0(Rn)

and limε→0

∫
Ω

u2
ε

|x|2 dx = 0. This yields (20), and the claim is proved.

The Sobolev inequality yields ‖f‖22n/(n−2) ≤ µ0,0(Rn)−1‖∇f‖22 for all f ∈ D1,2(Ω) ⊂ D1,2(Rn). We combine

these inequalities to get

‖
√

1− ηu‖22?(s),|x|−s ≤ µ0,0(Rn)−1

∫
Ω

|∇(
√

1− ηu)|2dx

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

(1− η)|∇u|2dx+ c

∫
Ω

u2dx.(21)
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We use the equations (19) and (21)[∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

η

(
|∇u|2 − γ

|x|2
u2

)
dx

+
(
µγ,s(C)−1 + ε

) ∫
Ω

(1− η)|∇u|2dx+ c

∫
Ω

u2dx

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

|∇u|2dx−
(
µγ,s(C)−1 + ε

)
γ

∫
Ω\Bδ ε

2
(0)

η

|x|2
u2dx

−
(
µγ,s(C)−1 + ε

)
γ

∫
Bδ ε

2
(0)

η

|x|2
u2dx+ c

∫
Ω

u2dx

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

|∇u|2dx−
(
µγ,s(C)−1 + ε

)
γ

∫
Bδ ε

2
(0)

u2

|x|2
dx+ c

∫
Ω

u2dx

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

(
|∇u|2 − γ

|x|2
u2

)
dx+ c

∫
Ω

u2dx.

Case 2: 0 < s < 2. We have that 2 < 2?(s) < 2∗ , let ν > 0 and by interpolation inequality there exists cν > 0,

such that

‖
√

1− ηu‖22?(s),|x|−s ≤ C
(
ν‖
√

1− ηu‖22∗ + cν‖
√

1− ηu‖22
)

≤ C
(
νµ0,0(Rn)−1‖∇(

√
1− ηu)‖22 + cν‖

√
1− ηu‖22

)
.

We choose ν such that νµ0,0(Rn)−1 ≤ µ−1
γ,s(C) + ε, we get

(22) ‖
√

1− ηu‖22?(s),|x|−s ≤
(
µ−1
γ,s(C) + ε

)
‖∇(

√
1− ηu)‖22 + cν‖

√
1− ηu‖22.

By (19) and (22) [∫
Ω

|u|2?(s)

|x|s
dx

] 2
2?(s)

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

η

(
|∇u|2dx− γ

|x|2
u2

)
dx

+
(
µ−1
γ,s(C) + ε

)
‖∇(

√
1− ηu)‖22 + cν‖

√
1− ηu‖22 + c

∫
Ω

u2dx

≤
(
µγ,s(C)−1 + ε

) ∫
Ω

(
|∇u|2 − γ

|x|2
u2

)
dx+ c

∫
Ω

u2dx.

Cas 3: s = 2. We have 2?(s) = 2

‖
√

1− ηu‖22?(s),|x|−s =

∫
Ω\Bδ/2(0)

1− η
|x|2

u2dx ≤ cδ
∫

Ω

u2dx,(23)

by the equations (19) and (23) we get the result. �

Proposition 2.2. Let Ω be a bounded domain such that 0 ∈ ∂Ω.

(i) If γ < γH(Rk+,n−k), then µγ,s(Ω) > −∞.
(ii) If γ > γH(Rk+,n−k), then µγ,s(Ω) = −∞.
(iii) If γ < γH(Ω), then µγ,s(Ω) > 0.
(iv) If γH(Ω) < γ < γH(Rk+,n−k), then 0 > µγ,s(Ω) > −∞.
(v) If γ = γH(Ω) < γH(Rk+,n−k), then µγ,s(Ω) = 0.

Proof of Proposition 2.2: Proof of (i): Let γ < γH(Rk+,n−k) and ε > 0 such that (1 + ε)γ ≤ γH(Rk+,n−k). By

Proposition 2.1 there exist cε > 0 for any u ∈ D1,2(Ω) such that

γH(Rk+,n−k)

∫
Ω

u2

|x|2
dx ≤ (1 + ε)

∫
Ω

|∇u|2 + cε

∫
Ω

u2dx.
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Since 2?(s) > 2 and Ω is bounded, Hölder inequality yields c1 > 0 such that∫
Ω

u2dx ≤ c1

(∫
Ω

u2?(s)

|x|s
dx

) 2
2?(s)

.(24)

If γ ≥ 0 and since (1− γγH(Rk+,n−k)−1(1 + ε)) ≥ 0, by (24), we get

JΩ
γ,s(u) =

∫
Ω
|∇u|2 − γ

∫
Ω
u2dx
|x|2(∫

Ω
u2∗(s)dx
|x|s

) 2

2∗(s)
≥ −c2cεγ
γH(Rk+,n−k)

,

then for any u ∈ D1,2(Ω) we have µγ,s(Ω) > −∞. If γ < 0, then µγ,s(Ω) ≥ µ0,s(Ω) > 0 by Hardy-Sobolev
inequality.

Proof of (ii): We take (uε)ε>0 as in the proof of Proposition 1.1 -(i). We get

JΩ
γ,s(uε) =

(γH(Rk+,n−k)− γ
) WD,2

W
2

2?(s)

D,2

+O(1)

(ln(
1

ε2
)

) 2−s
n−s

,

As s < 2 and γ > γH(Rk+,n−k), then limε→0 J
Ω
γ,s(uε) = −∞, and µγ,s(Ω) = −∞.

Proof of (iii): We fix γ < γH(Ω). For any u ∈ D1,2(Ω)\{0}, we have that

JΩ
γ,s(u) =

∫
Ω
|∇u|2 − γ

∫
Ω

u2

|x|2 dx(∫
Ω
u2∗(s)

|x|s dx
) 2

2∗(s)
≥
(

1− γ

γH(Ω)

)
µ0,s(Ω),

and then µγ,s(Ω) > 0.

Proof of (iv): We assume that γH(Ω) < γ < γH(Rk+,n−k), it follows from Proposition 1.1-(iii) that γH(Ω) is
attained by some u0. We get that µγ,s(Ω) ≤ JΩ

γ,s(u0) < 0.

Proof of (v): We now assume that γH(Ω) = γ < γH(Rk+,n−k). Then µγ,s(Ω) ≥ 0. Here again, Proposition 1.1
yields an extremal u0 ∈ D1,2(Ω) for γH(Ω). We get JΩ

γ,s(u0) = 0, and then µγ,s(Ω) = 0.

Sketch of the proof of Theorem 1.1. The proof is very classical and follows the proof of Proposition 6.2
in [15]. We only sketch it to outline the specific tools we use here. Let (uk)k∈N ∈ D1,2(Ω)\{0} be a minimizing
sequence µγ,s(Ω) such that ‖uk‖22?(s),|x|−s = 1. Using Proposition 2.1, we get that (uk)k∈N is bounded in

D1,2(Ω). As a consequence, up to the extraction of a subsequence, there exists u ∈ D1,2(Ω) such that uk → u
weakly in D1,2(Ω) and strongly in L2(Ω) as k → +∞. We write θk := uk−u, so that θk → 0 weakly in D1,2(Ω)
and strongly in L2(Ω) as k → +∞. We apply the definition (3) of µγ,s(Ω) to u and Proposition 2.1 to θk for
ε0 > 0 small enough. It is then standard to get that θk → 0 strongly in D1,2(Ω), and then u 6≡ 0 is a minimizer
for µγ,s(Ω). As mentioned above, we refer to the proof of Proposition 6.2 in [15] for the method.

3. Regularity and approximate solutions

We say that u ∈ D1,2
loc,0(Ω) if there exists η ∈ C∞c (Rn) such that η ≡ 1 around 0 and ηu ∈ D1,2(Ω). We define

Uα(x) := |x|−α−k
∏k
i=1 xi. As one checks

−∆Uα −
γ

|x|2
Uα = 0 in Rk+,n−k ⇔ α ∈ {α−, α+}

where

α± =
n− 2

2
±
√
γH(Rk+,n−k)− γ.

Note that Uα− ∈ D1,2(Rk+,n−k)loc,0. It is the model for more general equations:
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Theorem 3.1 (Felli-Ferrero). (Optimal regularity) Let Ω be a domain of Rn with a boundary singularity of type
(k, n− k) at 0. We fix γ < γH(Rk+,n−k). We let f : Ω× R→ R such that

|f(x, v)| ≤ c|v|
(

1 +
|v|2∗(s)−2

|x|s

)
for all x ∈ Ω, v ∈ R.

Let u ∈ D1,2(Rk+,n−k)loc,0, u > 0 be a weak solution to

−∆u− γ +O(|x|τ )

|x|2
u = f(x, u) in D1,2(Ω)loc,0

for some τ > 0. Then there exists K > 0 such that

λα−u(λx)→ K

(
k∏
i=1

xi

)
|x|−α−−k in B1(0) ∩ Rk+,n−k,(25)

uniformly in C1 as λ→ 0.

This result is essentially in Felli-Ferrero [10]. Applying Theorem 1.1 of Felli-Fererro [10] to u ∈ D1,2(Ω), and
since u > 0, we get that

λ
n−2
2 −

√
(n−2)2

4 +µu(λx)→ |x|−
n−2
2 −

√
(n−2)2

4 +µψ

(
x

|x|

)
as λ→ 0+,

where µ is an eigenvalue of Lγ := −∆Sn−1 − γ on Sn−1 ∩ Rk+,n−k with Dirichlet boundary condition and
ψ : Sn−1 → R is a nontrivial associated eigenfunction. Since u > 0, then ψ ≥ 0, and then ψ > 0, so

µ = k(n+ k − 2)− γ is the first eigenfunction and there exists K > 0 such that ψ(x) = K
∏k
i=1 xi. This yields

(25).

Lemma 3.1. Assume the u ∈ D1,2(Rk+,n−k)loc,0 is a weak solution of

(26)

{
−∆u− γ+O(|x|τ )

|x|2 u = 0 in D1,2(Rk+,n−k)loc,0,

u = 0 on B2δ ∩ ∂Rk+,n−k,

for some τ > 0. Assume there exists c > 0 such that

(27) |u(x)| ≤ c|x|−α for x→ 0, x ∈ Rk+,n−k.

(1) Then, there exists c1 > 0 such that

|∇u(x)| ≤ c1|x|−α−1 as x→ 0, x ∈ Rk+,n−k.

(2) If limx→0 |x|αu(x) = 0, then limx→0|x|α+1|∇u(x)| = 0.

Proof. For any X ∈ Rk+,n−k, let (Xj)j ∈ Rk+,n−k be such that limXj = 0 as j → +∞. Take rj = |Xj | and

θj :=
Xj
|Xj | ,we have limj→+∞rj = 0. Define

ũj(X) := rαj u(rjX) for all j,X ∈
(
BR(0) ∩ Rk+,n−k) \{0}.

Since u is a solution of the equation (26), we get{
−∆ũj − γ+o(1)

|X|2 ũj = 0 in BR(0) ∩ Rk+,n−k,

ũj = 0 in BR(0) ∩ ∂Rk+,n−k.

Here, o(1) → 0 in C0
loc(Rk+,n−k\{0}). Since limj→+∞Xj = 0 and by (27), we get that |ũj(X)| ≤ c|X|−α for

all X ∈ BR(0) ∩ Rk+,n−k and all j ∈ N. It follows from elliptic theory, that there exists ũ ∈ C2(Rk+,n−k\{0})
such that ũj → ũ in C1

loc(Rk+,n−k\{0}). Take θ := limj→+∞ θj with |θ| = 1, we have that

lim
j→+∞

|xj |α+1∂mu(xj) = ∂mũ(θ) for all m = 1, ..., n.(28)

We assume that there exists (xj)j ∈ Rk+,n−k such that xj → 0 and |xj |α+1|∇u(xj)| → +∞ as j → +∞. Take
θj =

xj
|xj | and we have limj→+∞ |∇ũj(θj)| = +∞ contradiction with (28). The case when limx→0 |x|αu(x) = 0

goes similarly. �
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4. Symmetry of the extremals for µγ,s(Rk+,n−k)

In this section we present the symmetry of the extremals for µγ,s(Rk+,n−k). The proof of the symmetry
carried out by Ghoussoub-Robert [16] in half space {x1 > 0}. For γ < γH(Rk+,n−k), s ∈ [0, 2), we consider the
problem:

(29)


−∆u− γ

|x|2u = u2?(s)−1

|x|s in Rk+,n−k,

u ≥ 0 in Rk+,n−k,
u = 0 on ∂Rk+,n−k.

Theorem 4.1. For γ ≥ 0 and if u it is solution of the equation (29) in C2(Rk+,n−k)∩C(Rk+,n−k\{0}) for all
k ∈ {1, ..., n}, then u ◦ σ = u for all isometries of Rn such that σ(Rk+,n−k) = Rk+,n−k. In particular:

• There exists w ∈ C∞(]0,∞[k×Rn−k) such that for all x1, ..., xk > 0 and for any x′ ∈ Rn−k, we get that
u(x1, ..., xk, x

′) = w(x1, ..., xk, |x′|).
• u is a symmetric function of k variables: for all permutation s of the set of indices {1, ..., k}, we have
u(x1, ..., xk, xk+1, ..., xn) = u(xs(1), ..., xs(k), xk+1, ..., xn).

We prove the theorem. We proceed as in Berestycki-Nirenberg [4] (see Ghoussoub-Robert[14] and Fraenkel[11]).
We write for convenience p := 2?(s)− 1. We define

F := B 1
2

(
1

2
−→e1

)
∩ Rk+,n−k and v(x) := |x|2−nu

(
−−→e1 +

x

|x|2

)
for all x ∈ F\{0},

with v(0) = 0 and −→e1 := (1, 0, ..., 0). Clearly, this is well defined. We have ∂F = F1 ∪ F2 where

F1 := ∂B 1
2 ( 1

2
−→e1) ∩ Rk+,n−k and F2 := ∪kj=2

(
B 1

2
(
1

2
−→e1) ∩ {xj = 0}

)
.

If x ∈ F1, then |x|2 = x1, we have v(x) = 0 or if x ∈ F2, then v(x) = 0. Consequently, v(x) = 0 for all
x ∈ ∂F\{0}. We have that −→e1 ∈ ∂F . Since |x− |x|2−→e1 | = |x||x−−→e1 |, we have that

−∆v =
γ

|x|2|x−−→e1 |2
v +

vp

|x|s|x−−→e1 |s
in F.(30)

It follows from the assumptions on u that v ∈ C2(F ) ∩ C(F\{0,−→e1}).
We claim that:

v(x′′,−xn) = v(x′′, xn) for all x ∈ F,(31)

where x′′ := (x1, ..., xn−1). Theorem 4.1 will be mostly a consequence of this claim.

Proof of (31). For λ ∈ R we define

Tλ := {x ∈ Rn;xn = λ} ; xλ := (x′′, 2λ− xn).

Z(λ) := {x ∈ F ;xn < λ} ; Y (λ) := {x ∈ Rn;xλ ∈ Z(λ)}.
Let −a := infx∈F xn, so that Z(λ) is empty if and only if λ ≤ −a. Since

|xλ|2 − |x|2 = 4λ(λ− xn),(32)

we obtain that Y (λ) ⊂ F if λ ≤ 0. We adapt the moving-plane method. Take −a < λ < 0 and define

gλ(x) := v(xλ)− v(x) for all x ∈ Z(λ).

We claim that

v(xλ) > v(x) for λ ∈ (−a, 0) and x ∈ Z(λ).(33)

We prove the claim (33). Since, λ < 0, (32) yields {x ∈ Z(λ)⇒ xλ ∈ F}. Since

|xλ − |xλ|2−→e1 |2 − |x− |x|2−→e1 |2 = (|xλ|2 − |x|2)
[
1 + |xλ|2 + |x|2 − 2x1

]
,

for all x ∈ Rn, λ < 0 and by (32), we obtain that

|xλ − |xλ|2−→e1 |2 − |x− |x|2−→e1 |2 < 0 in Z(λ).(34)
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We define

cλ(x) :=

{
v(xλ)p−v(x)p

v(xλ)−v(x) if v(xλ) 6= v(x).

pvp−1(x) if v(xλ) = v(x).

The equation (30) of v, γ ≥ 0 and (34) yield

−∆gλ = γ

[
v(x)

|x− |x|2−→e1 |2
− v(xλ)

|xλ − |xλ|2−→e1 |2

]
+

[
v(x)p

|x− |x|2−→e1 |s
− v(xλ)p

|xλ − |xλ|2−→e1 |s

]
< −γ gλ

|x− |x|2−→e1 |2
− cλ(x)

gλ
|x− |x|2−→e1 |s

,

then,

−∆gλ + dλgλ < 0 in Z(λ),(35)

where dλ(x) := γ|x − |x|2−→e1 |−2 + cλ(x)|x − |x|2−→e1 |−s. We have Z(λ) = F ∩ {x ∈ Rn, xn < λ}, this gives that
∂Z(λ) ⊂ ∂F ∪ Tλ. Therefore,

gλ(x) ≥ 0 if x ∈ ∂Z(λ),(36)

with the strict inequality when x ∈ ∂Z(λ)\Tλ and xλ ∈ F and with equality when x ∈ ∂Z(λ) ∩ Tλ. Again,
gλ(x) = 0 if x, xλ in ∂F\Tλ.

Step 1: We prove (33) for λ + a > 0 close to 0. Since x ∈ Z(λ), we have x ∈ F and xn < λ. But λ < 0 thus
x /∈ {0,−→e1}. On the other hand , we have 0 < |x| < 1 and

|dλ(x)| ≤ γ

|x|2||x| − 1|2
+

∣∣∣∣ cλ(x)

|x|s||x| − 1|s

∣∣∣∣ .(37)

But v ∈ C(F\{0,−→e1}), then is a c0 > 0 such that 0 ≤ v(x) ≤ c0 sur F\{0,−→e1}. The definition of cλ(x) and (37),
then there exists c1 > 0 such that |dλ(x)| ≤ c1 for all x ∈ Z(λ) and λ < 0. Next, gλ verifies (35). For any δ > 0,
if λ ∈ (−a, 0) is close to −a, then |Z(λ)| ≤ δ. It follows from Theorem 4.2 that for λ close to −a, we have

gλ(x) ≥ 0 for x ∈ Z(λ).

We now prove (33) for x ∈ Z(λ). Here again, for any δ > 0, then |Z(λ)| ≤ δ for λ ∈ (−a, 0) close to −a.
Moreover, Z(λ) is bounded and gλ verifies (35). The Maximum principle (Theorem 4.2 below) yields gλ > 0
in Z(λ) or gλ ≡ 0. We assume by contradiction that gλ ≡ 0. We fix x ∈ ∂F ∩ {x ∈ Rn, xn < λ} such that
v(x) = 0. The definition of gλ yields v(xλ) = 0 and in addition xλ ∈ ∂F . Equation (32) (4λ(λ−xn) = 0) yields
λ = 0: contradiction with −a < λ < 0. This yields (33) and Step 1 is proved.

We let (−a, β) be the largest open interval in (−∞, 0) such that

gλ > 0 in Z(λ) for all λ ∈ (−a, β).

Step 2: We claim that β = 0.

We prove the claim. We assume β < 0 and we argue by contradiction. Since gλ(x) for all x ∈ Z(λ) and all
λ ∈ (−a, β), letting λ → β, we get that gβ ≥ 0 for x ∈ Z(β). As in the proof of Step 1, the case gβ ≡ 0 is
discarded and the maximum principle yields gβ(x) > 0 for all x ∈ Z(β).

We fix δ > 0 that will be precised later. We let D ⊂ Z(β) be a smooth domain such that |Z(β)\D| < δ
2 . Thus

gβ(x) > 0 when x ∈ D. For 0 < ε ≤ ε0, we define Gε := Z(β + ε)\D. We let ε0 > 0 small enough such that, for
any ε ∈ (0, ε0), we have that |Gε| < δ, β + ε < 0, and gβ+ε > 0 in D. Equation (35) yields,

−∆gβ+ε + dβ+εgβ+ε < 0 in Gε.

With (36) and gβ > 0 in D, we get that gβ+ε ≥ 0 on ∂Gε. Then, up to taking δ > 0 small enough, by Theorem

4.2 below, we get gβ+ε ≥ 0 for x ∈ Gε. As above, the strong maximum principle yields gβ+ε > 0 for x ∈ Gε.
Consequently, gβ+ε > 0 in Z(β + ε). This contradicts the maximality of β. Then β = 0 and gλ(x) > 0 for
λ ∈ (−a, 0) and x ∈ Z(λ). This proves (33).

Step 3: Letting λ → 0 in (33), we get that v(x′′,−xn) ≥ v(x′′, xn) for all x ∈ F such that xn ≤ 0. By
symmetry, we get the reverse inequality. This proves (31).
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Proof of the first part of Theorem 4.1: Permuting xn and any xj , j ∈ {k + 1, ..., n}, it follows from (31)
that v is symmetric with respect the hyperplane {xj = 0}. Coming back to the definition of u, we get the
desired symmetry.

Proof of the second part of Theorem 4.1. As above, this will be a consequence ofa claim. We claim that

(38) u(x1, x2, x
′) = u(x2, x1, x

′) in Rk+,n−k.

Proof of (38). We define E′+k := {x ∈ Rk+,n−k ; x1 − x2 > 0} := D′1 ∩D′2 ∩
(
∩ki=1D

′
i

)
where

D′1 := {x1 + x2 > 0} , D′2 := {x1 − x2 > 0} et D′i := {xi > 0}.

We consider the isometry σ(x) := (x1+x2√
2
, x1−x2√

2
, x′) for x := (x1, x2, x

′) ∈ R × R × (Rk−2
+ × Rn−k). We have

that σ(E′+k) = Rk+,n−k. We define v(x) := u ◦ σ(x) for all x ∈ E′+k . Equation (29) of u, the isometry σ and
the definition of v yield

−∆v − γ

|x|2
v =

vp

|x|s
in E′+k .(39)

For any x ∈ Rn\{0}, we define the inversion i(x) = −−→e1 + x
|x|2 . We note that: i−1(D′i) = D′i, and then

x ∈ i−1(D′1)⇔ x ∈ B 1√
2

(
1

2
(−→e1 +−→e 2)

)
; x ∈ i−1(D′2)⇔ x ∈ B 1√

2

(
1

2
(−→e1 −−→e 2)

)
.

We define v̂(x) := |x|2−nv(i(x)) for all x ∈ H := i−1(E′+k), where v(0) = 0 and 0, −→e1 ∈ ∂H. Since v verifies

(39) and by the definition of v̂, we obtain that

−∆v̂ =
γ

|x|2|x−−→e1 |2
v̂ +

v̂p

|x|s|x−−→e1 |s
.

We denote that v̂ ∈ C2(H) ∩ C(H\{0,−→e1}). Arguing as in the proof of (31), we get that v̂(x1, x2, x
′) =

v̂(x1,−x2, x
′) for all x ∈ H. Coming back to v, and then u, we get (38). As noted above, this yields the second

part of Theorem 4.1.

Theorem 4.2 (Maximum Principle for small domains). Let Ω ⊂ Rn be open domain and a ∈ L∞(Ω) such that
‖a‖∞ ≤ M . Then there exists δ(M,n) > 0 such that we have the following: if |Ω| < δ and u ∈ H1(Ω) satisfies
−∆u+ au ≥ 0 weakly and u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

Proof. This result is cited in Berestycki-Nirenberg [4] and Fraenkel [11]. We give a short independent proof.
Since −∆u+ au ≥ 0 weakly, we have that∫

Ω

(〈∇u,∇ϕ〉+ auϕ) dx ≥ 0 for all ϕ ∈ H1
0 (Ω), ϕ ≥ 0.

We take ϕ := u− := max{0,−u} ∈ H1
0 (Ω). Since ∇u− = −1u<0∇u a.e, we get∫

Ω

(
|∇u−|2 + au2

−
)
dx ≤ 0.

Since u2
− ∈ L

2?

2 (Ω), Hölder’s inequality yields∫
Ω

|∇u−|2dx ≤ ‖a‖∞mes(Ω)
2
n ‖u−‖22? ≤ ‖a‖∞δ

2
n ‖u−‖22? .(40)

On the other hand, it follows from Sobolev’s inequality that µ0,0(Rn)‖u−‖22? ≤ ‖∇u−‖22. With (40) and

δ :=
[
µ0,0(Rn)−1‖a‖∞2

]−n2 , we obtain ‖u−‖22 = 0. Therefore u ≥ 0 in Ω. �
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5. Existence of extremals: the case of small values of γ

We estimates the functional JΩ
γ,s at some natural test-functions. We let W ∈ D1,2(Rk+,n−k) be a positive

extremal for µγ,s(Rk+,n−k). In other words,

JRk+,n−k
γ,s (W ) =

∫
Rk+,n−k

(
|∇W |2 − γ

|x|2W
2
)
dx(∫

Rk+,n−k
|W |2?(s)
|x|s

) 2
2?(s)

= µγ,s(Rk+,n−k).

Therefore, there exists ξ > 0 such that

(41)


−∆W − γ

|x|2W = ξW
2?(s)−1

|x|s in Rk+,n−k,

W > 0 in Rk+,n−k,
W = 0 on ∂Rk+,n−k.

They exist under the assumption that s > 0 or {s = 0, γ > 0 and n ≥ 4} (see Ghoussoub-Robert [16]). By
Theorem 3.1, there exists c > 0 such that

W (x) ≤ c|x|−α− as x→ 0.(42)

It follows from Lemma 3.1, that there exists c > 0 such that

(43) |∇W (x)| ≤ c|x|−1−α− as x→ 0.

Define now the Kelvin transform W (x) := |x|2−nW ( x
|x|2 ), since W satisfies (41), then W also satisfies (41). By

(42), (43) and the definition of W we get,

W (x) ≤ c|x|−α+ and |∇W (x)| ≤ c|x|−1−α+ as |x| → +∞.(44)

For r > 0, we define B̃r := (−r, r)k × Bn−kr (0), where Bn−kr (0) is the ball of center 0 and radius r in Rn−k.
We take the chart (φ,U) of Definition 1 so that

φ(B̃3δ ∩ Rk+,n−k) = φ(B̃3δ) ∩ Ω and φ(B̃3δ ∩ ∂Rk+,n−k) = φ(B̃3δ) ∩ ∂Ω,

where δ > 0. We write the chart φ = (φ1, φ2, ..., φn) and the pull-back metric gij(x) := (φ∗Eucl(x))ij =
(∂iφ(x), ∂jφ(x)) for all i, j = 1, ..., n. The Taylor formula of gij(x) arround 0 writes

(45) gij(x) = δij +Hij +O(|x|2) with Hij :=

n∑
l=1

[∂ilφ
j(0) + ∂jlφ

i(0)]xl.

As x → 0, the inverse metric g−1 = (gij) expands as g−1 = Idn − (Hij)1≤i,j≤n + O(|x|2), and the volume
element is

(46) |Jac(φ)(x)| = 1 +

n∑
i,j=1

∂jiφ
j(0)xi +O(|x|2),

as x→ 0. For any ε > 0, we define

(47) Wε(x) :=
(
ηε−

n−2
2 W

(
ε−1·

))
◦ φ−1(x) for all x ∈ φ(B̃3δ) ∩ Ω and 0 elsewhere,

where η ∈ C∞c (Rn) is such that η(x) = 1 for x ∈ B̃δ(0) and η(x) = 0 for x /∈ B̃2δ(0). Theorem 1.2 will be the
consequence of the following estimates:

Proposition 5.1. Let 0 ≤ γ < γH(Rk+,n−k) = (n+2k−2)2

4 , and assume that there are extremals for µγ,s(Rk+,n−k).

Then there exists cβγ,s positives constants where β = 1, ..., 3 and for all k ∈ {1, ..., n} and m = 1, ..., k such that:

(1) For γ < γH(Rk+,n−k)− 1
4 , we have that

JΩ
γ,s(Wε) = µγ,s(Rk+,n−k) (1 +GHγ,s(Ω)ε+ o(ε)) .(48)
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(2) For γ = γH(Rk+,n−k)− 1
4 , we have that

JΩ
γ,s(Wε) = µγ,s(Rk+,n−k)

(
1 +GHγ,s(Ω)ε ln

(
1

ε

)
+ o

(
ε ln

(
1

ε

)))
.(49)

with GHγ,s(Ω) as in (7).

Proof. Take B̃δ,+k := B̃δ ∩ Rk+,n−k. For any family (aε)ε>0 ∈ R, we define

Θγ(aε) :=

{
o(aε) if γ < γH(Rk+,n−k)− 1

4 ,
O(aε) if γ = γH(Rk+,n−k)− 1

4 .
as ε→ 0.

In order to get lighter computations, we take the following conventions: the integral symbol
∫

means
∫
B̃
ε−1δ,+k

,

and Aαε := B̃ε−1δ ∩ {xα = 0}.
Step 1: We claim that∫

Ω

|∇Wε|2dx =

∫
Rk+,n−k

|∇W |2dx+ ε
∑

1≤i≤k;j≥1

∂jiφ
j(0)

∫
|∇W |2xidx

−2ε

k∑
m=1

(A1,m +A2,m + ∂mmφ
m(0)

∫
∂mW∂mWxmdx

+
∑

i≥1;i 6=m

[∂miφ
i(0)

∫
∂iW∂mWxidx+ ∂imφ

i(0)

∫
∂iW∂iWxmdx]

+

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

[∂qpφ
m(0)

∫
∂mW∂qWxpdx+ ∂pqφ

m(0)

∫
∂mW∂pWxqdx]) + Θγ(ε) as ε→ 0

where or m = 1, ..., k, we define x0,m := (x1, ..., 0
m, ..., xk, xk+1, ..., xn) and

A1,m :=

k∑
i=1;i 6=m

∂iiφ
m(0)

∫
B̃
ε−1δ,+k

∂mWxi∂iWdx.

A2,m :=

n∑
i=k+1

∂iiφ
m(0)

∫
B̃
ε−1δ,+k

∂mWxi∂iWdx.

B1,m :=

k∑
i≥1;i6=m

∂iiφ
m(0)

∫
B̃
ε−1δ,+k

|W |2∗(σ)

|x|σ
xm
|x|2

x2
i dx.

B2,m :=

n∑
i=k+1

∂iiφ
m(0)

∫
B̃
ε−1δ,+k

|W |2∗(σ)

|x|σ
xm
|x|2

x2
i dx.

Note that

(50)

{
α+ − α− > 1⇔ γ < γH(Rk+,n−k)− 1

4
α+ − α− = 1⇔ γ = γH(Rk+,n−k)− 1

4

}
Proof of Step 1: By (43) and (44), there exists c1 > 0 such that

|∇Wε(x)| ≤ c1εα+−n−2
2 |x|−1−α+ for any x ∈ Ω.(51)

Therefore, ∫
φ((B̃3δ\B̃δ)∩Rk+,n−k)

|∇Wε|2dx ≤ c21ε
2α+−n+2

∫
φ((B̃3δ\B̃δ)∩Rk+,n−k)

|x|−2−2α+dx

since 2α+ − n+ 2 = α+ − α−, we get that∫
φ((B̃3δ\B̃δ)∩Rk+,n−k)

|∇Wε|2dx = Θγ(ε) as ε→ 0.
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Then, ∫
Ω

|∇Wε|2dx =

∫
B̃
δ,+k

|∇(Wε ◦ φ)|2φ∗Eucl|Jac(φ)|dx+ Θγ(ε) as ε→ 0.

It follows from (45) and for any θ ∈ (0, 1] that∫
Ω

|∇Wε|2dx =

∫
|∇(Wε ◦ φ)|2Eucl|Jac(φ)|dx−

∑
i,j≥1

∫
Hij∂i(Wε ◦ φ)∂j(Wε ◦ φ)|Jac(φ)|dx

+O

(∫
B̃
δ,+k

|x|1+θ|∇(Wε ◦ φ)|2dx

)
+ Θγ(ε) as ε→ 0.

Using (45), we get
∑
i,j≥1Hij = 2

∑
i,j,l≥1 ∂ilφ

j(0)xl, and then∫
Ω

|∇Wε|2dx =

∫
B̃
δ,+k

|∇(Wε ◦ φ)|2Eucl|Jac(φ)|dx

−2
∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
δ,+k

∂l(Wε ◦ φ)∂i(Wε ◦ φ)xj |Jac(φ)|dx+O

(∫
B̃
δ,+k

|x|1+θ|∇(Wε ◦ φ)|2 dx

)
+ Θγ(ε)(52)

as ε→ 0. The two equations (46), (47) and the change of variable x := εy yield as ε→ 0,∫
B̃
ε−1δ,+k

|∇(Wε ◦ φ)|2Eucl|Jac(φ)|dx =

∫
B̃
ε−1δ,+k

|∇W |2dx+ ε
∑

1≤i≤k;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|∇W |2xidx

+ε
∑

k+1≤i≤n;j≥1

∂jiφ
j(0)

∫
|∇W |2xidx+O

(∫
|x|2|∇(Wε ◦ φ)|2dx

)
,(53)

and ∫
B̃
δ,+k

∂l(Wε ◦ φ)∂i(Wε ◦ φ)xj |Jac(φ)|dx = ε

∫
∂lW∂iWxjdx+O

(∫
|x|2|∇(Wε ◦ φ)|2dx

)
.(54)

Plugging together (52), (53), (54) yields∫
Ω

|∇Wε|2dx =

∫
|∇W |2dx+ ε

∑
1≤i≤k;j≥1

∂jiφ
j(0)

∫
|∇W |2xidx

+ε
∑

k+1≤i≤n;j≥1

∂jiφ
j(0)

∫
|∇W |2xidx− 2ε

∑
i,j,l≥1

∂ijφ
l(0)

∫
∂lW∂iWxjdx

+O(

∫
|x|1+θ|∇(Wε ◦ φ)|2dx) + Θγ(ε) as ε→ 0.

• If γ = γH(Rk+,n−k)− 1
4 , we choose θ ∈ (0, 1).

• If γ < γH(Rk+,n−k)− 1
4 , we choose 0 < θ < α+ − α− − 1 (see (50)).

Therefore, it follows from (51) that we have as ε→ 0 that,∫
B̃
δ,+k

|x|1+θ|∇(Wε ◦ φ)|2dx = Θγ(ε).(55)

Since γ ≥ 0, we use the symmetry of W (see Theorem 4.1). For i ≥ k + 1, W and Rk+,n−k are invariant by
x→ (x1, ...,−xi, ..., xn), then a change of variables yields

(56)

∫
B̃
ε−1δ,+k

|∇W |2xi dx = −
∫
B̃
ε−1δ,+k

|∇W |2xidx = 0.
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This equality and (55) yield∫
Ω

|∇Wε|2dx =

∫
B̃
ε−1δ,+k

|∇W |2dx+ ε
∑

1≤i≤k;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|∇W |2xidx

−2ε
∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
ε−1δ,+k

∂lW∂iWxjdx+ Θγ(ε) as ε→ 0.(57)

The inequation (44) and −2− 2α+ + n = −(α+ − α−) yields,∣∣∣∣∣
∫
Rk+,n−k\B̃

ε−1δ,+k

|∇W |2 dx

∣∣∣∣∣ ≤ c2
∫
Rk+,n−k\B̃

δ,+k

|x|−2−2α+dx ≤ c1εα+−α− ,

therefore, ∫
B̃
ε−1δ,+k

|∇W |2dx =

∫
Rk+,n−k

|∇W |2dx+ Θγ(ε) as ε→ 0.(58)

Using again the symmetry of W as in (56), we get∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
ε−1δ,+k

∂lW∂iWxjdx

=

k∑
m=1

(A1,m +A2,m + ∂mmφ
m(0)

∫
B̃
ε−1δ,+k

∂mW∂mWxmdx

+
∑

i≥1;i 6=m

[
∂miφ

i(0)

∫
∂iW∂mWxidx+ ∂imφ

i(0)

∫
∂iW∂iWxm dx

]

+

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

[
∂qpφ

m(0)

∫
∂mW∂qWxpdx+ ∂pqφ

m(0)

∫
∂mW∂pWxqdx

]
).

Combining (57), (58) and the last equation, we get Step 1. �

Step 2: We fix σ ∈ [0, 2]. We claim that∫
Ω

|Wε|2
?(σ)

|x|σ
dx =

∫
Rk+,n−k

|W |2?(σ)

|x|σ
dx+ ε

∑
1≤i≤k;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xidx

−εσ
2

k∑
m=1

(
B1,m +B2,m + ∂mmφ

m(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xm
|x|2

x2
mdx

+2
∑

i≥1;i 6=m

∂miφ
i(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xi
|x|2

xmxi dx

+2

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xm
|x|2

xqxpdx

+ Θγ(ε).

Proof of Step 2: Equations (43) and (44) yield

|Wε(x)| ≤ cεα+−n−2
2 |x|−α+ for all ε > 0 and x ∈ Ω,(59)

this implies, ∣∣∣∣∣
∫
φ(B̃3δ\B̃δ)∩Ω

|Wε|2
?(σ)

|x|σ
dx

∣∣∣∣∣ ≤ c2
?(σ)ε2

?(σ)(α+−n−2
2 )

∫
φ(B̃3δ\B̃δ)∩Ω

|x|−α+2?(σ)−σdx
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and then, since 2?(σ) ≥ 2 and α+ + α− = n− 2, we get that∫
φ(B̃3δ\B̃δ)∩Ω

|Wε|2
?(σ)

|x|σ
dx = Θγ(ε).

Therefore, ∫
Ω

|Wε|2
?(σ)

|x|σ
dx =

∫
B̃
δ,+k

|Wε ◦ φ|2
?(σ)

|φ(x)|σ
|Jac(φ)|dx+ Θγ(ε) as ε→ 0.(60)

We choose θ ∈ (0, 1) as follows.

• If γ < γH(Rk+,n−k)− 1
4 or {γ = γH(Rk+,n−k)− 1

4 and σ < 2} we choose θ ∈ (0, (α+−α−) 2?(σ)
2 −1)∩(0, 1).

• If γ = γH(Rk+,n−k)− 1
4 and σ = 2, we choose 0 < θ < 1.

This choice makes sense due to (50). Since dφ0 = Id, a Taylor expansion yields

(61) |φ(x)|−σ = |x|−σ
1− σ

2|x|2
∑
i,j,l≥1

∂ijφ
l(0)xlxixj +O(|x|1+θ)

 as ε→ 0.

Inequality (59) yields, ∫
B̃
δ,+k

|Wε ◦ φ|2
?(σ)|x|1+θ

|φ(x)|σ
dx = Θγ(ε).

The estimates (60) , (61) and the last equation get,∫
Ω

|Wε|2
?(σ)

|x|σ
dx =

∫
B̃
δ,+k

|Wε ◦ φ|2
?(σ)

|x|σ
|Jac(φ)|dx

−σ
2

∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
δ,+k

|Wε ◦ φ|2
?(σ)

|x|σ
xl
|x|2

xixj |Jac(φ)| dx+ Θγ(ε).(62)

In view of (46), (47) and the change of variable x := εy yield as ε→ 0,∫
B̃
δ,+k

|Wε|2
?(σ)

|x|σ
|Jac(φ)|dx =

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
dx+ ε

∑
1≤i≤k;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xidx

+ε
∑

k+1≤i≤n;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xidx+ Θγ(ε).(63)

And,

(64)

∫
B̃
δ,+k

|Wε|2
?(σ)

|x|σ
xl
|x|2

xixj |Jac(φ)|dx = ε

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xl
|x|2

xixjdx+ Θγ(ε).

Plugging together (62), (63), (64) yields,∫
Ω

|Wε|2
?(σ)

|x|σ
dx =

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
dx+ ε

∑
1≤i≤k;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xidx

+ε
∑

k+1≤i≤n;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xidx− ε

σ

2

∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xl
|x|2

xixjdx+ Θγ(ε).

By equation (44), we have ∫
Rk+,n−k\B̃

ε−1δ,+k

|W |2?(σ)

|x|σ
dx = Θγ(ε).
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Since γ ≥ 0, using the symmetry of W as in (56) and the last equation,∫
Ω

|Wε|2
?(σ)

|x|σ
dx =

∫
Rk+,n−k

|W |2?(σ)

|x|σ
dx+ ε

∑
1≤i≤k;j≥1

∂jiφ
j(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xidx

−εσ
2

∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xl
|x|2

xixjdx+ Θγ(ε).(65)

We use again the symmetry of W ,∑
i,j,l≥1

∂ijφ
l(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xl
|x|2

xixjdx =

k∑
m=1

(B1,m +B2,m

+∂mmφ
m(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xm
|x|2

x2
mdx

+
∑

i≥1;i 6=m

[∂miφ
i(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xi
|x|2

xmxidx+ ∂imφ
i(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xi
|x|2

xixmdx]

+

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

[∂qpφ
m(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xm
|x|2

xqxpdx+ ∂pqφ
m(0)

∫
B̃
ε−1δ,+k

|W |2?(σ)

|x|σ
xm
|x|2

xpxqdx]).

Replace the last equation in (65), we get Step 2. �

Step 3: We now prove (48) and (49). We fix m ∈ {1, ..., k}. For: i = 1, ..., n; l = k + 1, ..., n; p = 1, ..., k and
q = p+ 1, ..., k such that i, p, q 6= m, we define

Mp,m :=

∫
B̃
ε−1δ,+k

∂mWxp∂pWdx and Ml,m :=

∫
B̃
ε−1δ,+k

∂mWxl∂lWdx.

Ki,m :=

∫
B̃
ε−1δ,+k

∂iW∂mWxidx and Ji,m :=

∫
B̃
ε−1δ,+k

∂iW∂iWxmdx.

Lm,p,q :=

∫
B̃
ε−1δ,+k

∂mW∂pWxqdx and Nm,p,q :=

∫
B̃
ε−1δ,+k

∂mW∂qWxpdx.

Im :=

∫
B̃
ε−1δ,+k

∂mW∂mWxmdx.

Lemma 5.1. Here ξ > 0 and s ∈ [0, 2], we have as ε→ 0 that:

2Im =

∫
B̃
ε−1δ,+k

x2
m

|x|2
xm

(
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

)
dx+ ξ

(
1− 2

2?(s)

)∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx+ Θγ(1).

2Mp,m =

∫
B̃ε−1δ,++

x2
p

|x|2
xm

(
ξ

s

2?(s)

|W |2?(s)

|x|s
+ γ

W 2

|x|2

)
dx−

∫
B̃ε−1δ∩{xm=0}

x2
p|∂mW |2

2
dσ + Θγ(1).

2Ml,m =

∫
B̃ε−1δ,++

x2
l

|x|2
xm

(
ξ

s

2?(s)

|W |2?(s)

|x|s
+ γ

W 2

|x|2

)
dx−

∫
B̃ε−1δ∩{xm=0}

x2
l |∂mW |2

2
dσ + Θγ(1).

Ki,m + Ji,m =

∫
B̃
ε−1δ,+k

x2
i

|x|2
xm

(
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

)
dx+

(
1

2
− 1

2?(s)

)
ξ

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx+ Θγ(1).

Lm,p,q +Nm,p,q =

∫
B̃
ε−1δ,+k

xqxp
|x|2

xm

(
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

)
dx− 1

2

∫
B̃ε−1δ∩{xm=0}

xqxp(∂mW )2dx+ Θγ(1).
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Proof of Lemma 5.1. We first state two preliminary remarks. First

(66)

∫
∂B̃ε−1δ∩Rk+,n−k

(
W 2 + |x|W |∇W |+ |x|2|∇W |2dx

)
= Θγ(1).

Another remark we will use often is that

(67) ∂iW (x) = 0 if xj = 0, j 6= i, j ≤ k
We want to calculate the value of

Im =

∫
B̃
ε−1δ,+k

∂mW∂mWxmdx =

∫
B̃
ε−1δ,+k

(∂mW )2∂m(
x2
m

2
)dx.

For any domain D, we define ν as the outer normal vector at a boundary point of D when this is makes sense.
For any j = 1, ..., n, νj denote the jth coordinate. In the sequel, the normal vector will be defined except on
lower dimensional portions of the boundary and the computations will be valid. On {xα = 0} = ∂{xα > 0},
the outer normal vector is (0, ...,−1, ..., 0) = (να,i)i=1,...,n where νi,j := −δij for i = 1, ..., k and j ≥ 1. Since
W (x0,m) = 0, (66) and integrations by parts yield

Im = −
∫
B̃
ε−1δ,+k

x2
m∂mW∂mmWdx+

∫
∂(B̃ε−1δ,+k)

x2
m(∂mW )2

2
νmdx

= −
∫
B̃
ε−1δ,+k

x2
m∂mW [∆W −

∑
i≥1;i6=m

∂iiW ]dx+O

(∫
∂B̃ε−1δ∩Rk+,n−k

|x|2|∇W |2dx

)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx+

∑
i≥1;i 6=m

∫
B̃
ε−1δ,+k

x2
m∂mW∂iiWdx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx−

∑
i≥1;i 6=m

∫
B̃
ε−1δ,+k

x2
m∂imW∂iWdx

+
∑

i≥1;i 6=m

∫
∂(B̃ε−1δ,+k)

x2
m∂mW∂iWνidx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx−

∑
i≥1;i 6=m

∫
B̃
ε−1δ,+k

x2
m∂m(

(∂iW )2

2
)dx

+
∑

i≥1;i 6=m

k∑
α=1

∫
Bε−1δ∩{xα=0}

x2
m∂mW∂iWνα,idσ + Θγ(1).

Using again the integrations by parts and (66), we get

Im =

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx−

∑
i≥1;i 6=m

∫
B̃
ε−1δ,+k

x2
m∂m(

(∂iW )2

2
)dx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx+

∑
i≥1;i 6=m

∫
B̃
ε−1δ,+k

xm(∂iW )2dx

−
∑

i≥1;i 6=m

k∑
α=1

∫
B̃ε−1δ∩{xα=0}

x2
m

(∂iW )2

2
να,mdx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx+

∫
B̃
ε−1δ,+k

xm(|∇W |2 − (∂mW )2)dx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx+

∫
B̃
ε−1δ,+k

xm|∇W |2dx−
∫
B̃
ε−1δ,+k

xm(∂mW )2dx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m∂mW (−∆W )dx+

∫
B̃
ε−1δ,+k

xm|∇W |2dx− Im + Θγ(1).
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With equation (41), we then get

(68) 2Im =

∫
B̃
ε−1δ,+k

x2
m∂mW

(
ξ
W 2?(s)−1

|x|s
+ γ

W

|x|2

)
dx+

∫
B̃
ε−1δ,+k

x2
m|∇W |2dx+ Θγ(1).

Integrating by parts, using that W vanishes on ∂Rk+,n−k, we get that∫
B̃
ε−1δ,+k

x2
m∂mW

W 2?(σ)−1

|x|σ
dx =

∫
B̃
ε−1δ,+k

x2
m|x|−σ∂m

(
W 2?(σ)

2?(σ)

)
dx

= −
∫
B̃
ε−1δ,+k

∂m(x2
m|x|−σ)

W 2?(σ)

2?(σ)
dx+

∫
∂(B̃ε−1δ,+k)

x2
m|x|−σ

W 2?(σ)

2?(σ)
νmdx

= − 2

2?(σ)

∫
B̃
ε−1δ,+k

xm
W 2?(σ)

|x|σ
dx+

σ

2?(σ)

∫
B̃
ε−1δ,+k

x2
mxm

W 2?(σ)

|x|σ+2
dx+ Θγ(1)(69)

as ε→ 0. We claim that

(70)

∫
B̃
ε−1δ,+k

xm|∇W |2dx = γ

∫
B̃
ε−1δ,+k

xm
W 2

|x|2
dx+ ξ

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx+ Θγ(1).

Proof of (70). We multiply equation (41) by xmW and integrate by parts to get∫
B̃
ε−1δ,+k

xm|∇W |2dx = −
∫
∇(xm)W∇Wdx+

∫
∂

xmW∂νWdx+ γ

∫
xm

W 2

|x|2
dx+ ξ

∫
xm

W 2?(s)

|x|s
dx

= −
∫
∇(xm)∇

(
W 2

2

)
dx+

∫
∂

xmW∂νWdx+ γ

∫
xm

W 2

|x|2
dx+ ξ

∫
xm

W 2?(s)

|x|s
dx

= −
∫
∂

W 2

2
∂νxmdx+

∫
∂

xmW∂νWdx+ γ

∫
xm

W 2

|x|2
dx+ ξ

∫
xm

W 2?(s)

|x|s
dx(71)

where all integrals are taken on B̃ε−1δ,+k or ∂B̃ε−1δ,+k . Since W vanishes on ∂Rk+,n−k and by (66), we have∫
∂B̃

ε−1δ,+k

xmW∂νWdx =

∫
∂B̃ε−1δ∩Rk+,n−k

xmW∂νWdx = Θγ(1).(72)

And, ∫
∂B̃

ε−1δ,+k

W 2

2
∂νxmdx =

∫
∂B̃ε−1δ∩Rk+,n−k

W 2

2
∂νxm dx = Θγ(1).(73)

Then (71), (72) and (73) yields (70). �

Combining (68), (69) and (70), we obtain

2Im = ξ

[
− 2

2?(s)

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx+

s

2?(s)

∫
B̃
ε−1δ,+k

x2
mxm

W 2?(s)

|x|s+2
dx

]

+ γ

[
−
∫
B̃
ε−1δ,+k

xm
W 2

|x|2
dx+

∫
B̃
ε−1δ,+k

x2
mxm

W 2

|x|2+2
dx

]
+

∫
B̃
ε−1δ,+k

xm|∇W |2dx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
m

|x|2
xm[ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2
]dx− ξ 2

2?(s)

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx

− γ

∫
B̃
ε−1δ,+k

xm
W 2

|x|2
dx+

∫
B̃
ε−1δ,+k

xm|∇W |2dx+ Θγ(1)
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And then

2Im =

∫
B̃
ε−1δ,+k

x2
m

|x|2
xm

[
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

]
dx− ξ 2

2?(s)

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx

− γ

∫
B̃
ε−1δ,+k

xm
W 2

|x|2
dx+

∫
B̃
ε−1δ,+k

xm

[
ξ
W 2?(s)

|x|s
+ γ

W 2

|x|2

]
dx+ Θγ(1),

by the last equality, we obtain the value of Im. We now fix m, p ∈ {1, ..., k} such that p 6= m. Integrating by
parts, we get that

Mp,m =

∫
B̃
ε−1δ,+k

∂mWxp∂pWdx =

∫
B̃
ε−1δ,+k

∂mW∂p

(
x2
p

2

)
∂pWdx

= −
∫
B̃
ε−1δ,+k

x2
p

2
∂p(∂mW∂pW )dx+

∫
∂(B̃

ε−1δ,+k
)

∂mW
x2
p

2
∂pWνpdx,

with νi,j := −δij for i = 1, ..., k and j ≥ 1, since W (x0,m) = 0, we have that

Mp,m = −
∫
B̃
ε−1δ,+k

x2
p

2
∂p(∂mW∂pW )dx+

∫
B̃ε−1δ∩∂Rk+,n−k

∂mW
x2
p

2
∂pWνpdσ

+O

(∫
Rk+,n−k∩∂B̃ε−1δ

|x|2|∇W |2dσ

)

= −
∫
B̃
ε−1δ,+k

x2
p

2
∂p(∂mW∂pW )dx+

k∑
α=1

∫
B̃ε−1δ∩{xα=0}

∂mW
x2
p

2
∂pWνα,pdσ

+O

(∫
Rk+,n−k∩∂B̃ε−1δ

|x|2|∇W |2dσ

)

= −
∫
B̃
ε−1δ,+k

x2
p

2
[∂mpW∂pW + ∂mW∂ppW ]dx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

∫
B̃
ε−1δ,+k

x2
p

2
∂m

(
|∂pW |2

2

)
dx

+
∑

j≥1;j 6=p

∫
B̃
ε−1δ,+k

x2
p

2
∂mW∂jjWdx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

∫
∂(B̃

ε−1δ,+k
)

x2
p

4
|∂pW |2νmdσ +

∑
j≥1;j 6=p

∫
B̃
ε−1δ,+k

x2
p

2
∂mW∂jjWdx+ Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

k∑
α=1

∫
B̃ε−1δ∩{xα=0}

x2
p

4
|∂pW |2να,mdσ

+
∑

j≥1;j 6=p

∫
B̃
ε−1δ,+k

x2
p

2
∂mW∂jjWdx+ Θγ(1)

And then

Mp,m =

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

∑
j≥1;j 6=p

∫
B̃
ε−1δ,+k

x2
p

2
∂jmW∂jWdx

+
∑

j≥1;j 6=p

k∑
α=1

∫
B̃ε−1δ∩{xα=0}

x2
p

2
∂mW∂jWνα,jdσ + Θγ(1).
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So we have

Mp,m =

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

∑
j≥1;j 6=p

∫
B̃
ε−1δ,+k

∂m(
x2
p

4
|∂jW |2)dx

+

∫
B̃ε−1δ∩{xm=0}

x2
p

2
|∂mW |2νm,mdσ + Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

∑
j≥1;j 6=p

k∑
α=1

∫
B̃ε−1δ∩{xα=0}

x2
p

4
|∂jW |2να,mdσ

+

∫
B̃ε−1δ∩{xm=0}

x2
p

2
|∂mW |2νm,mdσ + Θγ(1)

=

∫
B̃
ε−1δ,+k

x2
p

2
∂mW [−∆W ]dx−

∫
B̃ε−1δ∩{xm=0}

x2
p

4
|∂mW |2dσ + Θγ(1).

Moreover, using (41), we have that

Mp,m =

∫
B̃
ε−1δ,+k

x2
p

2
∂mW

(
γ

|x|2
W + ξ

W 2?(s)−1

|x|s

)
dx−

∫
B̃ε−1δ∩{xm=0}

x2
p|∂mW |2

4
dσ + Θγ(1).

Using again that W vanishes on ∂Rk+,n−k, we get that

∫
B̃
ε−1δ,+k

x2
p∂mW

W 2∗(σ)−1

|x|σ
dx =

∫
B̃
ε−1δ,+k

x2
p|x|−σ∂m

(
W 2∗(σ)

2∗(σ)

)
dx

=
σ

2∗(σ)

∫
B̃
ε−1δ,+k

x2
pxm

|x|σ+2
W 2∗(σ)dx+O

(∫
∂B̃ε−1δ∩Rk+,n−k

|x|2−σW 2∗(σ)dσ

)

=
σ

2∗(σ)

∫
B̃
ε−1δ,+k

x2
pxm

|x|σ+2
W 2∗(σ)dx+ Θγ(1) as ε→ 0.

Moreover,

Mp,m =

∫
B̃
ε−1δ,+k

x2
pxm

2|x|2

(
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

)
−
∫
B̃ε−1δ∩{xm=0}

x2
p|∂mW |2

4
dσ + Θγ(1).

The proof is similiar for Ml,m for all l ≥ k + 1. Fix m ∈ {1, ..., k} and i ≥ 1 such that i 6= m, we have that

Ki,m : =

∫
B̃
ε−1δ,+k

∂iW∂mWxidx =

∫
B̃
ε−1δ,+k

∂iW∂mWxi∂mxmdx.
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Integrating by parts again and using (67), we get

Ki,m = −
∫
xixm∂iW∂mmWdx−

∫
xixm∂mW∂miWdx+

k∑
α=1

∫
Aαε

xixm∂mW∂iWνα,mdx+ Θγ(1)

=

∫
xixm∂iW (−∆W )dx+

∑
j≥1;j 6=m

∫
xixm∂iW∂jjWdx− 1

2

∫
xixm∂i(∂mW )2dx+ Θγ(1)

=

∫
xixm∂iW (−∆W )dx−

∫
xm∂iW∂iWdx−

∑
j≥1;j 6=m

∫
xixm∂ijW∂jWdx

+
1

2

∫
xm(∂mW )2dx− 1

2

k∑
α=1

∫
Aαε

xixm(∂mW )2να,idx+ Θγ(1)

=

∫
xixm∂iW (−∆W )dx− Ji,m −

1

2

∑
j≥1;j 6=m

∫
xixm∂i(∂jW )2dx+

1

2

∫
xm(∂mW )2dx+ Θγ(1)

=

∫
xixm∂iW (−∆W )dx− Ji,m +

1

2

∑
j≥1;j 6=m

∫
xm(∂jW )2dx

−1

2

∑
j≥1;j 6=m

k∑
α=1

∫
Aαε

xixm(∂jW )2να,idx+
1

2

∫
xm(∂mW )2dx+ Θγ(1)

=

∫
xixm∂iW (−∆W )dx− Ji,m +

1

2

∑
j≥1;j 6=m

∫
B̃
ε−1δ,+k

xm(∂jW )2dx+
1

2

∫
xm(∂mW )2dx+ Θγ(1)

=

∫
xixm∂iW (−∆W )dx− Ji,m +

1

2

∫
xm|∇W |2dx+ Θγ(1),

since W is a solution to (41), then there exists ξ > 0 such that

Ki,m + Ji,m =

∫
B̃
ε−1δ,+k

xixm∂iW

(
ξ
W 2?(s)−1

|x|s
+ γ

W

|x|2

)
dx+

1

2

∫
B̃
ε−1δ,+k

xm|∇W |2dx+ Θγ(1).

Since W vanishes on ∂Rk+,n−k, we get∫
B̃
ε−1δ,+k

xixm∂iW
W 2?(σ)−1

|x|σ
dx =

1

2?(σ)

∫
B̃
ε−1δ,+k

xixm
|x|σ

∂i(W
2?(σ))dx

= − 1

2?(σ)

∫
B̃
ε−1δ,+k

xm
W 2?(σ)

|x|σ
dx+

σ

2?(σ)

∫
B̃
ε−1δ,+k

x2
ixm

W 2?(σ)

|x|σ+2
dx+ Θγ(1).

Then with (70)

Ki,m + Ji,m =

∫
B̃
ε−1δ,+k

x2
i

|x|2
xm

[
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

]
dx

+

(
1

2
− 1

2?(s)

)
ξ

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx+ Θγ(1).

Fix m ∈ {1, ..., k}, p ∈ {1, ..., k} and q ∈ {p+ 1, ..., k} such that p, q 6= m. We get

Lm,p,q : =

∫
B̃
ε−1δ,+k

∂mW∂pWxqdx =

∫
B̃
ε−1δ,+k

∂mW∂pWxq∂pxpdx.
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Using again the integrations by parts, (66) and (67), we get

Lm,p,q = −
∫
xqxp∂mW∂ppWdx−

∫
xpxq∂pW∂mpWdx+

k∑
α=1

∫
Aαε

xqxp∂mW∂pWνα,pdx+ Θγ(1)

=

∫
xqxp∂mW (−∆W )dx+

∑
j≥1;j 6=p

∫
xqxp∂mW∂jjWdx− 1

2

∫
xqxp∂m(∂pW )2dx+ Θγ(1)

=

∫
xqxp∂mW (−∆W )dx−

∫
B̃
ε−1δ,+k

xp∂mW∂qWdx−
∑

j≥1;j 6=p

∫
xpxq∂jmW∂jWdx

+
∑

j≥1;j 6=p

k∑
α=1

∫
Aαε

xqxp∂mW∂jWνα,jdx−
1

2

k∑
α=1

∫
Aαε

xqxp(∂pW )2να,mdx+ Θγ(1)

=

∫
xqxp∂mW (−∆W )dx−Nm,p,q −

1

2

∑
j≥1;j 6=p

∫
xpxq∂m(∂jW )2dx

+

∫
Amε

xqxp(∂mW )2νm,mdx+ Θγ(1)

=

∫
xqxp∂mW (−∆W )dx−Nm,p,q −

1

2

∑
j≥1;j 6=p

k∑
α=1

∫
Aαε

xqxp(∂jW )2να,mdx

+

∫
Amε

xqxp(∂mW )2νm,mdx+ Θγ(1)

=

∫
xqxp∂mW (−∆W )dx−Nm,p,q +

1

2

∫
Amε

xqxp(∂mW )2νm,mdx+ Θγ(1),

with Aαε := B̃ε−1δ ∩ {xα = 0}, other integrals being taken on B̃ε−1δ,+k . With (41), we then get

Lm,p,q +Nm,p,q =

∫
B̃
ε−1δ,+k

xqxp∂mW

(
ξ
W 2?(s)−1

|x|s
+ γ

W

|x|2

)
dx+

1

2

∫
B̃ε−1δ∩{xm=0}

xqxp(∂mW )2νm,mdx+ Θγ(1).

Integrating by parts, using that W vanishes on ∂Rk+,n−k, for σ ∈ [0, 2], we get that

∫
B̃
ε−1δ,+k

xqxp∂mW
W 2?(σ)−1

|x|σ
dx =

∫
B̃
ε−1δ,+k

xqxp|x|−σ∂m
(
W 2?(σ)

2?(σ)

)
dx

=
σ

2?(σ)

∫
B̃
ε−1δ,+k

xqxpxm
W 2?(σ)

|x|σ+2
dx+ Θγ(1) as ε→ 0.

And then

Lm,p,q +Nm,p,q =

∫
B̃
ε−1δ,+k

xqxpxm
|x|2

(
ξ

s

2?(s)

W 2?(s)

|x|s
+ γ

W 2

|x|2

)
− 1

2

∫
B̃ε−1δ∩{xm=0}

xqxp(∂mW )2dx+ Θγ(1).

This ends the proof of Lemma 5.1. �



HARDY-SOBOLEV INEQUALITIES WITH NON SMOOTH BOUNDARY, I 27

We define (all integrals are taken on B̃ε−1δ,+k)

Aε :=
∑

1≤i≤k;j≥1

∂jiφ
j(0)

(∫
|∇W |2xidx− γ

∫
|W |2

|x|2
xidx

)

−2

k∑
m=1

k∑
i=1;i6=m

∂iiφ
m(0)

(∫
∂mWxi∂iWdx+ γ

∫
|W |2

|x|2
xm
|x|2

x2
i dx

)

−2

k∑
m=1

n∑
i=k+1

∂iiφ
m(0)

(∫
∂mWxi∂iWdx+ γ

∫
|W |2

|x|2
xm
|x|2

x2
i dx

)

−2

k∑
m=1

∂mmφ
m(0)

(∫
∂mW∂mWxmdx+ γ

∫
|W |2

|x|2
xm
|x|2

xmxmdx

)

−2

k∑
m=1

∑
i≥1;i 6=m

∂miφ
i(0)

(∫
∂iW∂mWxidx+ γ

∫
|W |2

|x|2
xi
|x|2

xmxidx

)

−2

k∑
m=1

∑
i≥1;i 6=m

∂imφ
i(0)

(∫
∂iW∂iWxmdx+ γ

∫
|W |2

|x|2
xi
|x|2

xixmdx

)

+

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

(
−2

∫
∂mW∂qWxpdx+ γ

∫
|W |2

|x|2
xm
|x|2

xqxpdx

)

+

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

(
−2

∫
∂mW∂pWxqdx+ γ

∫
|W |2

|x|2
xm
|x|2

xpxqdx

)
and

Bε :=
∑

1≤i≤k;j≥1

∂jiφ
j(0)

∫
|W |2?(s)

|x|s
xidx−

s

2

k∑
m=1

k∑
i=1;i 6=m

∂iiφ
m(0)

∫
|W |2?(s)

|x|s
xm
|x|2

x2
i dx

−s
2

k∑
m=1

n∑
i=k+1

∂iiφ
m(0)

∫
|W |2?(s)

|x|s
xm
|x|2

x2
i dx−

s

2

k∑
m=1

∂mmφ
m(0)

∫
|W |2?(s)

|x|s
xm
|x|2

x2
mdx

−s
k∑

m=1

∑
i≥1;i 6=m

∂miφ
i(0)

∫
|W |2?(s)

|x|s
x2
i

|x|2
xmdx− s

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

∫
|W |2?(s)

|x|s
xm
|x|2

xqxpdx

Steps 1 and 2 and (59) yield∫
Ω

(
|∇Wε|2 − γ

|Wε|2

|x|2

)
dx =

∫
Rk+,n−k

(
|∇W |2 − γ |W |

2

|x|2

)
dx+Aεε+ Θγ(ε),∫

Ω

W
2?(s)
ε

|x|s
dx =

∫
Rk+,n−k

W 2?(s)

|x|s
dx+ εBε + Θγ(ε)

It follows from (41) that ∫
Rk+,n−k

(
|∇W |2 − γW

2

|x|2

)
dx = ξ

∫
Rk+,n−k

W 2?(s)

|x|s
dx.

Since W is an extremal for the Euclidean inequality, we have that∫
Rk+,n−k(|∇W |2 − γ

|x|2W
2)dx(∫

Rk+,n−k
W 2?(s)

|x|s dx
) 2

2?(s)

= µγ,s(Rk+,n−k).



28 HUSSEIN CHEIKH ALI

Note that, for γ ≤ γH(Rk+,n−k)− 1
4 , we have that limε→0Aεε = limε→0Bεε = 0. Therefore, the above estimates

yield

JΩ
γ,s(Wε) = µγ,s(Rk+,n−k)

(
1 +

1

ξ
∫
Rk+,n−k

W 2?(s)

|x|s dx

(
Aε −

2ξ

2?(s)
Bε

)
ε+ Θγ(ε)

)
.

In the following formula, all the integrals are on B̃ε−1δ,+k and F (x) := γW
2

|x|2 + ξW
2?(s)

|x|s . Using the notations of

Step 3 and Lemma 5.1, we get

Aε −
2ξ

2?(s)
Bε =

k∑
i=1

∑
j

∂jiφ
j(0)ξ

(
1− 2

2?(s)

)∫
|W |2?(s)

|x|s
xi dx

+
k∑

m=1

k∑
i=1, i 6=m

∂iiφ
m(0)

(
−2Mim +

∫
x2
i

|x|2
xmF (x) dx

)

+

k∑
m=1

n∑
i=k+1

∂iiφ
m(0)

(
−2Mim +

∫
x2
i

|x|2
xmF (x) dx

)
+

k∑
m=1

∂mmφ
m(0)

(
−2Im +

∫
x2
m

|x|2
xmF (x) dx

)

+

k∑
m=1

∑
i≥1;i6=m

∂miφ
i(0)

(
−2Kim +

∫
x2
i

|x|2
xmF (x) dx

)
+

k∑
m=1

∑
i≥1;i 6=m

∂miφ
i(0)

(
−2Jim +

∫
x2
i

|x|2
xmF (x) dx

)

+

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

(
−2Nm,p,q +

∫
xpxq
|x|2

xmF (x) dx

)

+

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

(
−2Lm,p,q +

∫
xpxq
|x|2

xmF (x) dx

)

=

k∑
i=1

∑
j

∂jiφ
j(0)ξ

(
1− 2

2?(s)

)∫
|W |2?(s)

|x|s
xi idx+

1

2

k∑
m=1

k∑
i=1, i 6=m

∂iiφ
m(0)

∫
B̃ε−1δ∩{xm=0}

x2
i |∂mW |2dσ

+
1

2

k∑
m=1

n∑
i=k+1

∂iiφ
m(0)

∫
B̃ε−1δ∩{xm=0}

x2
i |∂mW |2dσ − ξ

(
1− 2

2?(s)

)
∂mmφ

m(0)

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx

−ξ
(

1− 2

2?(s)

) ∑
i≥1;i 6=m

∂imφ
i(0)

∫
B̃
ε−1δ,+k

xm
W 2?(s)

|x|s
dx

+

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

∫
B̃ε−1δ∩{xm=0}

xqxp|∂mW |2dσ

=
1

2

k∑
m=1

k∑
i=1, i 6=m

∂iiφ
m(0)

∫
B̃ε−1δ∩{xm=0}

x2
i |∂mW |2dσ +

1

2

k∑
m=1

n∑
i=k+1

∂iiφ
m(0)

∫
B̃ε−1δ∩{xm=0}

x2
i |∂mW |2dσ

+

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

∫
B̃ε−1δ∩{xm=0}

xqxp|∂mW |2dσ

With the symmetries of W (see Theorem 4.1), there exists αε, βε, τε > 0 such that∫
B̃ε−1δ∩{xm=0} x

2
i |∂mW |2dσ = αε if i = 1, ..., k, i 6= m∫

B̃ε−1δ∩{xm=0} x
2
i |∂mW |2dσ = βε if i = k + 1, ..., n∫

B̃ε−1δ∩{xm=0} xqxp|∂mW |
2dσ = τε if p, q,m ∈ {1, ..., k} are distinct
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Then, we get that

Aε −
2ξ

2?(s)
Bε =

αε
2

k∑
m=1

k∑
i=1, i 6=m

∂iiφ
m(0)

+
βε
2

k∑
m=1

n∑
i=k+1

∂iiφ
m(0) + τε

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0).

We distinguish two cases:

Case 1: γ < γH(Rk+,n−k) − 1
4 , that is α+ − α− > 1. It follows from the pointwise control (43) that x 7→

|x|2|∇W |2 ∈ L1(Rk+,n−k ∩ {xm = 0}), therefore

limε→0 αε = 2c2γ,s :=
∫
Rk+,n−k∩{xm=0} x

2
i |∂mW |2dσ > 0 if i = 1, ..., k, i 6= m

limε→0 βε = 2c1γ,s :=
∫
Rk+,n−k∩{xm=0} x

2
i |∂mW |2dσ > 0 if i = k + 1, ..., n

limε→0 τε = c3γ,s :=
∫
Rk+,n−k∩{xm=0} xqxp|∂mW |

2dσ > 0 if p, q,m ∈ {1, ..., k} distinct.

Consequently,

Aε −
2ξ

2?(s)
Bε = c2γ,s

k∑
m=1

k∑
i=1, i 6=m

∂iiφ
m(0)

+c1γ,s

k∑
m=1

n∑
i=k+1

∂iiφ
m(0) + c3γ,s

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0) + o(1)

Case 2: γ = γH(Rk+,n−k)− 1
4 , that is α+ − α− = 1. It follows from (25) that

lim
λ→0

λα− |x|α−+k∂mW (λx) = K

 k∏
j=1,j 6=m

xj − (α− + k)
p(x)xm
|x|2

 ,

where p(x) :=
∏k
j=1 xj . As in the proof of (44), a Kelvin transform yields

lim
λ→+∞

λα+ |x|α++k∂mW (λx) = K

k∏
j=1,j 6=m

xj on {xm = 0}.(74)

We claim that

(75)

∫
B̃ε−1δ∩{xm=0}

x2
i |∂mW |2dx = 2c2γ,s ln

(
1

ε

)
+ o

(
ln

(
1

ε

))
as ε→ 0,

where,

c2γ,s :=
K2

2

∫
Sn−2∩({xm=0}∩Rk+,n−k)

σ2
i

 k∏
j=1, j 6=m

σj

2

dσ

is independent of i ∈ {1, .., k}, i 6= m. We prove the claim. Since n− 2− 2α+ = −1, we have∫
B̃ε−1δ∩{xm=0}

x2
i |∂mW |2dx =

∫
(B̃ε−1δ\B̃1)∩{xm=0}

x2
i |∂mW |2dx+O(1) =

∫ ε−1δ

1

f(r)

r
dr +O(1),(76)

where

f(r) :=

∫
Sn−2∩({xm=0}∩Rk+,n−k)

r2α+σ2
i |∂σ,mW (rσ)|2dσ.

It follows from the uniform convergence in (74) that limr→+∞ f(r) = 2c2γ,s. Then (74) and (76) yield (75) and
then the claim.
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Similarly, there exists explicit constants c2γ,s, c
3
γ,s > 0 such that∫

B̃ε−1δ∩{xm=0}
x2
i |∂mW |2dσ = 2c1γ,s ln

(
1

ε

)
+ o

(
ln

(
1

ε

))
;∫

B̃ε−1δ∩{xm=0}
xqxp|∂mW |2dσ = c3γ,s ln

(
1

ε

)
+ o

(
ln

(
1

ε

))
for i ≥ k + 1 and p, q,m ∈ {1, ..., k} all distinct. Therefore

Aε −
2ξ

2?(s)
Bε =

c2γ,s k∑
m=1

k∑
i=1, i 6=m

∂iiφ
m(0) + c1γ,s

k∑
m=1

n∑
i=k+1

∂iiφ
m(0)

+c3γ,s

k∑
m=1

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂qpφ
m(0)

 ln

(
1

ε

)
+ o

(
ln

(
1

ε

))

We are left with writing the expressions of Cases 1 and 2 intrinsically. We refer to Definition 3. For any
1 ≤ i1, i2 ≤ n such that i1, i2 6= m, we have

∂i1i2φ
m(0) = −〈−→ν m(0), ∂i1i2φ(0)〉 = 〈∂i1(−→ν m ◦ φ)(0), ∂i2φ(0)〉

= II∂Ωm
0 (∂i1φ, ∂i2φ) := IImi1i2 .

For p 6= m, we have −→ν p ∈ (T0∂Ωm)⊥ and

k∑
p,q,m=1, |{p,q,m}|=3

II∂Ωm
0 (−→ν p,−→ν q) =

k∑
p=1;p 6=m

k∑
q=p+1;q 6=m

∂pqφ
m(0).

Define Σ := ∩kj=1∂Ωj . We have that

k∑
m=1

〈 ~HΣ
0 , ~νm〉 =

k∑
m=1

n∑
i=k+1

∂iiφ
m(0) and

k∑
m=1

k∑
i=1, i 6=m

∂iiφ
m(0) =

k∑
i,m=1, i 6=m

II∂Ωm
0 (~νi, ~νi)

�

Theorem 1.2 is a straightforward application of Theorem 1.1 and Proposition 5.1.

6. Proof of Theorem 1.3

Point (1): we assume that s = 0 and γ ≤ 0. It follows from the definition that µγ,0(Ω) ≥ µ0,0(Rn). With
the reverse inequality (20), we get that µγ,0(Ω) = µ0,0(Rn). If there was an extremal for µγ,0(Ω), it would also
be a extremal for µ0,0(Rn), with no compact support, contradicting the boundedness of Ω. This proves (1) of
Theorem 1.3.

Point (2): Point (2) of Theorem 1.3 is a straightforward application of Theorem 1.1 and Proposition 5.1.

Point (3): We assume that n = 3, s = 0, γ > 0 and there is no extremal for µγ,0(Rk+×R3−k). In this situation,

see Proposition 1.3 of [16], we have that µγ,0(Rk+ × R3−k) = µ0,0(R3). The following proposition is as in [16]:

Proposition 6.1. Let Ω ⊂ R3 be an open domain such that 0 ∈ ∂Ω. Fix x0 ∈ Ω. If γ ∈ (0, γH(Ω)), then the
equation {

−∆G− γ
|x|2G = 0 ; G > 0 in Ω \ {x0}

G = 0 on ∂Ω \ {0}
has a solution G ∈ C2(Ω\{x0})∩D2

1(Ω\{x0})loc,0, that is unique up to multiplication by a constant. Moreover,
for any x0 ∈ Ω, there exists a unique Rγ(x0) ∈ R independent of the choice of G and cG > 0 such that

G(x) = cG

(
1

|x− x0|
+Rγ(x0)

)
+ o(1) as x→ x0.
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The proof is similar to the proof of Proposition 10.1 in [16]. Cooking-up some test-functions (uε)ε>0 as in
Lemma 10.2 of [16], we get that µγ,0(Ω) ≤ JΩ

γ,s(uε) < µ0,0(R3) = µγ,0(R3) when Rγ(x0) > 0 for some x0 ∈ Ω.
Point (3) of Theorem 1.3 is then a consequence of Theorem 1.1.
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[2] Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598.

[3] Thomas Bartsch, Shuangjie Peng, and Zhitao Zhang, Existence and non-existence of solutions to elliptic equations related to
the Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 30 (2007), no. 1, 113–136.

[4] Henri Berestycki and Louis Nirenberg, On the method of moving planes and the sliding method, Boletim Sociedade Brasileira

de Matematica 22 (1991), 1–37.
[5] Hussein Cheikh-Ali, Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals.

Part 2: small dimensions and the global mass (2018). Preprint.

[6] Jann-Long Chern and Chang-Shou Lin, Minimizers of Cafarelli-Kohn-Nirenberg inequalities with the singularity on the bound-
ary, Arch. Ration. Mech. Anal. 197 (2010), no. 2, 401–432.
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