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HARDY-SOBOLEV INEQUALITIES WITH SINGULARITIES ON NON SMOOTH
BOUNDARY: HARDY CONSTANT AND EXTREMALS. PART I: INFLUENCE OF
LOCAL GEOMETRY

HUSSEIN CHEIKH ALI

ABSTRACT. Let Q be a domain of R™, n > 3. The classical Caffarelli-Kohn-Nirenberg inequality rewrites as the

2
following inequality: for any s € [0,2] and any v < %, there exists a constant K (2,7, s) > 0 such that
2
2*(s) (5 2
M) <K@ [ (19aR -0t ) s (15)
o |zl Q ||
for all u € D%2(Q) (the completion of C°(§) for the relevant norm). When 0 €  is an interior point, the

range (—oo, %) for v cannot be improved: moreover, the optimal contant K(£2,7,s) is independent of Q
and there is no extremal for (HS). But when 0 € 99, the situation turns out to be drastically different since
the geometry of the domain impacts :

e the range of +’s for which (HS) holds;

e the value of the optimal constant K (2,7, s);

e the existence of extremals for (HS).
When 2 is smooth, the problem was tackled by Ghoussoub-Robert where the role of the mean curvature
was central. In the present paper, we consider nonsmooth domain with a singularity at 0 modeled on a cone.
We show how the local geometry induced by the cone around the singularity influences the value of the Hardy
constant on 2. When ~ is small, we introduce a new geometric object at the conical singularity that generalizes
the "mean curvature”: this allows to get extremals for (HS). The case of larger values for v will be dealt in
the forthcoming paper . As an intermediate result, we prove the symmetry of some solutions to singular pdes
that has an interest on its own.
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1. INTRODUCTION

Let Q be a domain of R, n > 3, s € [0,2) and let us consider the following problem:

—Au — ﬁu = % in Q,
(1) u>0 in 0,
U= on 012,
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2 HUSSEIN CHEIKH ALI

where v € R, 2*(s) := % is the critical Hardy-Sobolev exponent and A is the Euclidean Laplacian that
is A = div(V). This equation makes sense for v € D%2(Q), that is the completion of C2°(£2) with respect
to the norm u +— ||Vul|2. The motivation for considering equation arises from the problem of existence of
extremals for the Caffarelli-Kohn-Nirenberg (CKN) inequalities [1]. The Caffarelli-Kohn-Nirenberg inequalities

are equivalent to the Hardy-Sobolev inequality (see |16]): for any v < @ and s € [0, 2], there exists K > 0
such that

2
2% (s) 2% (s) 2
(2) < [l - dm) SK/ <|Vu2—'yuz> dz,
o |zf Q ||

for all u € DV2(Q). More generally, for any 0 < s < 2 and any v € R, we define
2
B Jo IVulPdz —~ [, nEde

2
|u\2*(5) 2% (s)
(fg FIE dx

Q ,
Js(u)

for u € DY2(Q) \ {0}, and we define

— : Q
3) Ha @)= Iy oy T )

If w € DV2(Q)\{0} achieves the infimum p. (), and if p, (€2) > 0, then, up to a constant, u is a solution to
. We address the following questions:

(Q1) For which values of v € R does (2)) hold for some K > 0 and all u € D?(Q)? In other words, when do
we have iy 5(2) > 07
(Q2) Is the best constant achieved? In other words, is - () achieved by some u € DV2(€2), u # 07

The answer to the first question (Q1) depends on the Hardy constant. Define
Jo IVul?dz

T aE
Jo Ede

(n—2)*

(4) Yr(Q) = po,2(22) = inf{ € CEO(Q)\{O}} ,

The classical Hardy inequality reads vy (R™) = and therefore, we have that vy (Q2) > ("_42)2. As a

consequence, interpolating the Hardy inequality and Sobolev inequalitie ( with v = s = 0), we get that
v <7H(R) = py,s(2) > 0.

When 0 € Q is an interior point, it is classical that v () = yg(R") = @. We consider the case 0 € 9.
The study of this type of nonlinear singular problems when 0 € 92 was initiated by Ghoussoub-Kang [12] and
studied by Chern-Lin [6] and Ghoussoub-Robert [16] when  is a smooth domain. As a byproduct, we prove
the existence of solutions to a perturbation of the initial equation via the Mountain Pass Lemma.

In this work, we tackle the more intricate case of a non smooth domain. We restrict ourselves to domains
modeled locally on R’j_ x R"* for all k € {1,...,n}. We define the model cone at P € Q as

1
Cp(Q) := {tlir% EPMt/ t — M, is a curve of Q and the limit exists} .
—
When  is smooth, C,,(©2) = R™ if 29 € Q. Still in the smooth case, C,,(2) is a half-space bounded by the
tangent space at xg if zg € 0. Moreover, when xo € 9€2, then 0C,, () is exactly the tangent space at .

Definition 1. We fixr 1 < k < n. Let Q be a domain of R". We say that xqg € 98 is a singularity of type
(k,n — k) if there exist U,V open subsets of R"™ such that 0 € U, 0 € V and there exists ¢ € C°(U,V) a
diffeomorphism such that ¢(0) = z¢ and

p(UN (R xR")) = p(U)NQ and $(U NI (R x R*™F)) = ¢(U) N 09,
with the additional hypothesis that the differential at 0 d¢g is an isometry.



HARDY-SOBOLEV INEQUALITIES WITH NON SMOOTH BOUNDARY, I 3

As one checks, we have that Co(€2) = d@o(R% x R"™), and then Cy(Q) is isometric to RY x R"*. In the
sequel, we write for convenience

RFt=F = RE x R" for all k € {1,...,n}.

For example: When €2 is smooth, boundary points are all of type (1,7 —1). A general conical sigularity is as in

0 (R*)?

FiGURE 1. Case: k=3n—k=0.

Figure 1. We assume that 0 is a singularity of type (k,n — k). We write the cone as Cy(Q2) = {ro;r > 0,0 € D}
having 0 as a vertex included in R™, where D is the trace of the cone on the sphere S"~1. More generally, given
D C S"1, define the cone C := {ro;r > 0,0 € D} . Then we have that

e If D is the sphere S"~!, then C = R™\{0}.

e If D is the half-sphere Siﬁl, then C is the half-space R1T"~1 := R%.

o If D=S""'NRF"=F then C = R¥"=% for all k € {1,...,n}.
For such cones, see Ghoussoub-Moradifam [13], the Hardy constant is
(n—2)?

4

such that A\;(D) is the first eigenvalue of Laplacien on D C S"~! with Dirichlet boundary condition. In

particular, g (RFH"=F) = W where A1 (D) = k(n+ k —2) for all k € {1,...,n}. The model cone is the
relevant object to consider to understand the Hardy constant of €2

vu(C) = + A1 (D),

Proposition 1.1. Let Q be a bounded domain of R™. We assume that 0 € 09 is a singularity of type (k,n —k)
for some k € {1,...,n}. Then vg satisfies the following properties:

() "2 <y () < u(Co(9) -

(ii) ~ ( ) =vu(Co(Q)) for every Q such that 0 € 9Q and Q C Cy(R).

(iii) If vu () < vu(Co(R2)), then it is attained in DV2(L) .

(iv) For every e > 0, there exists RFH"=F C Q. C R™ with a boundary singularity at 0 of type (k,n — k)
such that 'YH(RIH_ mR) —e < g () < '7H(Rk+ k)

The study of the Hardy constant for itself is reminiscent in the litterature. Without being exhaustive, we
refer to Fall [§], Fall-Musina [9] and the references therein.
We now tackle the second question (Q2), that is the existence of extremals for . In this framework, the
following result is classical:

Theorem 1.1. Let Q C R™ be a bounded domain such that 0 € OQ is a singularity of type (k,n — k). Assume
that v < yg(R*Hm=F) 0 < s < 2, and 1,5(Q) < py s(R¥"7F) . Then there are extremals for (). In
particular, there exists a minimizer u in D2(Q)\{0} that is a positive solution to the equation

2% (s)—1

—Au — #u = [y,s ()4 P n €,
(E)q u>0 in Q,
u=20 on 0f2.

In other words, being below a critical threshold given by the model cone yields existence of extremals. Such
a result is reminiscent in the functional inequalities of elliptic type since the work of Trudinger [19] and Aubin
[2] on the Yamabe problem. Related results for Hardy-Sobolev equations are in Bartsch-Peng-Zhang [3] and
Pucci-Servadei [18].
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We now give sufficient conditions to get the existence condition. As for the Yamabe problem, we need to
introduce some test-functions cooked up from a model space: here, it is the model cone. In the smooth case,
that is k = 1, the test-functions yield a condition on the mean curvature to recover existence. In our non-smooth
context, we must tackle two additional difficulties:

e The mean curvature is not defined, and we must define another geometric quantity.
e The extremals for the model space R¥+"~* are not smooth, and the proof of the symmetry in [16] does
not extend to our context.

We are able to recover symmetry via a version of the moving-plane method developed by Berestycki and
Nirenberg [4]. Concerning the lack of mean curvature, we introduce a new geometric object.

Definition 2. Let Q C R"™ be a domain such that 0 € 9 is a singularity of type (k,n — k). We define

(5) Q =oUn{z;>0}) foralli=1,.. k,

where (¢, U) is a chart as in the Definition 1. We have that:

(1) For alli=1,...k, Q; is smooth around 0 € 9%;.
(2) Up to permutation, the Q;’s are locally independent of the chart ¢.
(3) The Q;’s define locally Q2: there exists § > 0 such that

k
QN Bs(0) = (1) 2 N Bs(0).

i=1

For example:

FIGURE 2. Case k =2, n—k =0.

Definition 3. Let S be a submanifold of R™. We let I[fg be the second fundamental form at xo of S, that is

II5 0 TS % TS X (ThyS): — R
(X,Y,n) = II9(X,Y,n) = (VxY — VxY,1)a.

The mean curvature vector at xo € S is the vector ﬁfo € (T, S)*t such that for all n € (T,,S)*, we have that
(H3y0)ay = Trace ((X,Y) > 115, (X,Y.n)) .

For k € {1,...,n} and m = 1,.., k, we define Vm : O, — R™ is the outer unit normal vector of the locally
oriented €2, around 0 where €, as in (see Definition : this definition makes sense locally around 0. In
particular, we have 7m(0) :=(0,...,0,—1,0,...,0) when dpg = Id. We are in position to get an existence result
for small values of ~:

Theorem 1.2. Let Q be a bounded domain in R™(n > 3) such that 0 € 09 is a singularity of type (k,n — k)
for some k € {1,...,n}. We firt0<s<2and 0 <~y <yg(R). Assume that either s > 0, or that {s = 0,n >
4 and v > 0}. We assume that
1
0 <y <R F) — 1
Then there are extremals for piy s(2) if

(6) GH., () <0
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where, for ¥ = N¥_,0Q;, GH.,, 5(Q) is the generalized mean curvature

k k
(7) GH,W (@) = & SR 7+, Y 110 (7,7)
m=1 i,m=1,i#m
k
R SR A

p,g;m=L1, [{p,q;m}|=3

1.2 .3 o - ; ;
and ¢, 4, ¢ o, ¢ ¢ are positive explicit constants. By convention, each of the sums above is zero when empty.

The first term in GH., ¢(2) shows the influence of the mean curvature of ¥ = N¥_,9€; at 0. The second and
third sums outline the influence of the positions of the €2,,’s relatively to each other: these two terms do not
appear in the smooth case, that is k = 1.

When k = 1, condition (€] reads (HP?, 7y0) < 0. We then recover the condition of Ghoussoub-Robert [16].
Our condition is local: only the local geometry of the boundary at 0 is relevant here. In the paper [5], we deal
with the case v > vy (R¥"=%) — 1: the test-functions then are different, and the existence condition is global.

For the sake of completeness, we now deal with the remaining cases, still for v < v (RFH"=F) — i.

Theorem 1.3. Let Q be a bounded domain in R™(n > 3) with a singularity of type (k,n — k) at 0 for some
ke{l,..,n}. Then

(1) If v <0, then puy,0(2) = po,0(R™), and there is no extremal.

(2) If n = 3,0 <y < yg(R¥"=F) — 1 and there are extremals for puo(RE x R37%), then there are
extremals for u,0() if GH, () < 0.

(3) If n =3, 0 < v and there are no extremals for pi,o(RET3=%) then there are extremals for ju,0(Q) if

R (z9) > 0 for some xg € Q.

The proof of Theorem is similar to what was performed in Ghoussoub-Robert [16], and we will only sketch
it in Section @ where the interior mass R+ (x¢) will be defined in Proposition

Our results are summarized in these tables:

Hardy Condition Dimension Geometric Condition Extremal
0<y<ygRFF"F) 1T pn>3 GH, +(9) <0 Yes
TABLE 1. Case s > 0.

Hardy Condition Dimension Geometric Condition Extremal
B n=3 GH,(2) <0 and Ry(zg) <0 Yes
0<y<yr®EmE) -3 1 55y GH, () <0 Yes
¥ <0 n>3 No

TABLE 2. Case s =0.

In this paper, some regularity issues will be used very often. Our main tool will be the article [10] by Felli and
Ferrero. We also refer to the historical reference Gmira-Véron [17] and to the monograph [7] by Cirstea. As
an intermediate step in our analysis, we will prove a symmetry result for the extremals of ,u%S(Rk"""_k): with
the use of the moving-plane method (see Berestycki-Nirenberg [4]), we will obtain that the symmetries of the
domain transfer to the extremals. This will be the object of Theorem [.1]
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2. THE BEST HARDY CONSTANT AND HARDY SOBOLEV INEQUALITY
This section is devoted to the analysis of the Hardy constant vy (2) and the proof of Proposition

Proof of (i) of Proposition : By definition, % = yg(R™) < v (Q). We assume by contradiction that

1 (9) = 7 (R™). We that have i, 5(R2) = y(Q) — 7 = 2525 —y < puy p(REFm—F) = (25 o Theorem
yields tr,2(€) is achieved by some ug € D*?(Q)\{0}. Since ug € D23(Q) € DV2?(R™), we get that vg(R™)
is achieved in DV2(R™). Replacing ug by |ug|, we assume that ug > 0 on R™. The Euler-Lagrange equation and

the maximum principle yield ug > 0 on R"™, contradicting ug = 0 on 9€2. Therefore (";2)2 <vu(Q).

For the other inequality, since € is a singularity of type (k,n — k) at 0, we choose a chart (U, ¢) as in Definition
Without loss of generality, we assume that d¢g = Id and that Co(Q2) = R¥F"=*. Let n € C°(U) such that
n(z) = 1 for x € Bs(0), for some 6 > 0 small enough, and consider (a¢)eso €]0, 400 such that o = o(e) as
€ — 0. We define

k
p(x) = \x|_k_nT_2 Ha:i for all 2 € RFH"=F,

i=1
Note that p ¢ DV2(RET"=F) We fix 8 > 1 and define
=Ppa) el <
pela) =4 pla) if e < o] < 1

le.x|Pp(z) if [z| > 2.
Note that p. € DL2(RFH™=F) For € > 0, we define
2-n
ue(y) = (¢~ (y))ae? pelas ¢~ (y)) for any y € 4(U) NQ,y = ¢(x)

and 0 elsewhere. Immediate computations yield

p? p?
(8) / gy =0(1) and = dz = O(1).
R"\B__1(0) B.(0) 2|

/ Vp2dz = O(1)  and / Vpe|2dz = O(1)
R7\B__1(0) B(0)

when € — 0. Since d¢g = Id, we have

we ()2 ue(p(x))[?
), BT s ()
Q Rk+,n—kmU

P
. GEE | oalide
Q = o " O+ O,

Writing B;s(0) = (Bs(0)\Be-14,(0)) U (Be-14, (0)\Bea, (0)) U (Bea, (0)), (8) yields

2 2

(10) / de =0(1); / de —0(1).
(BsO\B,1,,, @)nmssn—r [2] Bea (RE+n—s 2]
And,
2

€ 1

(11) / M(1+O(|z|)) dz = Wpoln — + O(1),
(Botn, (0\Bea, (0))rRE+n—+  |2[? ¢2

where Wp o =2 [} | Hle z;|*do with D = S"~' N R¥""=* for all k € {1,...,n}. We combine (9], and
(L1)

|ue(y)]
(12) o |yP?

2

1

dy=Wpaln— +0O(1) as € = 0.
€

Similar arguments yield

1
(13) / [Vue(y)Pdy = Wp 2 In i (REH"7F) + 0(1) as € — 0.
Q
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By the equations (12, (13]), we get that
fQ |Vue ))|2dy
[ue ( )l
fﬂ Iy?2
and by the definition of vz, we get that vz (Q) < yg(RFH"~F). This proves (i).
Proof of (i): If Q C Cy(Q2), then the definition yields v () > vu(Co(€2)). The reverse inequality is by (7),
which yields (i4).
Proof of (iii): Is a particular case of Theorem below when s = 2.
Proof of (iv): By Ghoussoub-Robert [16] we have the following lemma:

= g (RFF%) 4 o(1) as € — 0,

Lemma 2.1. Let (¢;)ien € CH(R"™,R") be such that,
A ([0 = Idpnlloo +[|V (e — Idgn)llec) = 0 and ¢¢(0) =

Let D C R™ be a domain such that 0 € D (not necessarily bounded nor regular), and set Dy := ¢(D), ¥Vt € N.
Then 0 € Dy, and limy oo Y (Dy) = v (D).

Let ¢ € C°(R" %) be such that 0 < ¢ < 1, ¢(0) = 0 et ¢p(z") = 1 for all 2”7 € R"* such that [2”] > 1. For
t >0, define ¢4(2',2") := (x1 — td(z"), ..., 2 — td(x"), 2") for all (', 2") € R¥ x R"7*. Set Q; := ¢y (RFH"—F),
Lemma [2.1] yields

~ 2k — 2)?
lim g () = vg (RFPF) = M
t—0 4

Since ¢ > 0 and ¢(x”) =1 for " € R*7*_ |2”| > 1, we have that RET"—F C Q. To finish the proof of (iv), we
take Q. := Q; with € > 0, ¢ > 0 small enough.

Proposition 2.1. Let v < yg(RFT"=%) for all k € {1,...,n} and s € [0,2]. Then, for all € > 0 there exists
ce > 0 such that for all u € D2(),

|u|2*(s) 2*2(5)
(14) U d:z:] < (s (RETPTF)7E +e)/ (|Vu|2 S ) da:Jrce/ u?dz.
o |z Q |z| Q

Proof of Proposition .' We choose a chart (U, ¢) as in Definition [I} Without loss of generality, we assume
that dgg = Id and then C = Cy(Q) = R¥*"n=* Choose u € C(¢(Bs(0)) N Q) and define v := u o ¢ for
all v € C}(Bs(0) N C). Define the metric g := ¢~ * Bucl, where Eucl is the Euclidean metric. We have that
lp(z)] = |z|(1 + O(|z|)) and |¢* Eucl — Eucl|(z) < c|z| for all z € R™ small enough for some ¢ > 0.

Step 1: fix € > 0, we first claim that there exists § > 0 such that for all u € C}(¢(B;s(0)) N Q),

(15) [ Jul* ) rﬁm < (py,5(C) 71 +e)/ <|Vu2 - Wu ) da.

|z[*

Proof of : We have that

e } [uo 6(a)/* O Jac(s(e)) , 17
= d
[ af* /Bawmc @) ’

e 17 y
/ s dz <(1+ c5)uw,s(0)’1/ (Vvl2 - 2”2> dx
Bs(0)NC |z Bs(0)NC |z|

< (14 cb)p1y,0(C) ! / (IWE - M“) [Jac o™ (x)| da

u2
< (14 cd)py,s(C)” /(|Vu|2 - Wu ) dx—|—626/ <|Vu|2 + x|2> dz

< (14 ¢d)
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where the last three integrals are taken on ¢(Bs(0)) N 2. This give us

U2(S 2%(?) 2
[QH da:] < (14 c16)1,4(0) ! /Q (Vuf? = ) + ead / VP + 7)o

|z[*

For all v € CL(¢(Bs(0) N Q)), we get that

2 2

(16) o= [ P o(elde < (1+ ) [ e
a |z Bs(0)nC 17 c |7l
and,
(17) /|Vu|2dx:/ |Vv|§)*Eud|1+O(|x|)|dx2(17025)/ Vo|2d,
Q B(s(O)ﬁC C

where ¢y, ¢y > 0 are independent of § and v. Since v < v (R*T7~F) there exists co > 0 for § small enough,

(18) col/Q|Vu2dx§/Q<|Vu2— | 2>d96<co/|Vu| dx.

With , and , we get for § > 0 small enough. This ends Step 1. ]

Step 2: We prove for all u € D12(Q).

Let n € C°(R™) and /7, /T —n € C*(R™) be such that n(z) = 1 if z € Bs/(0) and n(x) = 0 if z ¢ Bs(0). We
1

define [|w||p,|z-+ = {fﬂ el g ] . We set p = 2*(s)/2. Hélder’s inequality yield

B
[l o -+ = m® + (1 = 0)u? {1z~
< Nl g + 1 = [lpja)—o < VU3 (o) oo + IV = 10l (5) -
for all u € C°(Q). Since \/nu € CZ(B;, N C), we use and intregrate by parts

2
|u‘2 (s 2% (s) _ v
[ < (14,s(C) 7 +e) /Q [Vy/iul? — WWUQ dz + [[V/1 = null3. (5) ju)-

oF
(19) < (a0 4 / (190 = 2 o IVT= gl < [ o

where ¢ > 0 depends of € > 0.

Case 1: s = 0. We claim that

(20) 1y,0(82) < po,0(R™)
We prove the claim. Fix z¢ € Q, zg # 0, and take n € C°(Q) such that n(x) = 1 around of zg. For z € Q and
n—2

e > 0, we define u.(z) := n(x) (m) * for all z € Q. Classical computations in the spirit of Aubin [2]

yield
Jo |Vu|?dz

€_>0 (Jo uZ"dz) =

and limc_,0 [, %dm = 0. This yields (20), and the claim is proved.

= po,0(R™)

The Sobolev inequality yields ||f||§n/(n_2) < poo(R™) IV 3 for all f € DY2(Q) c DY2?(R™). We combine
these inequalities to get

VTl e < Hoo(R™) /Q V(T )| 2da
(21) < (el 49 [ n)IVuPde e [ d
Q

Q

IN
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We use the equations and
|u‘2 (s) 2*2(5)
[ ] < (,u’y,s(c)71 +€) / (|Vu|2 — ||2u2> dx
Q

||
+ (Mw,s(c)_l +€) / (1 —n)|Vul|*dz + c/ widx
Q Q
< (s (C) 7 4 6)/ Vul?dz — (11,5(C) ! +e) 7/ T Pda
5 \B;. (0) ||

— (s (C) "+ ) 7/ %qum + c/ u?dx
Bs ¢ (0) || Q

2
< (u%s(C)fl—Fe)/ |Vu|*dz — (u%s(C')*l—Fe)v/ u2d1:+c/ u?dx
Q Bﬁ (0) |90| Q

< (py,s(C) 1 Jre)/ <Vu2 - #u > derc/ u?dz.
Q Q

Case 2: 0 < s < 2. We have that 2 < 2*(s) < 2* , let ¥ > 0 and by interpolation inequality there exists ¢, > 0,
such that

IWT=nule o < C (VIVT=nul + ellv/T=null)
< O (vhoo®)TIV/T=m)ll3 + e VT = mull3) -

We choose v such that vpugo(R™)™" < u7 L(C) + €, we get

(22) VL = null3. () g+ < (135(C) + ) [V (VI = nu)5 + eu | V/1 = ull3.

By () and
2
2°(s) 17
[/ [ul da:] < (Hy,s(C)F 4 €) / n (|Vu|2d:1: - 72u2) dz
o |z° Q ||

+H(53(0)+ IV T=ml + eV T=ul§ +c [ wda
< (py,s(C)7H +€)/ (Vu2 - Wu ) dm+c/ u?dz.
Q Q

Cas 3: s = 2. We have 2*(s) =2

L—-n
(23) ||\/ﬂu”§*(s),|m|_s - / u?dr < 05/ u?dz,
Q\B;/2(0) Q

jz?

by the equations and we get the result. |

Proposition 2.2. Let Q2 be a bounded domain such that 0 € 0S).

() Ify <yp(R¥H"7F), then fi,6() > —o0.

(it) If v > yu (R¥H"7F), then firy,s(§2) = —o0.

(iil) If v < yu (), then py s(2) > 0.

(v) If yu(Q) <y <y (R¥m=F) then 0 > ., 5(Q) > —oc.

(V) If vy =vu(Q) < yu (R*"=8) then p., () = 0.
Proof of Proposition : Proof of (i): Let v < v (R¥*"=%) and € > 0 such that (1 + €)y < yg(R¥T"=F). By
Proposition [2.1] there exist ¢, > 0 for any u € D2(£2) such that

yH(RH’”’k)/ —de < (1+e)/ |Vu|2+c€/u2dm.
a |zl Q Q
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Since 2*(s) > 2 and {2 is bounded, Holder inequality yields ¢; > 0 such that

2
2% (s) 2% (5)
(24) / wildr < o </ 4 - d:v) .
Q o |z°
If v > 0 and since (1 — vy (RFF"7F)71(1 +€)) > 0, by ([24), we get

2
Jo IVul> =7 fo Tz(\jf S _ TGy
e
Q

Q
Jys(w) =

[]®

then for any u € DV2(Q2) we have ., 5(Q) > —oc. If v < 0, then g 5(2) > po,s(2) > 0 by Hardy-Sobolev
inequality.

Proof of (ii): We take (u¢)eso as in the proof of Proposition [1.1]-(i). We get

W N

1w = | @y -y W22 o) (m(g) ,
2% (5) €
WD,2

As s < 2 and v > v (RFH"=F) then lim,_o Jﬁs(ue) = —00, and fi,(Q2) = —o0.

Proof of (iii): We fix v < v (2). For any u € DV2(2)\{0}, we have that

_ SV = fo e (1 S >uo,e(ﬂ),
(fQ urw\() dm)ﬁ Yu($2)

3 s(w)

and then iy () > 0.

Proof of (iv): We assume that v (Q) < v < yg(R*¥+m=%) it follows from Proposition (iii) that g () is
attained by some ug. We get that i, () < J&, (ug) < 0.

Proof of (v): We now assume that vz (2) = v < v (R¥H"=F). Then p, () > 0. Here again, Proposition
yields an extremal ug € D?(Q) for vx(2). We get J& (ug) = 0, and then p1, ,(Q) = 0.

Sketch of the proof of Theorem The proof is very classical and follows the proof of Proposition 6.2
in [15]. We only sketch it to outline the specific tools we use here. Let (uy)reny € DV2(Q)\{0} be a minimizing
sequence [ s(2) such that ||uk||§*(s)’|m‘,s = 1. Using Proposition we get that (ug)gen is bounded in
D12(Q). As a consequence, up to the extraction of a subsequence, there exists u € DY2(Q) such that up — u
weakly in D12(Q) and strongly in L?() as k — +o00. We write ), := uy, —u, so that 0, — 0 weakly in D12((2)
and strongly in L?(Q) as k — +oco. We apply the definition of p1,5(€2) to u and Proposition to 6y for
€0 > 0 small enough. It is then standard to get that 6 — 0 strongly in D»?(Q), and then u # 0 is a minimizer
for py,5(€2). As mentioned above, we refer to the proof of Proposition 6.2 in [15] for the method.

3. REGULARITY AND APPROXIMATE SOLUTIONS

We say that u € D}2> () if there exists € C°(R™) such that 5 = 1 around 0 and nu € D2(Q). We define

loc,0
Uy (z) = |z| 727k Hle x;. As one checks
—AU, — %Ua =0 R o aef{a_,a,}
z
where
-2
oy = o 5 + \/WH(R’H""_’“) — .

Note that U,_ € DL2(RFm=k), . Tt is the model for more general equations:
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Theorem 3.1 (Felli-Ferrero). (Optimal regularity) Let 2 be a domain of R™ with a boundary singularity of type
(k,n—k) at 0. We fix v < yg(RF¥m=k). We let f: Q2 x R — R such that

|U|2*(s)72

|f(x,v)| < clv] (1 + T

Let u € DY2(REFM=R) 0, u > 0 be a weak solution to

) forallx € Qv € R.

—Au — 1 |O|(2|x )u = f(xa u) in D1’2(Q)loc,0
x
for some T > 0. Then there exists K > 0 such that
k
(25) A "u(dz) - K <H 1:1> |z| 7%= "% in By (0) NRFTR
i=1

uniformly in C* as A — 0.

This result is essentially in Felli-Ferrero [10]. Applying Theorem 1.1 of Felli-Fererro [10] to u € D%?(Q), and
since u > 0, we get that

NPV by () s [V S g (ﬁ) as A — 0%,
T

where y is an eigenvalue of L, := —Agn-1 — v on S~ N RFHm=F with Dirichlet boundary condition and
¥ : S*! — R is a nontrivial associated eigenfunction. Since v > 0, then % > 0, and then @ > 0, so
w=k(n+k—2)— - is the first eigenfunction and there exists K > 0 such that ¢(z) = K]_[f:1 x;. This yields
29).

Lemma 3.1. Assume the u € D1’2(R’“+’"_k)loc’o 18 a weak solution of

{ _Au _ Mu =0 m D1’2(Rk+7n_k)loc 0

ER

26
(26) u=0 on Bas N ORF+ =k

for some T > 0. Assume there exists ¢ > 0 such that
(27) lu(x)| < cz|™* for x — 0,2 € RFH"F,
(1) Then, there exists ¢1 > 0 such that
\Vau(z)] < cr|z|*7" as x — 0,2 € RFHF
(2) If lim, o |z|*u(z) = 0, then limy_o|z|*|Vu(z)| = 0.
Proof. For any X € RFFn=F et (X;); € R*¥""~F be such that lim X; = 0 as j — +oo. Take r; = |X,| and
0; = |ﬁ—;‘,we have lim;_,4oor; = 0. Define
i (X) = r§u(r;X) for all j, X € (Br(0) NR*"""*)\{0}.
Since u is a solution of the equation , we get
{ ~Adi; - L0, =0 in Bp(0) NRFE,

;=0 in Bp(0) N ORk+n—k,

Here, o(1) = 0 in C (RF+7=k\{0}). Since lim; ,;. X; = 0 and by (27), we get that |a;(X)| < ¢[X|~ for
all X € Br(0) NRF+"=F and all j € N. It follows from elliptic theory, that there exists & € C?(Rk+n—*\{0})
such that @; — @ in C}_(RF+7=k\{0}). Take 6 := lim;_, ;o 0; with |§] = 1, we have that

(28) lim |z;|* M Onu(z;) = 0m@(d) for all m =1,...,n.

Jj—+oo
We assume that there exists (z;); € R¥"~F such that x; — 0 and |z;|**|Vu(z;)| — +oo as j — +oo. Take
0; = % and we have lim;_, o |V;(6;)| = +oo contradiction with (28). The case when lim,_,o [z|*u(z) = 0
goes similarly. |
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4. SYMMETRY OF THE EXTREMALS FOR f ¢(RFF1=F)

In this section we present the symmetry of the extremals for p. s(R¥+"=%). The proof of the symmetry
carried out by Ghoussoub-Robert [16] in half space {z; > 0}. For v < yg(R¥+"=%) s € [0,2), we consider the
problem:

Ay — oy =Y in Rk-{-,n—k

[z[? |z] ’

(29) w>0 in RE+n—Fk
U= on ORk+m—k,

Theorem 4.1. For v > 0 and if u it is solution of the equation in C2(RFHn=F) 0 C(Rk+n=k\{0}) for all
ke {l,..,n}, then uo o = u for all isometries of R™ such that o(R¥"=k) = RFtn=F " In particular:

o There exists w € C°(]0, 00[F xR"*) such that for all x1, ...,z > 0 and for any ' € R"~* we get that
w(Ty, .y T, ') = w(xy, .., g, [27]).
e u is a symmetric function of k variables: for all permutation s of the set of indices {1,...,k}, we have
U(Z‘l, ceoy Loy Tho-1y +o0s xn) = u(ws(l)a cy Tg(k)s Lhtly ey I‘n)
We prove the theorem. We proceed as in Berestycki-Nirenberg [4] (see Ghoussoub-Robert[14] and Fraenkel|11]).
We write for convenience p := 2*(s) — 1. We define

1 _
F:= B, (2e_1>) ARM"=F and v(x) := |z]* "u (—e_f + |52> for all x € F\{0},

with v(0) = 0 and €] := (1,0, ...,0). Clearly, this is well defined. We have F = F; U F, where

F1 = 83%(

N

1
&N RF¥Hm=F and F, = U?ZQ (B;(2e_1>) N{z; = 0}) .

If x € Fy, then |22 = z1, we have v(x) = 0 or if z € Fy, then v(z) = 0. Consequently, v(z) = 0 for all
x € OF\{0}. We have that e € F. Since |z — |z|?e]| = |z||z — €] |, we have that

P

v
30 — Ay =
(30) R e (R P P

in F.

It follows from the assumptions on u that v € C2(F) N C(F\{0, 1 }).
We claim that:
(31) v(x”, —x,) =v(a”, x,) for all z € F,

where 2" := (21, ..., n—1). Theorem will be mostly a consequence of this claim.
Proof of . For A € R we define

Ty:={z eR%x, =X} ; a)y:=(",2\—x,).
ZA):={zx e F;z, <A} ; Y\ ={zxeR%x)\ecZ(N)}
Let —a := inf,cp p,, so that Z(A) is empty if and only if A < —a. Since
(32) lzal? — 2> = 4N\ — z,),

we obtain that Y (A) C F if A < 0. We adapt the moving-plane method. Take —a < A < 0 and define
gr(z) :==v(zy) —v(z) for all z € Z(N).

We claim that

(33) v(zy) > v(z) for A € (—a,0) and © € Z(A).

We prove the claim (33)). Since, A < 0, yields {z € Z(\) = z, € F}. Since

jex = lealPel P — lo — |el&l]? = (Joal® = 2f?) [L+ |2al? + |2 = 224]
for all x € R™, A < 0 and by , we obtain that
(34) lzx — |zal?et)? — |z — |z)?ef|? < 0in Z(N).
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We define
vE)P—v(@)?
(@) =4 N )=o) ifu(@) # v(@).
pvP~H(x) if v(zy) = v(z).

The equation of v, v >0 and yield

o(x) o) o) o)
—A - — —
» 7[|sc—|sc|27|2 r— a2l T o= 2PEF  Jox— [eaPeil
< D el
[z — [2Pel 2 FRFEEE
then,
(35) —Ag)\ +d)\g)\ < 0in Z()\),

where dy(z) := y|lz — |z]2e7| 72 + ex(z)|z — |z[ef| 5. We have Z(A\) = F N {z € R",z, < \}, this gives that
0Z(A\) C OF UT). Therefore,

(36) gr(x) > 0if x € 0Z(N),
with the strict inequality when = € dZ(A)\Ty and z) € F and with equality when € 9Z(\) N Ty. Again,
g)\( )ZOIfZ‘ T\ in@F\T,\

Step 1: We prove . ) for A+ a > 0 close to 0. Since z € Z(\), we have z € F and z,, < A\. But A < 0 thus
x ¢ {0,7}. On the other hand , we have 0 < |z| < 1 and

g ()
37 dy(z)] <
() DO = e 1R |l

But v € C(F\{0,&]}), then is a ¢y > 0 such that 0 < v(z) < ¢o sur F\{0, & }. The deﬁnltlon of cx(z) and (37),
then there exists ¢; > 0 such that |dy(x)| < ¢ for all z € Z(A) and A < 0. Next, gy verifies For any 0 > 0,
if A € (—a,0) is close to —a, then |Z(\)| < §. It follows from Theorem [4.2| that for A close to —a, we have

ga(x) >0 for x € Z(N).

We now prove for x € Z(\). Here again, for any § > 0, then |[Z(A)] < 6 for A € (—a,0) close to —a.
Moreover, Z(A) is bounded and g, verifies . The Maximum principle (Theorem below) yields gy > 0
in Z(A) or gx = 0. We assume by contradiction that gy = 0. We fix x € F N {z € R, z,, < A} such that
v(z) = 0. The definition of gy yields v(xy) = 0 and in addition z) € JF. Equation (AN(A—zp,) = 0) yields
A\ = 0: contradiction with —a < A < 0. This yields and Step 1 is proved.

We let (—a, 3) be the largest open interval in (—oo,0) such that
gx > 01in Z(X) for all X € (—a, B).

Step 2: We claim that g = 0.

We prove the claim. We assume 8 < 0 and we argue by contradiction. Since gy(z) for all x € Z(A) and all
€ (—a, pB), letting A\ — 8, we get that gg > 0 for z € Z(f). As in the proof of Step 1, the case gg = 0 is

discarded and the maximum principle yields gg(z) > 0 for all z € Z(3).

We fix § > 0 that will be precised later. We let D C Z(3) be a smooth domain such that |Z(3)\D| < 3. Thus

gp(x) >0 when z € D. For 0 < € < €g, we define G, := Z(8 + €)\D. We let ¢y > 0 small enough such that, for

any € € (0,¢p), we have that |G| < ¢, 8+ € <0, and gg+e > 0 in D. Equation yields,

7Ag/3+€ + dﬂ+€gﬁ+5 <0in Ge~

With and gg > 0in D, we get that ggy. > 0 on 0G¢. Then, up to taking § > 0 small enough, by Theorem
below, we get ggie > 0 for z € G.. As above, the strong maximum principle yields gz > 0 for z € G..
Consequently, gsg4+e > 0 in Z(8 + €). This contradicts the maximality of 5. Then 8 = 0 and gx(z) > 0 for
A € (—a,0) and = € Z(A). This proves (33).

Step 3: Letting A — 0 in (33), we get that v(2”, —z,) > v(z”,z,) for all x € F such that z, < 0. By
symmetry, we get the reverse inequality. This proves (31)).
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Proof of the first part of Theorem (4.1 Permuting x,, and any z;, j € {k + 1,...,n}, it follows from
that v is symmetric with respect the hyperplane {z; = 0}. Coming back to the deﬁnition of u, we get the
desired symmetry.

Proof of the second part of Theorem As above, this will be a consequence ofa claim. We claim that
(38) u(zy, zo, ') = u(xy, x1,2') in REHN=F,
Proof of (38). We define B, ={re REFn=F 3 — 25 > 0} := D{ N Dy N (NE_, D) where

D} :={x1 + 3 >0}, Dy :={x; — 23 > 0} et D} := {x; > 0}.

We consider the isometry o(z) := (Il\'/%“, Vo ') for x := (z1,72,2") € R x R x (RF"? x R"™*). We have

that o(E ) = RF+m=k  We define v(z) := uo o(x) for all z € E' . Equation of u, the isometry o and
the definition of v yield

(39) —Av— ——v=——ink
For any = € R"\{0}, we define the inversion i(x) = —ej + - We note that: i~1(D}) = D!, and then
@ =),

We define o(x) := |z[>~"v(i(z)) for all z € H =i 1(Efs_k), where v(0) = 0 and 0, ef € @H. Since v verifies
and by the definition of ©, we obtain that

—_

1
xez‘*l(D’l)@xeB% (2(a>+?2)> sxei”Y(Dy) e xeBa (2

iy
ja?lz — €2 Jalle — €l

We denote that & € C2(H) N C(H\{0,e7}). Arguing as in the proof of [B1), we get that d(z1,32,2") =
(1, —x2,2") for all x € H. Coming back to v, and then u, we get . As noted above, this yields the second
part of Theorem [4.1]

Theorem 4.2 (Maximum Principle for small domains). Let Q C R™ be open domain and a € L () such that
llalloo < M. Then there exists 6(M,n) > 0 such that we have the following: if || < & and u € HY(Q) satisfies
—Au+ au > 0 weakly and uw > 0 on 02, then u > 0 in €.

Proof. This result is cited in Berestycki-Nirenberg [4] and Fraenkel [11]. We give a short independent proof.
Since —Awu + au > 0 weakly, we have that

/ ((Vu, V) + aup) dr > 0 for all p € H}(Q), ¢ > 0.
Q
We take ¢ := u_ = max{0, —u} € H}(Q2). Since Vu_ = —1,.0Vu a.e, we get

/ (|Vu_* + au?) dz < 0.

Q
Since u2 € L* (Q), Holder’s inequality yields

2 2

(40) /Q|Vlt—|2d$C < llallscmes() " lu—ll3. < [lallocd™ [lu—]|3.-

On the other hand, it follows from Sobolev’s inequality that pgo(R™)|lu_||3. < ||[Vu_|3. With and
6 := [po,0(R™)Hall2] 2, we obtain [u_||3 = 0. Therefore u > 0 in Q. O
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5. EXISTENCE OF EXTREMALS: THE CASE OF SMALL VALUES OF vy

We estimates the functional J'?,s at some natural test-functions. We let W € DV2(RFTm=%) be a positive

extremal for i, (R*""=F). In other words,
e gy = e (VWP — GtV do

58 _2
Y [W[2* () | ZF (&)
ka+,n—k BB

= Mv,s(Rk+’n_k)~

Therefore, there exists £ > 0 such that

—AW - oW = ¢ i RERk,
(41) W >0 in RE+Hm—Fk
W =0 on ORk+—k

They exist under the assumption that s > 0 or {s =0, v > 0 and n > 4} (see Ghoussoub-Robert [16]). By
Theorem there exists ¢ > 0 such that

(42) W(z) < clz|~* asz — 0.
It follows from Lemma that there exists ¢ > 0 such that
(43) VW (2)| < ¢|lz|17% as z — 0.

Define now the Kelvin transform W (z) := |2 W (i), since W satisfies (41), then W also satisfies (41]). By
, and the definition of W we get,
(44) W(z) < clz|~ and [VW (z)| < c|z| ™17 as |z| — +oo.
For r > 0, we define B, := (—r,7)* x B"%(0), where B*~%(0) is the ball of center 0 and radius r in R"~*,
We take the chart (¢, U) of Definition [1| so that
¢(Bss NR¥T™F) = ¢(Bss) N Q and ¢(Bss N ORM ") = ¢(Bss) N 09,

where § > 0. We write the chart ¢ = (¢, ¢?,...,¢") and the pull-back metric g;j(z) := (¢h,u(2))i; =
(0;¢(x),0;¢(x)) for all i, j = 1,...,n. The Taylor formula of g;;(z) arround 0 writes

(45) gij(CL’) = 0;5 + Hyj + O(|:)3|2) with H;; = Z[ail¢j(0) + 8jl¢i(0)]xl.
=1

As & — 0, the inverse metric ¢! = (¢%) expands as ¢! = Id,, — (Hij)1<i,j<n + O(|z|?), and the volume
element is

(46) |[Jac(@)(x)| = 1+ Y 9;¢” (0)a; + O(|z?),
i,j=1
as x — 0. For any € > 0, we define

(47) W, (z) := (ne*"T’zW (6*1-)) o ¢ (z) for all = € ¢(Bss) N and 0 elsewhere,

where 7 € C2°(R") is such that n(z) = 1 for z € Bs(0) and n(z) = 0 for z ¢ Bys(0). Theorem will be the
consequence of the following estimates:

Proposition 5.1. Let 0 < vy < yg(RFtm=k) = W, and assume that there are extremals for u%s(Rk"””_k).

Then there exists Cg,s positives constants where B =1,...,3 and for all k € {1,...,n} and m = 1,.... k such that:

(1) Fory < yu(RFFm=k) — 1 we have that

(48) T (W) = iy, s(RFEF) (1 + GH, o (Q)e + oe)) -
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n— 1
(2) For~y =~yu(RFtF) — 1,

1 1
(49) Jgs(We) = iy s (RFFRY <1 +GH, (Q)eln () +o (e In ())) .
’ € €
with GH, 5(Q) as in (7).
Proof. Take Bg,+k := B; NRF¥ "% For any family (ac)eso € R, we define

o(a.) if y < yg(RFE1=F) 1
O, (ac) = { Oa))  if 5 = g (RF+7—F) % as € — 0.

In order to get lighter computations, we take the following conventions: the integral symbol [ means || B
and AY = B.-isN{x, =0}
Step 1: We claim that

we have that

—loqk’

/\VW€|2dx:/ VW Pdr+e S 8ji¢j(0)/|VW|2xidx
Q Rk m—k 1<i<ksj>1
k

—2¢ Z (A1 + Az + Omm @™ (0) /&nW&anmdx

m=1

+ ) [0mid'(0) / OiW 0 W idz + i (0) / OW O;W z,,dx]

i>15i#m

k k
+ Z Z [Ogp?™(0) /8mW3qupdx + 0ped™(0) /8mW3pW:17qu]) +0,(e) ase—0
p=L;p#m q=p+1;q#m
where or m =1, ..., k, we define g, == (21, ...,0™, ..., T, Tht1, ..., Tp) and

k
i=1;i#m B 154k
Ao = Y 0u¢™(0) / O Wa;0;W da.
i=k+1 Bo—1s 4k
k 0% (o)
Bl’m = Z 8”(bm(0)/~ |W pn Lﬂ;x?dw
i>15i#m B._15 1k |z ||
n W o* (o) -
By, = Z 3¢i¢m(0)/ W] = %ﬁdm
5o BT
Note that
(50) { ay —a_ >1&y<yg(RFF) - % }
ap —a- =1y =yy(RF"7F) - 1
Proof of Step 1: By and , there exists c¢; > 0 such that
(51) IVWe(z)| < c1e®+ =2 |z|71 =%+ for any z € Q.
Therefore,

VW, |2dz < c?ezo“r*"“/ || 7272 d
¢((Bas\Bs)RA k)

/‘b((BM\Ba)ORH,n-k)

since 2ay —n+2 = a4 — a_, we get that

/ VW, |2dz = ©.,(€) as € — 0.
&((Bss\Bs )NRE+m—k)
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Then,

/ VW |?dx = / IV(We 0 0) |3 ucil Jac()|dx + ©,(e) as € — 0.
Q B,

S+

It follows from and for any 6 € (0,1] that

[ W= 19070 0) bl ac(@)lde = 32 [ 70,07, 0 0)0,0W. 0 0)|Jac(o) dz

i5>1
+0 /
B6,+k

Using ([45]), we get Digs1 Hijg =230 115 0,147 (0)z;, and then

|z |* 0|V (W, o ¢)|2dl‘> + 0O,(€) as e —» 0.

[IvWpde= [ 190000l Tac(s)do
Q k

By i«

(52) —2 % 0,6'(0) /

i,5,0>1 Bs 1k

6I(We o ¢)31(W5 o (]5)1‘]|JCLC(¢)|dZ' + O (/~

Bs ik

||V (W 0 )2 dx) +6,(¢)

as € = 0. The two equations , and the change of variable z := ey yield as € — 0,

[ NWedala@ldi= [ [VWPdse Y 0u0/0) [ [VWPads

B o154k Bo—1s 4k 1<i<k;j>1 B o154k
(53) e Z 8ji¢j(0)/|VW|2xidx+O </|x2|V(W€o¢>)|2dm),
k+1<i<n;j>1
and

(54) /B 01 (We 0 9)0;(We o @)zl Jac(¢)|de = e/@lW[)injdx +0 </ |x|2‘V(VVE o ¢)|2d1') .

5,+F

Plugging together (52), (53), yields
/|VW€|2d:r:/|VW|2dx+e > 3ji¢j(0)/|VW|2xidx
Q

1<i<k;j>1
te > 8j¢¢j(0)/|VW|2xidx—2e > aijqﬁl(O)/alW@-ijd;v
k+1<i<n;j>1 1,5,1>1

+0(/ e[|V (W, 0 6)[2dz) + ©.,(€) as € — 0.

o If v = vy (R¥ %) — 1 we choose 0 € (0,1).
o If v < yg(R¥"=F) — 1 we choose 0 < § < oy —a— —1 (see (50)).
Therefore, it follows from that we have as ¢ — 0 that,

(55) /B 2| V(W 0 ¢)2dz = O, (c).

5.+

Since v > 0, we use the symmetry of W (see Theorem [4.1)). For i > k + 1, W and R*+"=% are invariant by

x = (z1,..., —Ti, ..., Tp), then a change of variables yields

(56) / VW P, dar = —[ VW 2asda = 0.
B

e=1ls,+k Be*lJHrk
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This equality and yield

/|VW6|2d:c:/_ VW Pdz +e > aji¢j(0)/ VW 2z,dx
Q B

e—ls,4k 1<i<k;j>1 Bo—15 1k
(57) —2e Z 8ij¢l(0)/ OWO;Wxjdr + ©4(e) as e = 0.
i,7,0>1 B 151k

The inequation and —2 — 2a4 +n = — (a4 — a_) yields,

/ |[VIW|? dz| < 02/ |z| 7272 dx < cet T,
REHR=K\B__15 REtm=k\B &
therefore,
(58) [ WPae= [ [WWPdz e, asc 0.
ée—l(gﬂ,k RE+,n—k
Using again the symmetry of W as in , we get
i,5,0>1 Bo—15.4k
k
m=1 Be*15,+k
+ ) [ammi(o) / ;WO Waidx + 0’ (0) / W OWz,, dx}
i>1i#m

k k
Y {aqqumm) / O WO, Wz + Dpy™ (0) / amwapwqux}).

p=1;p#m q=p+1;q#m
Combining 7 and the last equation, we get Step 1.
Step 2: We fix ¢ € [0,2]. We claim that
W, |2 (@) W2 () _ W2 (@)
/ %daj :/ %dﬂ? +e€ Z Gjiqu (0)/ %Jiidl‘
o |zl R el 1<i<hij>1 B 15 4k ||

k *
g m |W‘2 () Tm 2
—65 mz;l <Bl,m + Bz’m + 8mm¢> (O) / 7Wl’mdl’

— Boag e 12l

, W|Z (@) g,
+2 Z 8,,”1#(0)/~ |§2xmxidx

i>1liitm Bo—15 4k

k k *
m w2 @ g,
=30 DD SRR I UY 'quxpdm +6,(0).

p=Lip#m q=p+1l;g#m Be-15,4k
Proof of Step 2: Equations and yield
(59) [We(x)| < ce°‘+_nT_2|x\_°‘+ for all e > 0 and z € Q,
this implies,

< 2@ ar-15) / |+ @0 gy
(25(335\35)09

~/¢(Bg5\35)ﬁﬂ |x|0
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and then, since 2*(0) > 2 and ay + a_ = n — 2, we get that

2*(0)
/ %dw = 97(€>.
6(Bss\Bs)na 7]

|WE|2*(o)d _/ |WEO¢|2*(U)
a l|zl7 B |¢(x)|”

Therefore,

(60) |Jac(p)|dz + ©4(€) as € — 0.

5.+k

We choose 6 € (0,1) as follows.

19

o Ify < yg(RF+"=F)— L or {y = v (R*""~F)— 1 and 0 < 2} we choose § € (0, (oz+—oz_)¥—1)ﬂ(0, 1).

o If vy =y (R¥ %) — L and o = 2, we choose 0 < 6 < 1.
This choice makes sense due to (50)). Since d¢y = Id, a Taylor expansion yields

(61) 677 = ol 7 1= 305 3 0o O)miziz; +O(jal *7) | as e =0,

4,5,0>1

Inequality yields,

2% (o) || 146
/ [We o 9| 2] dz = ©,(e).

B |p(x)]

5,4k

The estimates , and the last equation get,

2% (o) 2% (o)
We[* 2 doe — / MUGC(@W%
o el 5, P
%% 2% (o)
(62) 2 oo [ B i act) i+ 0,0,
2,2 By T T
7,7,0>1 5,4k

In view of , and the change of variable z := ey yield as € — 0,

W, |2 (@) Ww12" (@) ) W12" (@)

/ Vel () dar = / P " g ve S 0,60) / W e
Bs ik || B.15 .k |z 1<i<kij>1 B 15 4k ||
. W2 (@)

(63) +€ Z 6ji¢J (0) / Ll‘zdﬂc + 6"/ (6)

— By 1707

k+1<i<n;j>1 e—1ls,+k
And,
W, |27 (@) W2 (@)

(64) / WP D a1 o | Tac(o )|d:zc:e/ WET @ de + 04 (0).

5, . P Tl B, TP T
Plugging together , , yields,

W, [2" (@) Ww|2" (@) ) W12" (@)
/%daj:/ %dw—i—e > ajiqsf(o)/ %xidm
o 2l 51, [ o By I

) W |2 (o) W2 (@)
+e Z 8ji¢J(O)/é | ||U zdr — ef Z 0i;4'(0 /B wE = |x|12x zjdx + O4(¢).

el

k+1<i<n;j>1 e—ls,4+k 7.] >1 e—ls,4+k
By equation , we have
Ww12" (@)
/ %dw = 0,(¢).
Rk+,n7}c\1§67151+k |x\
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Since v > 0, using the symmetry of W as in and the last equation,

W, |2" (@) W|2" (@) ) W12" (o)
%da; = / %dw te Y 0 (o)/ %xidm
Q |f17| Rk+,n—k |'T| 1<i<k;j>1 B e—ls 4k |.’IC|
w
(65) A SR I R L)
2 i,gl>1 B, 154k |$| ‘ |
We use again the symmetry of W,
WZ @) g b
Z 81‘j¢5l(0)/~ | | - l2m xjdr = Z (B1,m + Ba2,m
i,5,0>1 B 15 .k |$‘ | | me1
w2 @ g,
+0mm 9™ (0) / %%xﬁdﬂﬁ
Bovs e 1717 |2
7, w 2% (o) x; i w 2%
+ Z Omi®' (0 / % T T T dz + 9im¢" (0 )/ Wi = 2:czxmda:]
i>1i#m B.—15 .k |£L" | | B =151k |{17| ‘ |
k k
m W W@ g,
+ Z Z [Ogp® (0)/_ ||a|:|0' |2qupdx+apq¢m( )/ |m|0|x2mpqux])
p=1ip#m q=p+1lg#m Be—15 4k Bo—15 4k

Replace the last equation in (65)), we get Step 2. O

Step 3: We now prove and . We fix m € {1,...,k}. For: i=1,..,n; l=k+1,...,n; p=1,....k and
qg=p+1,....k such that i, p, g # m, we define

My, m, ::[ OmWaxp,0pWdx and M, ::/~ O Wax0Wdz.
Bo—1s 4k B 154k
BE_1§,+k 36—15‘_,_1&-
Lpg ::[ O WOoWzedx and Ny, pg ::[ O WO Wapdx.
B 15,k B 15 1k
I, ::/ O WO, W, dx.
Brl(m—k

Lemma 5.1. Here { > 0 and s € [0,2], we have as ¢ — 0 that:

22 s W2 w2 2 w2 (s)
= [ e (e st (1-525) [ wn e e,
brsn B CTE R TR 1) Js,. EERAAR

elo,+k | ‘ Lo, 4k

12 2* 2 2 2
s W w 20 W |
2Mpm = /~ p T2tm (52* ‘ | +7| |2> dx — / %da +6,(1).
B B ,15ﬂ{xm:()}

e*16,++

1% 2% (s) W2 2 8mW 2
2My = /~ 2a:m (52*8 I | — t7 2) dr — /~ %da +0,(1).
B 15, || || || B,_1;n{zm=0}

x2 s W2 w2 1 1 W2 (s)
Ki,m+Ji,m:/ —=Tm (f +7> dzr + (—)f/ T ————dz + 0.,(1).
5 P\ e TP 2 7)) R 2

e—ls, 4k e—1s,+k

TqTp ( s W¥E W2> 1

Linp,g + N, Z/ 1 %m |57 +7 —*/ 242 (0 W)2dx + ©,,(1).
i S-S 1o 2+(s) ef* T[] 2 )5 _infem=0) !
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Proof of Lemma[5.1. We first state two preliminary remarks. First

(66) / (W2 + |2|W|VW| + |z|?|[VIV [2dz) = ©,(1).
836716Q]Rk+’n7k

Another remark we will use often is that
(67) OW(z)=0ifa; =0,j#4,j<k

We want to calculate the value of

f= [
B

For any domain D, we define v as the outer normal vector at a boundary point of D when this is makes sense.
For any j = 1,...,n, v; denote the jth coordinate. In the sequel, the normal vector will be defined except on
lower dimensional portions of the boundary and the computations will be valid. On {z, = 0} = 9{z, > 0},

72

O W O W 2 da = / (8mW)28m(7’”)dfv'
B

e~ls,+k e—1ls 4k

the outer normal vector is (0,...,—1,...,0) = (Va,i)i=1,..,n Where v; ; 1= —0;; for i = 1,...,k and j > 1. Since
W(xo.m) =0, (66) and integrations by parts yield
2 2
Im = - / 22, Oy W Oy Wl + / ) EmOnW)
B6’15,+k B(B6’15,+k) 2
= _/ 22 0 WIAW — Z 0iiWldx + O / |z|2| VW |2 dz
Be_lJHrk i>1;i#m aBeflstkJﬁnik
Bo—1s 1k i>1jim Y Be—154%
= / 23,0 W (=AW)dz — > / 22 0 WO, W da:
Be*16,+k i>1i#m e—1ls,+F
+ > / _ 22,0, WO, Wuidz + 0,(1)
i>1iigm ? O(B—1s 4k
)2
_ / 220 W(~AW)dz — 3 / (O
B e—1 k e—1 k 2
e—1ls + i>1i#m 5.+

o Z/ 23, O W O;W g ido + ©,(1).

i>1i#m a=1 B -15M{za=0}

Using again the integrations by parts and (| ., we get

T\ 2
I, — / 22,0 W (~AW)de — 3 / (31‘24/) )dz + O, (1)
Be—15,+k i>1;i£m e—1ls 4k
= / 2,0 W (= AW)dz + > / W)2dx
Bo—15 1k i>1#Em Y Pem1s,+k
-y 22, O e 0,1
i>15i#m a=1 _150{9ca_0}

22 0 W (=AW)dx + T (VW2 = (8, W)?)dx + ©,(1)

e 15,4k e=1ls,+k

22 0 W (—AW)dax + L | VIV [2d2 — / Ly (O W)2dz + ©,(1)

e ls, 4k B

e~ 15,4k e—1s,4k

22 0 W (—AW)dz + Ty | VW [2dz — I, + ©.,(1).

Il

e—1ls,+k e—1ls,+k
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With equation (41)), we then get

W2 )1 w
(68) 21, = / x2 0 W (5 +v 2) dz +/ 22 [VW|2dz + ©,(1).
B R By
Integrating by parts, using that W vanishes on OR* ™"~ we get that
W2*(a)—1 W2*(a’)
/ xiﬁmWigdm = / 22 |77 0, <*> dx
Beflé,ﬁ»k |.'L'| 35—15,+k 2 (a)
[ ot e [ 2 ol o2
= — m (25, |27 x + o Vpdz
B,y 2*(o) (B, 15,k 2*(o)
2 W2 (o) o W2 (o)
(69) S / gy — / 22V r o)
2@ Jp, .l ) e, T e T
as € — 0. We claim that
w2 W2*(s
(70) / Im\VW\zdz:'y/ xm—2dgs+§/ Ty ————dz + O,(1).
Be_ls,+k Be_lri,-}—k |$| B —1l5 4k | |

Proof of (70). We multiply equation by z,,W and integrate by parts to get

w2 WQ*(S)
/ T | VW |2 dx = —/V(mm)WVWdJH—/me&,de—i—fy/xm —zdr+& [ wp———dx
B 144k o |z| |z|
2 2% (s)
/me ( )dm+/mmW8de+7/:rm|W| dr+¢& me[TP
)
2 2* (s )
(71) = —/ M; 0, zmdx—i-/me(?l,de—ny/sz/de—F{ szV‘ E
a d

where all integrals are taken on BE—IJ,J’_IC or 83571574_;6. Since W vanishes on ORF+ "% and by , we have

(72) / Ty, WO, Wdx = / T, WO, Wdx = 67(1)'
aBe—lg,.;.k aéeilamRkJﬁn—k
And,
2 2
(73) / W otmds = / L — e,(1).
B 15 .k 2 OB, 1 ;NRk+mn—k 2

Then , and yields .
Combining , and , we obtain

2 W) s w2
2I, = ¢ —7/ Tm dx + / 22 Ty ———dx
l 2*(s) /5 |=[* 2*(s) /5 |z[++2

e—15,4Fk e—1ls5,+F
gl l—/
Be_15,+k

x? s Wre w2 2 w2
= T TmlE s +y—sldr — / Ty ———dx
/” 277725 (s) [l |z[? 2%(s) J5 |[*

x
Bo—15 1k Be—154k

+

/ T | VW [2dz + ©,(1)
B

e 15,4k

w?2 w?2
xmwda: + /B xfnxm EEe dx

6_1(5,+k

W2
- 'y/ J;m—zdm—&—/ T, | VW 2 dz + ©,(1)
By 7l B

e—1ls,+k
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And then
2 |: s W2*(s) w2 ) W2*(s)
5 TP 5T @ o TR T G s, TR
w W2 (s w2
_ 7/ xm—deJr/ [ . +’y ] dz + 0,(1),
B || B NEEEE

e—ls,4k e~ls, 4k

23

by the last equality, we obtain the value of I,,,. We now fix m,p € {1,...,k} such that p # m. Integrating by

parts, we get that

2
M, = / O W0, Wi — / 0, W0, <“§P> 0, Wda
Be_18,+k Be_15,+k
1’2 (E2
P p
_ / 20, (0 W O, W ) + / ] O W L0, Wy,
Bo—154k (B -15 k)
with v; j == —4;; for i =1,...,k and j > 1, since W (zo,m) = 0, we have that
T T
My = —/ —0,(0mWO,W)dzx —|—/ O W —=+0,Wu,do
36715,+k B‘_léﬂaRk+’"7’“ 2
+0 (/ |x|2|VW2do>
Rk+’n7kﬂaé e—1s
2
X
/ pa (8 WO, W)dz + Z/ O W L3, W, pdo
_ 2
—15 1k —15N{xza=0}
+0 (/ |x|2|VW2dU>
Rk+m—kNIB__y;
/ ampwa W + 8, W,,W]dx + 0,(1)
e—1s 4k
2 2
:/ by Wi AW}dxf/ Tog,. (W) d
B’6—15,+’c 2 Be—la,+k 2 2
2
X
+ > / 5 0n W0 Wz +©5(1)
§>Lgp Y Bemts,4k
2
:/ ) W[—AW]da:—/ |a W|v,,do + Z / a WO;;Wdx + 6,(1)
- 2 m 4 m JJ
Bo—15 4k B(B —1s, +’C) ji>1;5#p e—ls,+k
1‘2 2
_ Ty, WI—AW]dz / % o W P
/Blm 2 az::l Bo1n{za=0} 4
2
X
+ > / 5 0n W0 Wi +©5(1)
J2Lij#p Y Tem o4k
And then
2
My, = / . T o0 W AW]d — 3 / 20,0, W, Wz
Be-154k J2Lij#p” el 4k

2
x
+ 0> Z/ O WO;Wra jdo + ©,(1).

j>l5#pa=1 ,15ﬁ{ma:0}
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So we have

My, = / Pa W[-AW]dz — ) / |aW|)

Be*1§,+k j>Ll5%#p e—15,4k

+ / |8 W2V mdo + ©,(1)
B_150{acm—0} 2

- / pa W[-AW]dz — ) Z/ 4|8W|2uam o
Be*15,+k ji>lj#p a=1 *1ém{x”_0}

+ / T 9 W o + 0,(1)
B, 150 {zm=0} 2

= / ?pamW[—AW]dx—/ |8 W[2do + ©,(1).

B 15 1k B.-15M{zm=0} 4

Moreover, using , we have that

22 (s)-1 220, W2
My, = / 29, W W+§L dx—/ Mdcﬂr@v(l).
2 |z[? B, 1 ;0{zm=0} 4

B, 15k jz]°

Using again that W vanishes on OR*+"=F e get that

WQ*(U) 1 WQ*(U)
/ xi@mwidx—/ a:§|x\—“am e dx
B || B 1y 4k 2

e—1s,+k

g xzxm 9% () 9o 9()

- (o) [= 0’+2W dr 40O _ |.’£| w do
2 B.—i5 4k || OB, _1 sNRK+m—k
2
o g X {,Cm 9% ()
_2*(6)/315 |x|“+2W dr +0,(1) as ¢ — 0.
Moreover,
22T, s W2 W2 2|0, W2
Mpm = / ’ (5 +7> —/ L do +0,(1).
’ Befls,w 2|$|2 2*(8) ‘$|S \x|2 Be—lgﬁ{xm,ZO} 4 K

The proof is similiar for M, for all I > k+ 1. Fix m € {1,...,k} and ¢ > 1 such that ¢ # m, we have that

Kim: = / 6iW8meidx=/ O;W O, W x; Oy T dex.
B

B

e—1ls,+k e—1ls,+k
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Integrating by parts again and using (67)), we get

k
Kim = — / 220, O W Oy W — / L2 O W Dy W i + Z / L2 O W ;W v mmd + O(1)
Ag
1
/xzxma W (—AW)dz + Z /1: T O;W0;;Wdz — 5 /xixm(?i(é‘mW)de—F@,y(l)
JZLij#m
/ L ;W (=AW )da — / TmOiWOWdz — / T2 0y WO; W d

Jjz1ij#m

/xm(a Ww)? x—fZ/ iy (O W) l/a’ida?—‘r@v(l)

Jj=Llig#m

1

= /xixm@iW(—AW)dx— im =g Z /xzxm (0,W) 2dx + = /x,,b(amW)Qda:+@7(1)
1
2

:/xixmaiW(fAW) it S /:cm[?W

Jj2Lj#m

- Z Z/ T2 (0;W) vy idx + = /xm((?mW)2dﬂC+@v(1)

]>1 j#FEm a=1

:/xixmaiW(—AW)d Jlm+ 3 /

]>1 JjEmM e~ ls,+k

1
W)de 4 /xm(amW)ngc Lo,(1)
1
_ /xixmaiW(—AW)dx — Tim + i/xm\VW\de +0,(1),

since W is a solution to , then there exists £ > 0 such that

W2 )= w 1
Ki,m + Ji,m = / TiTmO;W 57 + Y 3 dx + = / Im‘VW‘QdZ‘ + @7(1).
5 |z[* || 2J5 .,
B 15 .k B 15k
Since W vanishes on OR* "% we get
W2 (o)1 1 T .
/ TiTm O W ——dr = - / a: xa 0y (W2 ("))dx
By ] >0 Jo_,, . T
1 / W2 (o) o / ) 2" (o)
=— T, dzx + 5T, dx 4+ 04(1)
2(c) /3 |z 2*(0) J5 |z|7+2 !

Then with

x? s WT(S)_F w2 d
P S ors) ol TR
W2 (s)

+<;_2*1(s)>5/35 T 4+ 0,(0)

—lo,+k

Fixme{l,..,k},pe{l,...,k} and g € {p+1,...,k} such that p,q #m. We get

Linpq: = /1_:-} 8mW8pW$qu=/E} OmWOL,Wa,0pxpde.

e—1ls,+k e=1ls,+k
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Using again the integrations by parts, and (67), we get

k
Linpg=— / LT O W Dy W da: — / pTgOpW Oy Wl + > /A g Om WO W e pd + O (1)
a=1 €

1
= /qupamW(—AW)dx+ Z /qupﬁmWaijd:c— g/xqmpam(aprdm—F@V(l)
jzLj#p

_ / 2O W (— AW )d — /

20 WOWdx — > [ 2p340j,n WO, Wda
B

15,4k izLj#p
k 1
+ Z Z/ zquamW@-WVa,jdmeZ/ 242 (W) v mdzr + 0,(1)
j>1ijp a=1" AL =174
1
_ / 2O W (= AWz = Novyg =5 3 [ 22,0 (0 W)
JZLj#p
+/ Ty (O W)V mdx + (1)
Az
1 k
- / LgTpOmW (= AW)dx — Ny pg — = > / 247 (; W) Vg mdz
2 o

+/ Tqp (O W) Vi mdx + (1)
Ag

1
= /qupamW(—AW)d:r — Ninp,g + 3 /Am Ty (O W) Vi md + ©,(1),

with A% := B,-15 N {x4 = 0}, other integrals being taken on Be—lg7+k. With (41]), we then get

Linpg+ Nmpq = /

W2 (s)-1 W ) 1
B

- 4 - 2
LqZpOm W ({ P —|—’y|x|2 dx + 5 /E?Elém{zm—o} ZqZp(Om W)V mdx + ©4(1).

1o,k

Integrating by parts, using that W vanishes on OR¥*"~F for o € [0,2], we get that

W2 (e)-1 W2 (o)
/ qupamWiadx = / qup|x|_gam (*) dx
35*16,4»]‘7 ‘x| 35*15,«#7“ 2 (O—)
2% (o)
— *L/ l'ql'pfmi“dw + @7(1) as € — O.
20) Js, ., T

And then

qupmm< s W¥E) w2

1
Lo Nipg = — |-z OmW)2dz + ©,(1).
pa T P:q / 52*(8) EE +’7$|2> 9 ‘/Be—lsn{aim_o} TqTp( )7z + ©4(1)

Boag e 7

This ends the proof of Lemma[5.1] O
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We define (all integrals are taken on 36_15 L)

A = 9;i¢’ (0 </|VW2mzdx— /|| B xldaz>

1<z<k ij>1
k

—QZ Z 0;i0™ ( (/8 Wx;0; de+’y/ |W| Qxida:>

m=1i=1;i#m

—zz Z 050 (0) ([ DuwWaowan 4~ [ VL Tn 2y,
" Z AT

m=1:=k+1

-2 Z Ommd™ (0 (/8 W&,Lmedx+'y/ ||W||2 e |2xmxmdaz)

—22 > O0mid' (0 (/awa Wa:dx—&—v/'

m=1i>1;i#m )

i W a
_QZ Z Oim @' (0 (/8W8medz+7 BE | |2 T;Tmdx

m=14i>1;i#m

k k k \W|2
+ Z Z Z qp¢m ( /8 Wo W{,dex—i—"/ | |2 | |2qup
m=1 p—l'p#m q=p+1l;q#m
3 S W2 2
—i—Z Z Ogp?™ ( ( /8 Wo,Waqdx + v z |2 z |2xpxq

=1p=Lp#m g=p+1l;g#m

and
_ W2 ) koo k W2 )
Bom X oo [Fn 350 > 2w WP 2
1<i<k;j>1 |z] m=1i=1 2| 2|
k n *
s (W) (WP 22
B 9™ ( Omm ™ ( 22, dx
32 3 o) [ E s -3 S aueno) [ R

—

m= m=1p=1;p#m g=p+1;g#m

i>1i#m

Steps 1 and 2 and (59) yield

iz )
iz )

2 2
/ VW |? — v W de = / |VW|2—’y|W| dr + Ace + 0, (e),
) |z[? Ri+n—k |z[?

0 TERC)
dx = / dr + €B. + ©4(¢)
R+ |T[®

W2 W2 s
VW —y— | de =¢ dx.
| 2
Rk+n—k |z] REtn—k |T]®

Since W is an extremal for the Euclidean inequality, we have that

S (VWP = 25 W?)da

2
W?2*(s) 2% ()
(f]Rk+,n—k [z d)

It follows from that

= fiy,s(R¥E77F),

k .
; W m W2
=S Z Imi¢*(0) |$|s dr —s Z Z Z Igp9™ (0) 2[5 |x|2qup

27

dx
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Note that, for v < vy (RFF"~F) — 1 we have that lim,_,o Ace = lim._, Bee = 0. Therefore, the above estimates
yield

_ 1 3
Q _ k+,n—k N
J’)HS(Wf) - M%S(R ) (1 + W2*(s) da <Ae 2*(8) Be) €+ @"/(6)> :

5[Rk+,n—k W

In the following formula, all the integrals are on Be—ltg)+k and F(x) := y% ‘I‘Q +¢ mgs Using the notations of
Step 3 and Lemma [5.1] we get

2 (W2 ()
A= B -3 T (1-5t) [ e

=1 g

k k 2
+ Z Z 010 ( (—2Mim—|—/xi2me(x) dm)

m=1i=1,i#m
k

+D 0> 9ue™(0 (—QMZ-m + / @me(:ﬁ) dm) + Y O™ (0) <—21m + / meF(x) dx)
m=1

m=1:=k+1

k 9 E
+ > 0mid'(0) <—2Kim+ / Iizme(x)dac>+Z > &mgzﬁi(O)( 2im + / e, F )dx)
m=1i>1;i#m |{E| m=1i>1;i#m | |
k k k oo
>y > 046™(0) (—2Nm,p,q+ §;|2‘1me(m)dx>
m=1p=1;p#m q=p+1;g#m
k

k k -
+ Z Z Z agp(bm(o) <_2Lm,p,q + ‘p|2q ( )d.]?)

m=1p=1;p#m q=p+1;q7#m

= zk:Za--dﬂ‘(O)g <1 _ 2 ) |W|2*(S)x- idy+ + zk: zk: a--¢m(0)/ 2210, W |2do
- J " s [ (5 5 i 1Vm

i=1 j 2(s) | 2m=1i:1,i;ﬁm B —15n{xm=0}

k n *

1 2 W2 (s)
4= 9::¢0™ (0 / 23 |0 W 2 do — € (1 — ) Omm®™ (0 / Ty ————dx

2mz::1i=zk;-1 ) Brlém{rmzo} ‘ ‘ 2*(8) ) Beflcs,wv |x‘s

2% (s)
—¢ (1 2*2 ) Z Dim " (0 / xmwisdx
(8 i>1ji#m B,*16,+k |l‘|

k k

k
+ Z Z Z qp(bm(o)/~ T4y |0m WA do

m=1 p=1;p#m q=p+1;9#m B —15n{zm=0}

k k
1
== @iqu()/ 2|0, W2d0+ D™ (0 / 22|10, W | do
DD O f oo Z > s ey T8V

m=14¢=k+1
k

k k
+ Z Z Z qp¢m(0)[ T4y |0m W |2 do

m=1 p=1;p#m q=p+1;q#m B —1sM{zm=0}
With the symmetries of W (see Theorem [4.1)), there exists e, ¢, 7e > 0 such that

22|10, Wdo = ifi=1,...,k,i#m
2210, W3do = B. ifi=k+1,...,n
Toxp|0pmW3do =1 if p,q,m € {1,...,k} are distinct

fée—l(gm{w'mZO}
B 7160{Z 70}

B ,150{90,”—0}
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Then, we get that

k k
Qe
Ae_2 EZ?Z Z 8n¢

m=14i=1,i#m

k n k k k
£ PIPILTLCEED D DD SRR M
m=1i=k+ m=1p=1;p#m q=p+1;q#m

We distinguish two cases:

Case 1: v < yy(RFtm=k) i, that is oy — a_ > 1. It follows from the pointwise control that x —
|z|2|VW|? € LY(RF+n=k 1 {x,, = 0}), therefore

lim,_,o e = 203,5 = ka+="*kﬂ{x —0) 220, W2do >0 ifi=1,...k i#m
lime_o B = QC}Y,S = kaJrv"*kﬂ{rm:O} 2210, W|?do >0 ifi=k+1,...n
lime 07 = ci)s = fR"*v"*kﬂ{x —o0y ZqZp|OmW |2do >0 if p,q,m € {1,...,k} distinct.

Consequently,

25 L m
A= 507 S D Gud™(

m=14i=1,i#m

+C’1y,s Z Z all¢m(0) v,s

m=1i=k+1

k

k
Z Z 9qp®™(0) + o(1)

1 p=1;p#m q=p+1;q#m

Mw

3
I

Case 2: v = vy (R¥""~F) — 1 that is ay — a_ = 1. It follows from that

k

lim A=l to, W) =K [ [ 25— (e- + k)(|x)§m ,
j=1,j#m
where p(z) := H?:l xj. As in the proof of , a Kelvin transform yields
k
oy ay+k . =
(74) )\EIJIrlOO)\ |z] OmW(Ax) =K ' 11__[¢ x; on {z,, = 0}.
j=Lj#m

We claim that

1 1
(75) / 22|10, W 2 da = 20 <In ( ) +o (ln ()) as € — 0,
Befléﬁ{il?m,:()} €

where,
. 2
K2
2 2
5= 7/ o; H o; | do
Sn=20({zm=0}NRF+n=k) j=1, j#m
is independent of i € {1,..,k}, i # m. We prove the claim. Since n — 2 — 2acy = —1, we have

)
(76) / 2|0, W |2dz :/ 22|00 W|2dz + O(1) :/ ) g 1oy,
B’E,léﬁ{zmzo} (B’E,lé\Bl)ﬂ{xm:O} 1 r

where

flr):= / r2ot 01-2 |0, m W (ro) \Qda.
S =2 ({zm =0} ARk —F)

It follows from the uniform convergence in that lim, 4 f(r) = 26,27, s~ Then and yield and
then the claim.
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Similarly, there exists explicit constants ¢2 , ¢3 > 0 such that

1 1

/ Aonwar = 2 n (1) o (m(L)):
Bsfléﬁ{w’mzo} ’ € €
2 3 1 1
Tqxp| 0 W | do S.n(=)+o(ln(=
B _1;n{zm,»=0} € B

fori > k+1 and p,q,m € {1, ..., k} all distinct. Therefore

9 k n
L CI D S YECEEN o SR
=k+

m=14i=1,i#m m=14 1

k k k
} : m 1 1
?YS Z Z aqp¢ (O) In (€> +o (ln (6>)
=1p=1;p#m q=p+1;9#m

We are left with writing the expressions of Cases 1 and 2 intrinsically. We refer to Definition [3] For any
1 <'i1,i2 < n such that i1,iy # m, we have

018" (0) = —(Vn(0),0:,1,0(0)) = < (V1 0 9)(0),0i,6(0))
= II(?Q ( 11¢7 Zz(b) 2112
For p # m, we have 7p € (Ty0Q,,)* and

k
> 1194 (v,,7,) = Z Z D™ (0).
p,¢,;m=1, [{p,q,m}|=3 p=1;p#m q=p+1;9#m

Define ¥ := ﬂ’?: 0€);. We have that

k k k k
> Z Z Dug™(0)and > Y Gue™(0)= Y IO (5, 7)
m=1 m=1i=k+1 m=11i=1,i#m i,m=1,i#m

Theorem is a straightforward application of Theorem and Proposition

6. PROOF OF THEOREM [L.3|

Point (1): we assume that s = 0 and v < 0. It follows from the definition that f 0(2) > p0,0(R™). With
the reverse inequality (20), we get that j,,0(Q) = p9,0(R™). If there was an extremal for (), it would also

be a extremal for p9,0(R™), with no compact support, contradicting the boundedness of €. This proves (1) of
Theorem [[.3

Point (2): Point (2) of Theorem is a straightforward application of Theorem and Proposition

Point (3): We assume that n = 3, s = 0, 7 > 0 and there is no extremal for f o(R% x R37*). In this situation,
see Proposition 1.3 of [16], we have that po(R¥ x R37%) = 119 o(R3). The following proposition is as in [16]:

Proposition 6.1. Let Q C R® be an open domain such that 0 € Q. Fix xo € Q. If v € (0,75(Q)), then the
equation
{ —AG — szzO; G>0 inQ\{zo}
G=0 onoQ\{0}
has a solution G € C?(Q\{xo}) N D (Q\ {70} )10c.0, that is unique up to multiplication by a constant. Moreover,
for any xo € Q, there exists a unique R,(x¢) € R independent of the choice of G and cg > 0 such that

G(z) = cG( +Rw(xo)> +0(1) as z — xo.

|x — x|
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The proof is similar to the proof of Proposition 10.1 in |16]. Cooking-up some test-functions (u¢)eso as in

Lemma 10.2 of [16], we get that p, () < Jﬁs(ue) < 10,0(R?) = py,0(R?) when R, (z0) > 0 for some zy € Q.
Point (3) of Theorem [1.3]is then a consequence of Theorem [1.1
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