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POSITIVE HAUSDORFF DIMENSIONAL SPECTRUM FOR THE CRITICAL ALMOST MATHIEU OPERATOR

We show that there exists a dense set of frequencies with positive Hausdorff dimension for which the Hausdorff dimension of the spectrum of the critical almost Mathieu operator is positive.

1. Introduction 1.1. The context. In this paper, we are interested in the Hausdorff dimension of the spectrum of the almost Mathieu operator H λ,α,θ in 2 (Z) (denoted from now on by AMO):

2 (Z) u → (H λ,α,θ u) n = u n+1 + u n-1 + 2λ cos(2π(nα + θ)) u n , (1) 
where θ ∈ T is the phase, α ∈ (0, 1)\Q is the frequency and λ ∈ R \ {0} is the coupling constant. The AMO was first introduced by Peierls [START_REF] Peierls | Zur Theorie des Diamagnetismus von Leitungselektronen[END_REF], as a model for an electron on a 2D lattice, submitted to a homogeneous magnetic field [START_REF] Harper | Single band motion of conduction electrons in a uniform magnetic field[END_REF][START_REF] Rauh | Degeneracy of Landau levels in crystals[END_REF]. This model has been extensively studied not only because of its importance in physics [START_REF] Avron | A topological look at the quantum Hall effect[END_REF][START_REF] Osadchy | Hofstadter butterfly as quantum phase diagram[END_REF][START_REF] Thouless | Quantized Hall conductance in a two dimensional periodic potential[END_REF], but also as a fascinating mathematical object.

The spectrum of H λ,α,θ is a compact perfect set in R and, observing that it is independent of θ since α is irrational, we denote it by Σ λ,α . For any λ, and for any irrational α, Σ λ,α is a Cantor set [START_REF] Avila | The Ten Martini Problem[END_REF]. Each finite interval of R\Σ λ,α is called an open gap and we know from [START_REF] Avila | Almost localization and almost reducibility[END_REF][START_REF] Avila | The Dry Ten Martini Problem in the non-critical case[END_REF] that if λ = 1, then for any irrational α, all the spectral gaps are open, as predicted by the Gap Labelling Theorem [START_REF] Johnson | The rotation number for almost periodic potentials[END_REF].

However, little was known for the structure of Σ λ,α when λ = 1. H 1,α,θ is called the critical almost Mathieu operator (or Harper's equation in physics); it has particular importance in physics. One useful way to study Σ λ,α is by periodic approximation [START_REF] Avron | On the measure of the spectrum for the almost Mathieu operator[END_REF][START_REF] Krasovsky | Central spectral gaps of the Almost Mathieu Operator[END_REF][START_REF] Last | Zero measure spectrum for the almost Mathieu Operator[END_REF], through finer estimates of Σ λ,pn/qn , where p n (α)/q n (α) is the best rational approximation of α, Last [START_REF] Last | Zero measure spectrum for the almost Mathieu Operator[END_REF] shows that if α is not of bounded type, then Σ 1,α has zero Lebesgue measure. Finally, by the renormalization technique, Avila and Krikorian [START_REF] Avila | Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles[END_REF] completed the proof that Σ 1,α has zero measure, and hence a Cantor set, for all irrational α. Therefore, it is natural to study the fractal dimensions of Σ 1,α . It was believed until the mid 1990's that the box-counting dimension dim B (Σ 1,α ) equals to 1 2 for almost every α; one can consult [START_REF] Bell | Hierarchical band clustering and fractal spectra in incommensurate systems[END_REF][START_REF] Geisel | New class of level statistics in quantum systems with unbounded diffusion[END_REF][START_REF] Tang | Global scaling properties of the spectrum for a quasiperiodic Schrödinger equation[END_REF] for numerical and heuristic arguments supporting this conjecture. But in 1994, Wilkinson-Austin [START_REF] Wilkinson | Spectral dimension and dynamics for Harper's equation[END_REF] provided numerical evidence that dim B (Σ 1,α ) = 0.498 for α = √ 5-1 2

and thus conjectured that dim B (Σ 1,α ) < 1 2 for every irrational α. However, Jitomirskaya-Zhang [START_REF] Jitomirskaya | Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators[END_REF] showed that if β(α) > 0, then dim B (Σ 1,α ) = 1, which disproved Wilkinson-Austin's conjecture. Here, β(α), which measures how Liouvillean α, is defined as

β(α) := lim sup n→∞ log q n+1 (α) q n (α) , (2) 
where q n (α) is the denominator of the n-th convergent of α.

We recall that the Hausdorff dimension of a set S ⊂ R is defined by

dim H (S) = inf t ∈ R + lim δ→0 inf δ-covers n (meas(U n )) t < ∞ ,
where a δ-cover of S is a family (U n ) n such that S ⊂ ∪ ∞ n=1 U n , and every U n is an interval of length smaller than δ. Last [START_REF] Last | Zero measure spectrum for the almost Mathieu Operator[END_REF] showed that if q n+1 (α) > q 4 n (α) for a subsequence of n, then dim H (Σ 1,α ) ≤ 1 2 . We note that the set of such kind of frequencies is a dense G δ set which contains {α ∈ (0, 1) \ Q | β(α) > 0}. Shamis-Last [START_REF] Last | Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator[END_REF] showed that there exists a dense set of {α ∈ (0, 1) \ Q|β(α) > 0}, for which dim H (Σ 1,α ) = 0. Recently, Avila-Shamis-Last-Zhou [START_REF] Avila | On the abominable properties of the Almost Mathieu operator with well approximated frequencies[END_REF] strengthened the result of [START_REF] Last | Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator[END_REF] and showed that for any α in {α ∈ (0, 1) \ Q | β(α) > 0}, dim H (Σ 1,α ) = 0. As we can see, the results of [START_REF] Avila | On the abominable properties of the Almost Mathieu operator with well approximated frequencies[END_REF][START_REF] Jitomirskaya | Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators[END_REF][START_REF] Last | Zero measure spectrum for the almost Mathieu Operator[END_REF][START_REF] Last | Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator[END_REF] are more specific to Liouvillean frequency, it is interesting to see if we can say something about the Diophantine frequencies.

1.2. Main results. In this paper, we will show the following: Theorem 1.1. The set of frequencies

F := {α ∈ (0, 1) \ Q : dim H (Σ 1,α ) > 0}
is dense in (0, 1) \ Q and has positive Hausdorff dimension.

Remark 1.2. Combining Theorem 1.1 with a result of [START_REF] Avila | On the abominable properties of the Almost Mathieu operator with well approximated frequencies[END_REF], one thus know that F is dense in {α ∈ (0, 1)

\ Q | β(α) = 0}.
Indeed, Bellissard1 conjectured that there should exist some κ ∈ (0, 1/2] such that dim H (Σ 1,α ) = κ for almost every α. As far as we know, Theorem 1.1 is the first result which shows the existence of positive Hausdorff dimension of the spectrum for the critical almost Mathieu operator.

In fact, we can say more about the frequency and the lower bound of the Hausdorff dimension. Denote the continued fraction expansion of α as: In 1994, Wilkinson-Austin [START_REF] Wilkinson | Spectral dimension and dynamics for Harper's equation[END_REF] gave some numerical and heuristic arguments showing that if n is large enough, then dim B (Σ 1,αn ) approaches log 2 log n , where

α = 1 a 1 + 1 a 2 + 1 a 3 +... := [a 1 , a 2 , a 3 , • • • ]
α n = [n, n, n, • • • ] . (3) 
Motivated by this paper, we will show the following:

Theorem 1.3. Fix M > 0 and m ∈ N s.t. m ≥ 2.
There exist constants C > 1 and C > 0 such that for any α = [a 1 , a 2 , a 3 ,

• • • ] with, for some m ∈ {0, • • • , m}, 1 ≤ a i ≤ M, (1 ≤ i ≤ m); a i ≥ C, (i > m)
we have

dim H (Σ 1,α ) ≥ 1 C log G * (α) A * (α) . (4) 
Consequently, if n ≥ C, then, for α n defined by (3),

dim H (Σ 1,αn ) ≥ 1 C log n n . (5) 
Remark 1.4. Now considering Theorem 1.3 and the results of [START_REF] Avila | On the abominable properties of the Almost Mathieu operator with well approximated frequencies[END_REF][START_REF] Last | Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator[END_REF], it is reasonable to conjecture that if

A * (α) = ∞, then dim H (Σ 1,α ) = 0 .
2. The covering structure of the spectrum: main statement

Assume α = [a 1 , a 2 , a 3 , • • • ].
Helffer and Sjöstrand [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique)[END_REF][START_REF] Helffer | Analyse semi-classique pour l'équation de Harper II: Comportement semi-classique près d'un rationnel[END_REF] exhibited a fine covering structure of the spectrum for a special class of frequencies. In the following, we describe a reformulation of this statement using the coding language just for the convience of the proof, readers can consult the appendix for its original formulation. Before to explain the general construction we detail the two first steps.

In the 0-th step, there are q m (α) disjoint bands. We code them by

J 1 , J 2 , • • • , J qm(α) . Thus Θ 0 = {1, 2, • • • , q m (α)}
is the set of words to code the bands of 0-generation.

In the first step, for each band J i , there are finitely many sub-bands inside it. For the mid-band, we code it by J i•0 . Here • means the concatenation of words. On the left, there are m i sub-bands with good estimates on the band-length, which we code by

J i•(-m i ) , • • • J i•(-1)
. Similarly, on the right, there are n i sub-bands, which we code by

J i•1 , • • • , J i•n i . Write A i = {-m i , • • • , -1, 1, • • • , n i }
(here A means alphabet), then {i • j : j ∈ A i } is the set of words to code the subbands inside J i . Now if we collect the words for all i ∈ Θ 0 , we obtain Θ 1 :

Θ 1 = {i • j : i ∈ Θ 0 , j ∈ A i }.
Since for each i ∈ Θ 0 , there is only one mid-band

J i•0 inside J i , Ω 1 = {i • 0 : i ∈ Θ 0 }
is the set of words to code the mid bands of 1-generation.

We now define inductively two sequences of words Θ k , Ω k as follows. Assume Θ k and Ω k have been defined for some k ≥ 1 . For any θ ∈ Θ k , fix a vector (m θ , n θ ) ∈ N * × N * (where N * = N \ {0}) and write

A θ := {-m θ , • • • , -1, 1, • • • , n θ }. Define Θ k+1 := {θ • i : θ ∈ Θ k ; i ∈ A θ } Ω k+1 := Ω k ∪ {θ • 0 : θ ∈ Θ k }. Write Ω 0 = ∅ . Define Θ := k≥0 Θ k and Ω := k≥0 Ω k .
As continuation of [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique)[END_REF], the following theorem is proved in [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper II: Comportement semi-classique près d'un rationnel[END_REF], the readers can just consult the appendix for its original statement.

Theorem 2.1. Fix m ∈ N , and M ≥ 2. Then there exist 1 > 0 and, for

0 < 0 ≤ 1 , some constants C 1 > 0, b 2 > b 1 > 0 , c 1 > 0, d 2 > d 1 > 0 such that if α = [a 1 , a 2 , a 3 , • • • ] and for some 0 ≤ m ≤ m 1 ≤ a ≤ M , ≤ m a ≥ C 1 , ≥ m + 1 , (6) 
then there exists a sequence

{(m θ , n θ ) : θ ∈ Θ} with b 1 a k+m ≤ m θ ≤ b 2 a k+m and b 1 a k+m ≤ n θ ≤ b 2 a k+m , ∀k ≥ 1, ∀θ ∈ Θ k-1 , (7) 
and a family of bands

{J θ : θ ∈ Ω ∪ Θ} such that: (i) For each k ≥ 0, {J θ : θ ∈ Ω k ∪ Θ k } is a covering of Σ 1,α : Σ 1,α ⊂ θ∈Ω k ∪Θ k J θ . (ii) For each k ≥ 1 and θ ∈ Θ k-1 , ∂J θ ⊂ Σ 1,α . For each i ∈ A θ ∪ {0}, J θ•i ⊂ J θ , J θ•(i+1) is on the right of J θ•i . Moreover, c 1 a k+m ≤ d(J θ•(i+1) , J θ•i ) |J θ | . ( 8 
) (iii) For each k ≥ 1 and θ ∈ Θ k-1 , |J θ•0 | |J θ | ≤ 0 ; e -d 2 a k+m ≤ |J θ•i | |J θ | ≤ e -d 1 a k+m , (i ∈ A θ ) .

Harper's model and semi-classical analysis

3.1. Harper's model in the rational case. We refer also to the survey of J. Bellissard [START_REF] Bellissard | Le papillon de Hofstadter[END_REF] for a state of the art in 1991. When α is irrational, an equivalent way (observing that in this case Σ λ,α = ∪ θ Σ λ,α,θ ) for the analysis of the spectrum in the case of a square lattice is to consider the so-called Harper model, which this time is defined on 2 (Z 2 , C) by

(H γ u) m,n := u m+1,n + u m-1,n + e iγm u m,n+1 + e -iγm u m,n-1 ,
where γ denotes the flux of the constant magnetic field through the fundamental cell of the lattice.

When α := γ 2π is a rational, Floquet theory permits to show that the spectrum is the union of the spectra of a family of q ×q matrices M p,q (θ 1 , θ 2 ) depending on the quasi-momenta θ = (θ 1 , θ 2 ) ∈ R 2 . In this way, we get that the spectrum is the union of q bands [γ , δ ] with δ ≤ γ +1 , with strict inequality, except when q is even for = q 2 . More precisely, when γ = 2πp/q, where p ∈ Z and q ∈ N * are relatively prime, the two following matrices in M q (C) play an important role: J p,q = diag(e i(j-1)γ ) ,

and

(K q ) jk = 1 if k ≡ j + 1 [q] , 0 else.

In the case of Harper, the family of matrices is

M p,q (θ 1 , θ 2 ) = e iθ 1 J p,q + e -iθ 1 J * p,q + e iθ 2 K q + e -iθ 2 K * q . (9) 
The Chambers formula gives a very elegant formula for this determinant:

det(M p,q (θ 1 , θ 2 ) -λ) = f p,q (λ) + (-1) q+1 2 (cos qθ 1 + cos qθ 2 ) , (10) 
where f p,q is a polynomial of degree q. Each band I is described by a solution λ (θ 1 , θ 2 ) of the Chambers equation which can be expressed in the form

λ (θ 1 , θ 2 ) = ϕ ,p,q (2 (cos qθ 1 + cos qθ 2 )) . (11) 
3.2. Semi-classical analysis. It can be shown that the spectrum Σ λ,α is the same as the spectrum of the operator H γ acting on L 2 (R) defined by

L 2 (R) u → λ(τ γ + τ -γ )u + 2 cos x u ∈ L 2 (R) ,
where τ γ is defined by τ γ u(x) = u(x -γ).

In other words, H γ is the Weyl's γ-quantization of the symbol (x, ξ) → 2(λ cos ξ + cos x). Let us recall what is meant by this. The symbols are C ∞ functions of R 2 (x, ξ) → p(x, ξ, h) which are C ∞ bounded (in our case they are in addition (2π)-periodic in each variable) depending on a semi-classical parameter γ = h ∈ [-h 0 , 0) ∪ (0, h 0 ], h 0 > 0 (view as "little") and satisfying

∀(j, k) ∈ N 2 ; ∃C j,k ; ∀(x, ξ) ∈ R 2 , |∂ j x ∂ k ξ p(x, ξ, h)| ≤ C j,k . (12) 
The Weyl quantization of the symbol p (for h = 0, |h| ≤ h 0 ) is the pseudodifferential operator acting on L 2 (R) by

Op W h (p)u(x) = 1 2πh e i(x-y)ξ/h p( x + y 2 , ξ, h) u(y) dy dξ . ( 13 
)
An important fact is that when p is real valued the associate operator is self-adjoint. This approach is only powerful when h is small. This is what is call semi-classical analysis. Hence, this leads as to analyze the spectrum near α = 0.

3.3.

Semi-classical analysis near α = 0 when λ = 1. Here we have to analyze the spectrum of the h-pseudodifferential operator of symbol p(x, ξ) := 2(cos x + cos ξ), i.e. 2(cos x + cos hD x ) = 2 cos x + (τ h + τ -h ). For E ∈ [-4, 4] \ {0}, semi-classical analysis says that one has first to look at the energy level p(x, ξ) = E. Here we see that the energy level is the union of curves which can be indexed by Z 2 . Modulo O(h ∞ ), the spectrum is obtained by looking at a Hamiltonian has a symbol p(x, ξ) such that p(x, ξ) → +∞ and p-1 (E -, E + ) = p -1 (E -, E + ) ∩ (-π, π) 2 . For this operator the spectrum is discrete and is given near E by the Bohr-Sommerfeld quantization which determines a sequence of eigenvalues λ k (h) in (-4, -0 ) ∪ ( 0 , 4), whose asymptotic is known modulo O(h ∞ ). Coming back to the initial problem, the analysis of the tunneling between the different wells leads to a localization of the spectrum in a family of intervals whose center is O(h ∞ ) close to the sequence λ k (h) and whose size is exponentially small and can be measured precisely. The next step is that in each of these intervals the spectral analysis of the restriction of our initial operator appears to be the h -quantization of an operator whose symbol is close (after renormalization) to cos ξ + cos x and where h 2π ≡ 2π h (modulo Z). This relation gives a strong link between the corresponding continued fraction expansions of α = h 2π and α = h 2π since

h 2π = [a 2 , a 3 , • • • ] .
Under our assumption h is small (because a 2 is assumed to be large) and we can redo the same analysis leading again to a new familly of intervals. Of course, this is quite technical to control the uniformity of the constants appearing in the renormalization procedure. In the first step E = 0 corresponds to critical values of p(x, ξ) with a saddle point. The analysis near this point is much more involved and the introduction of this 0 permits to avoid this analysis in our paper like in [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper II: Comportement semi-classique près d'un rationnel[END_REF].

3.4. Semi-classical analysis near a rational. When α = p q + , one can show that Σ α,1 is the spectrum of the Weyl h-quantization of M p,q (x, ξ) (with h = 2π ). Hence we have again to perform a semi-classical analysis but this time for a system of h-pseudodifferential operator. As shown by Chamber's formula [START_REF] Falconer | Techniques in fractal geometry[END_REF], the semi-classical analysis for small is strongly related with the semi-classical analysis of a function of cos qx + cos qhD x (see [START_REF] Geisel | New class of level statistics in quantum systems with unbounded diffusion[END_REF]). Hence, near each of the q bands, we have to perform a spectral analysis which is close to the analysis of the previous subsection. When q is even, there is a need for a special analysis for the two central touching bands (see Appendix).

The lower bound of the Hausdorff dimension of the spectrum

In this section, we prove Theorem 1.1 and Theorem 1.3. At first we construct a Cantor subset of the spectrum based on Theorem 2.1. Then we estimate the lower bound of the Hausdroff dimension of this Cantor set. Finally, we prove the main theorems. 

κ n := [b 1 a m+n ] ,
where [x] denotes the integer part of the number x, b 1 is defined in Theorem 2.1.

In the following, we will construct a Cantor subset of Σ 1,α ∩ J 1 , where J 1 the most left interval of 0-generation. For all n ≥ 1, define

Θ n := {1} × n i=1 {1, 2, • • • , κ i } and C n := θ∈ Θn J θ .
By [START_REF] Avron | A topological look at the quantum Hall effect[END_REF], we have Θ n ⊂ Θ n . Define the set of codings as

Θ ∞ := {1} × ∞ i=1 {1, 2, • • • , κ i }. For any ω = ω 0 ω 1 ω 2 • • • ∈ Θ ∞ , we denote the prefix of length n + 1 of ω by ω| n := ω 0 • • • ω n .
By Theorem 2.1, C n is a decreasing sequence of compact sets. Define

C := n≥0 C n .
By Theorem 2.1 (iii) and ( 6), for any θ ∈ Θ n , we have

|J θ | = |J 1 | n k=1 |J θ| k | |J θ| k-1 | ≤ |J 1 | n k=1 e -d 1 a k+m ≤ |J 1 |e -d 1 C 1 n .
Thus, |J θ | tends to 0 when the length of the word θ tends to infinity. So, C is a Cantor set. Indeed, the definition of Θ n make sure that the chosen band always avoid the excluded intervals of size ≈ 0 at each step.

Proposition 4.1. C ⊂ Σ 1,α ∩ J 1 .
Proof. By Theorem 2.1 (ii), for each θ ∈ Θ n we have ∂J θ ⊂ Σ 1,α ∩ J 1 . By the construction of C and Theorem 2.1, for any x ∈ C , there exists a unique coding sequence ω ∈ Θ ∞ such that {x} = n≥0 J ω|n .

Let x n be the left endpoint of J ω|n , then

x n ∈ Σ 1,α ∩ J 1 and x n → x. Since Σ 1,α ∩ J 1 is compact, we conclude that x ∈ Σ 1,α ∩ J 1 .

4.2.

The lower bound of dim H C . We need to use a basic fact from fractal geometry which we recall now. Assume X ⊂ R is a Borel set. Let µ be a probability measure supported on X. For any x ∈ X, the lower local dimension of µ at x is defined by For given c 1 > 0 and

d 1 > 0, we introduce C(c 1 , d 1 ) > 1/d 1 such that c 1 exp(d 1 C) C > 2 . ( 14 
) Proposition 4.3. Let m, M , 0 ∈ (0, 1 ), b 1 , c 1 , d 1 , d 2 be the constants given as in Theorem 2.1. Fix m with 0 ≤ m ≤ m. Assume that α = [a 1 , a 2 , • • • ] satisfies 1 ≤ a i ≤ M for 1 ≤ i ≤ m and a i ≥ max{C 1 , C(c 1 , d 1 )} for i ≥ m + 1. Then dim H C ≥ log(b 1 /2) + log G * (α) d 2 A * (α) .
Proof. For any n ≥ 1, if we write

F n := {C ∩ J θ : θ ∈ Θn } ,
then F n is a finite σ-algebra on C . We define a measure µ n on (C , F n ) as

µ n (C ∩ J θ ) := 1 n i=1 κ i .
By Carathéodory extension theorem (see for example [START_REF] Royden | Real analysis[END_REF]), there exists a unique probability measure µ on C such that µ| Fn = µ n . Now we fix x ∈ C , and will estimate d µ (x). Let ω ∈ Θ ∞ be the coding of x, that is,

{x} = n≥1 J ω|n .
Take r > 0. There exists a unique n r ∈ N such that J ω|n r ⊂ B(x, r), J ω| nr -1 ⊂ B(x, r).

This implies that

|J ω|n r | < 2r, |J ω| nr -1 | ≥ r. (15) 
Claim: B(x, r) can only intersect one band of (n r -1)-generation, which is J ω| nr -1 .

If B(x, r) ⊂ J ω| nr -1 , then the claim holds trivially. In the following, we assume B(x, r) ⊂ J ω| nr -1 . To prove the claim, we only need to show that the lengths of the gaps in the left and right of J ω| nr -1 are all bigger than 2r.

We call any component of Co(C ) \ C a gap of C , where Co(C ) is the convex hull of C . A gap G is called of order k, if G is a subset of some band of k-generation but is not a subset of any band of (k + 1)-generation.

Denote the gap in the left of J ω| nr -1 by G. By our construction of C , G is a gap of order s for some s ≤ n r -2 (see Figure 2 and Figure 3). That is, G ⊂ J θ for some θ ∈ Θs , but G is not a subset of any band of (s + 1)-generation.

We claim that θ = ω| s . If otherwise, there exists some s ≤ s such that θ := θ 0 • • • θ s-1 = ω| s-1 but θ s = ω s. Then J θ and J ω|s are two different descendants of same generation of J θ, hence disjoint. In particular, Ḡ ∩ J ω|s = ∅, since Ḡ ⊂ J θ , where Ḡ is the closure of G. On the other hand, the right endpoint of G is the left endpoint of J ω| nr -1 , thus Ḡ ∩ J ω| nr -1 = ∅ . Notice that, J ω| nr -1 ⊆ J ω|s since s ≤ n r -1. So, Ḡ ∩ J ω|s = ∅, which is a contradiction.

Thus G ⊂ J ω|s is a gap of order s. Notice that, J ω| nr -1 ⊂ J ω| s+1 since s + 1 ≤ n r -1. Also, since a m+s+1 ≥ C, by Theorem 2.1 (ii), (iii), ( 14) and ( 15), we have

|G| ≥ c 1 |J ω|s | a m+s+1 ≥ c 1 e d 1 a m+s+1 |J ω| s+1 | a m+s+1 ≥ 2|J ω| s+1 | ≥ 2|J ω| nr -1 | ≥ 2r. ( 16 
)
By the same argument, we can show that the gap in the right of J ω| nr -1 also has length bigger than 2r. Then the claim follows.

Figure 3.

By the claim, we have

µ(B(x, r)) ≤ µ(J ω| nr -1 ) = 1 nr-1 i=1 κ i . (17) 
By Theorem 2.1 (iii) and the assumption, we have

|J ω| k | |J ω| k-1 | ≥ e -d 2 a m+k .
Consequently, Thus (4) follows, and ( 5) is a direct consequence of (4). Then by Theorem 1.3, F M ⊂ F . On the other hand, for any α, α ∈ (0, 1)\Q, let n be the first index for which the continued fraction expansions of α and α differ and define the distance of α and α as d H (α, α ) = 1 n + 1 .

|J ω|n r | = |J 1 | nr k=1 |J ω| k | |J ω| k-1 | ≥ |J 1 |e -d

  and define A * (α) := lim sup n→∞ n i=1 a i n and G * (α) := lim inf
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 1 Figure 1. Energy levels for (x, ξ) → cos x + cos ξ. In Green E = 0, in blue E = 1, in red E = -1.
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 1 A subset of the spectrum.

Fix a frequency

  α = [a 1 , a 2 , • • • ] satisfying the condition in Theorem 2.1.For each n ≥ 1, we introduce

  d µ (x) := lim inf r→0 log µ(B(x, r)) log r . Proposition 4.2 (Prop. 10.1 of [10]). If d µ (x) ≥ d 0 for µ-a.e. x ∈ X, then dim H X ≥ d 0 .
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 2124311 nr k=1 a m+k . By (15), we get log r ≥ log |J 1 | -log 2 -d 2 nr k=1 a m+k .(18)Recall that κ i = [b 1 a m+i ] and by the assumption, a m+i ≥ 2/b 1 . So we have κ i ≥ b 1 a m+i /2 . Combining (17) and (18), we getlog µ(B(x, r)) log r ≥ nrnr k=1 a m+k + log 2 -log |J 1 | ≥ (n r -1) log b 1 2 + nr-1 i=1 log a m+i d 2 nr k=1 a m+k + log 2 -log |J 1 |.By taking the lower limit, we getd µ (x) = lim inf r→0 log µ(B(x, r)) log r ≥ log(b 1 /2) + log G * (α) d 2 A * (α) .then by Proposition 4.2, we conclude thatdim H C ≥ log(b 1 /2) + log G * (α) d 2 A * (α) .This achieves the proof of Proposition 4.3. Proof of Theorem 1.3. DefineC := max{C 1 , C(c 1 , d 1 ), 2/b 1 , (2/b 1 ) 2 } and C := 2d 2 .If b 1 ≥ 2, then by Proposition 4.1 and 4.3,dim H Σ 1,α ≥ dim H C ≥ log G * (α) d 2 A * (α) ≥ log G * (α) A * (α) .If b 1 < 2, then we have G * (α) ≥ C ≥ (2/b 1 ) 2 and consequently log G * (α) ≥ -2 log(b 1 /2). Then by Proposition 4.1 and 4.3, we have dim H Σ 1,α ≥ dim H C ≥ log G * (α) + log(b 1 /2) d 2 A * (α) ≥ log G * (α) 2d 2 A * (α) = log G * (α) A * (α) .

4. 4 .

 4 Proof of Theorem 1.1. At first, we show that F is dense in (0, 1)\Q. Let m = m = M. Let C be the constant in Theorem 1.3. DefineF M := {α : a i ≤ M, (1 ≤ i ≤ M ); a i = C (i ≥ M + 1)}.

Private conversation with Y.Last, circ. 1995. 

Endow (0, 1)\Q with this topology, then it is easy to see that this topology coincide with the usual topology induced from R and M ≥1 F M is dense in (0, 1)\Q. Hence, F is also dense in (0, 1)\Q. Now we show that F has positive Hausdorff dimension. Indeed, by Theorem 1.3, we know that

By Theorem 11 of [START_REF] Good | The fractional dimensional theory of continued fractions[END_REF], F has positive Hausdorff dimension.

Appendix A. The statement of Theorem 0.1 in [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper II: Comportement semi-classique près d'un rationnel[END_REF] We give a translation from the french, correcting also a few typos and adding a few explanatory remarks.

Theorem A.1. Let m ∈ N ( m ≥ 2) and M ≥ 2. There exists 1 > 0 and, for 0 ∈ (0, 1 ),

then Σ 1,α is contained in the union of q m intervals I (h

where

For each interval I (h), Σ 1,α ∩ I (h) can be described as living in a union of N ,j closed intervals J 

The other bands have size

For j = 0, if κ ( )

where the J ( ) j,k have analogous properties to the J ( )

with a m+1 replaced by a m+2 and (26) can be improved in the form

One can then iterate indefinitely.

Here in the statements a b means that a/b ≤ C where C depends only on C 0 and 0 . The same is true when we use the notation O or ≈ .

Remark A.2. 0 corresponds with the exclusion in each interval and at each step of the renormalization of a small interval of size ≈ 2 0 for which another analysis has to be done and which was the object of [START_REF] Helffer | Semi-classical analysis for the Harper's equation III: Cantor structure of the spectrum[END_REF] (see also [START_REF] Helffer | On the Total Bandwidth for the Rational Harper's Equation[END_REF]). This corresponds to the energy 0 for the map (x, ξ) → 2(cos x + cos ξ). This refined analysis is not needed here.

Remark A.3. The possibility of having δ = γ +1 is due to the occurence of touching bands. Van Mouche [START_REF] Van Mouche | The coexistence problem for the discrete Mathieu operator[END_REF] has proven that it occurs only when q m is even and for = qm 2 . These two touching bands lead to the lower bound (24) and the weaker estimate in [START_REF] Royden | Real analysis[END_REF]