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Constructions of p-adic L-functions and admissible measures

for Hermitian modular forms

Alexei PANTCHICHKINE

Institut Fourier, University Grenoble-Alpes

September 20-22, 2018
Sarajevo

To Dear Mirjana Vukovic with admiration

For a prime p and a positive integer n, the standard zeta function LF (s) is considered, attached
to an Hermitian modular form F =

∑
H A(H)qH on the Hermitian upper half plane Hn of degree n,

whereH runs through semi-integral positive de�nite Hermitian matrices of degree n, i.e. H ∈ Λn(O)
over the integers O of an imaginary quadratic �eld K, where qH = exp(2πiTr(HZ)). Analytic p-
adic continuation of their zeta functions constructed by A.Bouganis in the ordinary case (in [Bou16]
is presently extended to the admissible case via growing p-adic measures. Previously this problem
was solved for the Siegel modular forms, [CourPa], [BS00]. Present main result is stated in terms
of the Hodge polygon PH(t) : [0, d] → R and the Newton polygon PN (t) = PN,p(t) : [0, d] → R of
the zeta function LF (s) of degree d = 4n. Main theorem gives a p-adic analytic interpolation of the
L values in the form of certain integrals with respect to Mazur-type measures.

p-adic zeta functions of modular forms
Since the p-adic zeta function of Kubota-Leopoldt was constructed by p-adic interpolation of

zeta-values ζ(1− k) = −Bk/k(k ≥ 1) [KuLe64], also p-adic zeta functions of various modular forms
were constructed, such as p-adic interpolation of the special values

L∆(s, χ) =

∞∑
n=1

χ(n)τ(n)n−s, (s = 1, 2, · · · , 11), ∆ =

∞∑
n=1

τ(n)qn,

for the Ramanujan function τ(n) twisted by Dirichlet characters χ : (Z/prZ)∗ → C∗. Interpolation
done in the elliptic and Hilbert modular cases by Yu.I.Manin and B.Mazur, via modular symbols
and p-adic integration, see [Ma73], [Ma76]).

In the Siegel modular case Sp(2n,Z) the p-adic standard zeta functions were constructed in
[Pa88], [Pa91] via Rankin-Selberg Andrianov's identity (n even), and [BS00] via doubling method.

In 2000-2001 Mirjana Vukovíc e�ected an important scienti�c visit to the Fourier Institut
(France) supported by a regional cooperation program, together with Professors A.N.Andrianov
(from Sankt-Petersburg, Russia, and Siegfried Boecherer (Mannheim, Germany).

Mirjana Vukovíc prepared and presented in the Seminar of Number Theory of the Fourier
Institute the work Structures gradués et paragradués., see [Vu] developping vastly the ideas of Marc
Krasner ([Kr44]-[KrVu87]).
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Happy Birthday Dear Mirjana!
Best Wishes from Grenoble, Moscow, and from all friends came to the
conference in Dubrovnik in September 2016!

Figure 1: Mirijana Vukovic with friends in Dubrovnok, September 2016

Hermitian modular group Γn,K and the standard zeta function Z(s, f) (de�nitions)
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Let θ = θK be the quadratic character attached to K,n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK)|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
,

Z(s, f) =

(
2n∏
i=1

L(2s− i+ 1, θi−1)

)∑
a

λ(a)N(a)−s,

(de�ned via Hecke's eigenvalues: f |T (a) = λ(a)f , a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X) = 2n, the Satake parameters ti,q, i = 1, · · · , n),

D(s, f) = Z(s− `

2
+

1

2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n, and motivic weight `− 1).

Main result: p-adic interpolation of all critical values D(s, f , χ) normalized by ×ΓD(s)/Ωf , in
the critical strip n ≤ s ≤ ` − n for all χ mod pr in both bounded or unbounded case , i.e. when

the product αf =
(∏

q|p
∏n
i=1 tq,i

)
p−n(n+1) is not a p-adic unit.

The idea of motivic normalization: Ikeda's lifting [Ike08]
The standard Gamma factor of Ikeda's lifting, denoted by f , of an elliptic modular form f extends

to a general (not necessarily lifted) Hermitian modular form f of weight `, used as a pattern, namely

S2k+1(Γ0(D), θ) 3 f  f = Lift(f) ∈ S2k+2n′(ΓK,n), if n = 2n′ is even (E)

S2k(SL(Z)) 3 f  f = Lift(f) ∈ S2k+2n′(ΓK,n), if n = 2n′ + 1 is odd (O)

the standard L− function of f = Lift(n)(f) is Z(s, f) =
n∏
i=1

L(s+ k + n′ − i+ (1/2), f)L(s+ k + n′ − i+ (1/2), f, θ) [Ike08]

=

n−1∏
i=0

L(s+ `/2− i− (1/2), f)L(s+ `/2− i− (1/2), f, θ).

because in the lifted case k + n′ = `/2, and the Gamma factor of the standard zeta function with

the symmetry s 7→ 1− s becomes (see p.14) ΓZ(s) =
∏n−1
i=0 ΓC(s+ `/2− i− (1/2))2. This Gamma

factor suggests the following motivic normalization D(s) = Z(s − (`/2) + (1/2)) with the Gamma
factor

ΓD(s) = ΓZ(s− (`/2) + (1/2)) =

n−1∏
i=0

ΓC(s− i)2,

and the L-function D(s) satis�es the symmetry s 7→ ` − s of motivic weight ` − 1 with the slopes
2·0, 2·1, . . . 2·(n−1), 2·(`−n), · · · , 2·(`−1), so that Deligne's critical values are at s = n, . . . , s = `−n.
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General zeta functions: critical values and coe�cients
More general zeta functions are Euler products of degree d

D(s, χ) =

∞∑
n=1

χ(n)ann
−s =

∏
p

1

Dp(χ(p)p−s)
, ΛD(s, χ) = ΓD(s)D(s, χ),

where degDp(X) = d for all but �nitely many p, and Dp(0) = 1.

In many cases algebraicity of the zeta values was proven as

D∗(s0, χ)

Ω±D
∈ Q({χ(n), an}n), where D∗(s, χ) is normalized by ΓD,

at critical points s0 ∈ Zcrit as linear combinations of coe�cients an dividing out periods Ω±D, where
D∗(s0, χ) = ΛD(s0, χ) if h`,` = 0.

In p-adic analysis, the Tate �eld is used Cp = ˆ̄Qp, the completion of an algebraic closure Q̄p,

in place of C. Let us �x embeddings

{
ip : Q̄ ↪→ Cp
i∞ : Q̄ ↪→ C,

and try to continue analytically these zeta

values to s ∈ Zp, χ mod pr.

Main result stated with Hodge/Newton polygons of D(s)
The Hodge polygon PH(t) : [0, d]→ R of the function D(s) and the Newton polygon PN,p(t) :

[0, d]→ R at p are piecewise linear:

The Hodge polygon of pure weight w has the slopes j of lengthj = hj,w−j given by Serre's
Gamma factors of the functional equation of the form s 7→ w + 1 − s, relating ΛD(s, χ) =
ΓD(s)D(s, χ) and ΛDρ(w+1−s, χ̄), where ρ is the complex conjugation of an, and ΓD(s) = ΓDρ(s)
equals to the product ΓD(s) =

∏
j≤w2

Γj,w−j(s), where

Γj,w−j(s) =

{
ΓC(s− j)hj,w−j , if j < w,

ΓR(s− j)h
j,j
+ ΓR(s− j + 1)h

j,j
− , if 2j = w, where

ΓR(s) = π−
s
2 Γ
(s

2

)
,ΓC(s) = ΓR(s)ΓR(s+ 1) = 2(2π)−sΓ(s), hj,j = hj,j+ + hj,j− ,

∑
j

hj,w−j = d.

The Newton polygon at p is the convex hull of points (i, ordp(ai)) (i = 0, . . . , d); its slopes λ
are the p-adic valuations ordp(αi) of the inverse roots αi of Dp(X) ∈ Q̄[X] ⊂ Cp[X]: lengthλ =
]{i | ordp(αi) = λ}.

p-adic analytic interpolation of D(s, f , χ)
The result expresses the zeta values as integrals with respect to p-adic Mazur-type measures.

These measures are constructed from the Fourier coe�cients of Hermitian modular forms, and from
eigenvalues of Hecke operators on the unitary group.

Pre-ordinary case: PH(t) = PN,p(t) at t = d
2 The integrality of measures is proven by

T.Bouganis [Bou16], representing D∗(s, χ) = ΓD(s)D(s, χ) as a Rankin-Selberg type integral at
critical points s = m. Coe�cients of modular forms in this integral satisfy Kummer-type con-
gruences and produce certain bounded measures µD from integral representations and Petersson
product, [CourPa]. For the case of p inert in K, see [Bou16].
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Admissible case: h = PN (d2 ) − PH(d2 ) > 0 The zeta distributions are unbounded, but their
sequence produce h-admissible (growing) measures of Amice-Vélu-type, allowing to integrate any
continuous characters y ∈ Hom(Z∗p,C∗p) = Yp. A general result is used on the existence of h-
admissible (growing) measures from binomial congruences for the coe�cients of Hermitian modular
forms. Their p-adic Mellin transforms LD(y) =

∫
Z∗p
y(x)dµD(x), LD : Yp → Cp give p-adic an-

alytic interpolation of growth loghp(·) of the L-values: the values LD(χxmp ) are integrals given by

ip

(
D∗(m, f , χ)

Ωf

)
∈ Cp.

A Hermitian modular form of weight ` with character σ
is a holomorphic function f on Hn (n ≥ 2) such that f(g〈Z〉) = σ(g)f(Z)j(g, Z)` for any

g ∈ Γn,K . Here σ be a character of Γ
(n)
K , trivial on

{(
1n
0
B
1n

)}
, and for Z ∈ Hn, put g〈Z〉 =

(AZ +B)(CZ +D)−1, j(g, Z) = det(CZ +D).

Fourier expansions: a semi-integral Hermitian matrix is a Hermitian matrixH ∈ (
√
−DK)−1Mn(O)

whose diagonal entries are integral.
Denote the set of semi-integral Hermitian matrices by Λn(O), the subset of its positive de�nite

elements is Λn(O)+, with O = OK .

A Hermitian modular form f is called a cusp form if it has a Fourier expansion of the form f(Z) =∑
H∈Λn(O)+

A(H)qH . Denote the space of cusp forms of weight ` with character σ by S`(Γn,K , σ).

The standard zeta function of a Hermitian modular form
For all integral ideals a ⊂ O let T (a) denotes the Hecke operator associated to it as in [Shi00],

page 162, using the action of double cosets ΓξΓ with ξ = diag(D̂,D), (det(D)) = (α), D̂ = (D∗)−1,
α ∈ a.

Consider a non-zero Hermitian modular form f ∈M`(Γ), for a (congruence) subgroup Γ ⊂ Γn,K ,
and assume f |T (a) = λ(a)f with λ(a) ∈ C for all integral ideals a ⊂ O. Then

Z(s, f) =

(
2n∏
i=1

L(2s− i+ 1, θi−1)

)∑
a

λ(a)N(a)−s,

the sum is over all integral ideals of OK .

This series has an Euler product representation Z(s, f) =
∏

q(Zq(N(q)−s)−1, where the product
is over all prime ideals of OK , Zq(X) is the numerator of the series

∑
r≥0 λ(qr)Xr ∈ C(X), computed

by Shimura as follows.

Euler factors of the standard zeta function, [Shi00], p. 171
The Euler factors Zq(X) in the Hermitian modular case at the prime ideal q of OK are
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(i) Zq(X) =

n∏
i=1

(
(1−N(q)n−1tq,iX)(1−N(q)nt−1

q,iX)
)−1

,

if qρ = q and q 6 | c, (the inert case outside level c),

(ii) Zq1
(X1)Zq2

(X2) =

2n∏
i=1

(
(1−N(q1)2nt−1

q1q2,i
X1)(1−N(q2)−1tq1q2,iX2)

)−1
,

if q1 6= q2, q
ρ
1 = q2 and qi 6 | c for i = 1, 2 (the split case outside level) ,

(iii) Zq(X) =

n∏
i=1

(
1−N(q)n−1tq,iX

)−1
, if qρ = q and q|c (inert level divisors ),

(iv) Zq1(X1)Zq2(X2) =

n∏
i=1

(
(1−N(q1)n−1t−1

q1q2,i
X1)(1−N(q2)n−1tq1q2,iX2)

)−1
,

if q1 6= q2, qi|c for i = 1, 2 (split level divisors).

where the t?,i above for ? = q, q1q2, are the Satake parameters of the eigenform f .

The standard motivic-normalized zeta D(s, f , χ)
The standard zeta function of f is de�ned by means of the p-parameters as the following Euler

product:

D(s, f , χ) =
∏
p

2n∏
i=1

{(
1− χ(p)αi(p)

ps

)(
1− χ(p)α4n−i(p)

ps

)}−1

,

where χ is an arbitrary Dirichlet character. The p�parameters α1(p), . . . , α4n(p) of D(s, f , χ) for p
not dividing the level C of the form f are related to the the 4n characteristic numbers

α1(p), · · · , α2n(p), α2n+1(p), · · · , α4n(p)

of the product of all q-factors Zq(Nq(`−1)/2)X)−1 for all q|p, which is a polynomial of degree 4n of
the variable X = p−s (for almost all p) with coe�cients in a number �eld T = T (f) .

There is a relation between the two normalizations Z(s− `
2 + 1

2 , f) = D(s, f) explained in [Ha97]
for general zeta functions.

Description of the Main theorem
Let Ωf be a period attached to an Hermitian cusp eigenform f , D(s, f) = Z(s − `

2 + 1
2 , f) the

standard zeta function, and

αf = αf ,p =

∏
q|p

n∏
i=1

tq,i

 p−n(n+1), h = ordp(αf ,p),

The number αf turns out to be an eigenvalue of Atkin's type operator Up :
∑
H AHq

H 7→
∑
H ApHq

H

on some f0, and h = PN (d2 )− PH(d2 ).

De�nition. Let M be a O-module of �nite rank where O ⊂ Cp. For h ≥ 1, consider the
following Cp-vector spaces of functions on Z∗p : Ch ⊂ Cloc−an ⊂ C. Then
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- a continuous homomorphism µ : C→M is called a (bounded) measure M -valued measure on
Z∗p.

- µ : Ch →M is called an h admissible measureM -valued measure on Z∗p measure if the following
growth condition is satis�ed ∣∣∣∣∣

∫
a+(pv)

(x− a)jdµ

∣∣∣∣∣
p

≤ p−v(h−j)

for j = 0, 1, ..., h − 1, and et Yp = Homcont(Z∗p,C∗p) be the space of de�nition of p-adic Mellin
transform
Theorem ([Am-V], [MTT]) For an h-admissible measure µ, the Mellin transform Lµ : Yp → Cp
exists and has growth o(logh) (with in�nitely many zeros).

Main Theorem.
Let f be a Hermitian cusp eigenform of degree n ≥ 2 and of weight ` > 4n + 2. There exist

distributions µD,s for s = n, · · · , `− n with the properties:

i) for all pairs (s, χ) such that s ∈ Z with n ≤ s ≤ `− n,∫
Z∗p
χdµD,s = Ap(s, χ)

D∗(s, f , χ)

Ωf

(under the inclusion ip), with elementary factors Ap(s, χ) =
∏

q|pAq(s, χ) including a �nite Euler
product, Satake parameters tq,i, gaussian sums, the conductor of χ; the integral is a �nite sum.

(ii) if ordp

(
(
∏

q|p
∏n
i=1 tq,i)p

−n(n+1)
)

= 0 then the above distributions µD,s are bounded mea-

sures, we set µD = µD,s∗ and the integral is de�ned for all continuous characters y ∈ Hom(Z∗p,C∗p) =:
Yp.

Their Mellin transforms LµD
(y) =

∫
Z∗p
ydµD, LµD

: Yp → Cp, give bounded p-adic analytic

interpolation of the above L-values to on the Cp-analytic group Yp; and these distributions are

related by:

∫
X

χdµD,s =

∫
X

χxs
∗−sdµ∗D, X = Z∗p, where s∗ = `− n, s∗ = n.

Main theorem (continued)

(iii) in the admissible case assume that 0 < h ≤ s∗ − s∗ + 1

2
=

`+ 1− 2n

2
, where h =

ordp

(
(
∏

q|p
∏n
i=1 tq,i)p

−n(n+1)
)
> 0, Then there exist h�admissible measures µD whose integrals∫

Z∗p
χxspdµD are given by ip

(
Ap(s, χ)

D∗(s, f , χ)

Ωf

)
∈ Cp with Ap(s, χ) as in (i); their Mellin trans-

forms LD(y) =
∫
Z∗p
ydµD, belong to the type o(log xhp). (iv) the functions LD are determined by

(i)-(iii).

Remarks. (a) Interpretation of s∗: the smallest of the "big slopes" of PH
(b) Interpretation of s∗ − 1: the biggest of the "small slopes" of PH .
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Eisenstein series and congruences (KEY POINT!)
The (Siegel-Hermite) Eisenstein series E2`,n,K(Z) of weight 2`, character det−`, is de�ned in

[Ike08] by E2`,n,K(Z) =
∑

g∈Γn,K,∞\Γn,K

(det g)`j(g, Z)−2` (converges for ` > n). The normalized

Eisenstein series is given by E2`,n,K(Z) = 2−n
∏n
i=1 L(i − 2`, θi−1) · E2`,n,K(Z). If H ∈ Λn(O)+,

then the H-th Fourier coe�cient of E
(n)
2` (Z) is polynomial over Z in variables {p`−(n/2)}p, and equals

|γ(H)|`−(n/2)
∏

p|γ(H)

F̃p(H, p
−`+(n/2)), γ(H) = (−DK)[n/2] detH.

Here, F̃p(H,X) is a certain Laurent polynomial in the variables {Xp = p−s, X−1
p }p over Z. This

polynomial is a key point in proving congruences for the modular forms in a Rankin-Selberg integral.
Also, for a certain congruence subgroup C = Γc, s ∈ C and a Hecke ideal character ψ mod c, the

series is de�ned

E(Z, s, `, ψ) =
∑

g∈C∞\C

ψ(g)(det g)`j(g, Z)−2`|(det g)j(g, Z)|−s.

An integral representation of Rankin-Selberg type
The integral representation of Rankin-Selberg type in the Hermitian modular case: is stated for

the level c moodular forms: Theorem 4.1 (Shimura, Klosin), see [Bou16], p.13. Let
0 6= f ∈ M`(Γc, ψ)) of scalar weight `, ψ mod c, such that ∀a, f |T (a) = λ(a)f , and assume that
2` ≥ n, then there exists T ∈ S+ ∩GLn(K) and R ∈ GLn(K) such that

Γ((s))ψ(det(T))Z(s+ 3n/2, f , χ) =

Λc(s+ 3n/2, θψχ) · C0〈f , θT(χ)E(s̄+ n, `− `θ, χρψ)〉C′′ ,

where E(Z, s, `− `θ, ψ)C′′ is a normalized group theoretic (or adelic) Eisenstein series with compo-
nents as above of level c′′ divisible by c, and weight `− `θ. Here 〈·, ·〉C′′ is the normalized Petersson
inner product associated to the congruence subgroup C ′′ of level c′′. Γ((s)) = (4π)−n(s+h)Γιn(s +

h),Γιn(s) = π
n(n−1)

2

n−1∏
j=0

Γ(s− j), where h = 0 or 1, C0 the index of a subgroup.

Proof of the Main Theorem (ii): Kummer congruences

Let us se the notation Dalg
p (m, f , χ) = Ap(s, χ)

D∗(m, f , χ)

Ωf
The integrality of measures is proven

representing Dalg
p (m,χ) as Rankin-Selberg type integral at critical points s = m. Coe�cients of

modular forms in this integral satisfy Kummer-type congruences and produce bounded measures
µD whose construction reduces to congruences of Kummer type between the Fourier coe�cients
of modular forms, see also [Bou16]. Suppose that we are given in�nitely many "critical pairs"

(sj , χj) at which one has an integral representation Dalg
p (sj , f , χj) = Ap(s, χ)

〈f , hj〉
Ωf

with all hj =

8



∑
T bj,Tq

T ∈M in a certain �nite-dimensional space M containing f and de�ned over Q̄. We prove
the following Kummer-type congruences:

∀x ∈ Z∗p,
∑
j

βjχjx
kj ≡ 0 mod pN =⇒

∑
j

βjD
alg
p (sj , f , χ) ≡ 0 mod pN

βj ∈ Q̄, kj = s∗ − sj , where s∗ = `− n in our case.

Computing the Petersson products of a given modular form f(Z) =
∑
H aHq

H ∈

M∗(Q̄) by another modular form h(Z) =
∑
H bHq

H ∈ M∗(Q̄) uses a linear form `f : h 7→ 〈f , h〉
〈f , f〉

de�ned over a sub�eld k ⊂ Q̄.

Admissible Hermitian case
Let f ∈ S`(C,ψ) be a Hecke eigenform for the congruence subgroup C = Γc of level c. Let q be

a prime of K over p, which is inert over Q. Then we say that f is pre-ordinary at q if there exists
an eigenform 0 6= f0 ∈M{p} ⊂ S`(Cp, ψ) with Satake parameters tq,i such that∥∥∥∥∥

(
n∏
i=1

tq,i

)
N(q)−

n(n+1)
2

∥∥∥∥∥
p

= 1,

where ‖‖p the normalized absolute value at p.

The admissible case corresponds to

∥∥∥∥∥∥
∏

q|p

n∏
i=1

tq,i

 p−n(n+1)

∥∥∥∥∥∥
p

= p−h for a positive h > 0.

An interpretation of h as the di�erence h = PN,p(d/2) − PH(d/2) comes from the above explicit
relations.

Existence of h-admissible measures
of Amice-Vélu-type gives an unbounded p-adic analytic interpolation of the L-values of growth

loghp(·), using the Mellin transform of the constructed measures. This condition says that the
product

∏n
i=1 tp,i is nonzero and divisible by a certain power of p in O:

ordp

∏
q|p

(
n∏
i=1

tq,i

)
p−n(n+1)

 = h.

We use an easy condition of admissibility of a sequence of modular distributions Φj on X = Z∗p
with values in the semigroup algebra O[[q]] = O[[qH ]]H∈Λ(O)+ as in Theorem 4.8 of [CourPa]. It
su�ces to check congruences of the type (with κ = 4)

Uκv
( j∑
j′=0

(
j

j′

)
(−a0

p)
j−j′Φj′(a+ (pv)

)
∈ CpvjO[[q]]

9



for all j = 0, 1, . . . ,κh− 1. Here s = s∗ − j′, Φj′(a+ (pv)) a certain convolution of two Hermitian
modular forms, i.e.

Φj′(χ) = θ(χ) · E(s, χ)

of a Hermitian theta series θ(χ) and an Eisenstein series E(s, χ) with any Dirichlet character χ mod
pr. We use a general su�cient condition of admissibility of a sequence of modular distributions Φj
on X = Z∗p with values in O[[q]] as in Theorem 4.8 of [CourPa].

Proof of the Main Theorem (iii): (admissible case)
Using a Rankin-Selberg integral representation forDalg(s, f , χ) and an eigenfunction f0 of Atkin's

operator U(p) of eigenvalue αf on f0 the Rankin-Selberg integral of Fs,χ := θ(χ) · E(s, χ) gives

Dalg(s, f , χ) =
〈f0, θ(χ) · E(s, χ)〉

〈f , f〉
(the Petersson product on G = GU(ηn))

= α−vf

〈f0, U(pv)(θ(χ) · E(s, χ))〉
〈f , f〉

= α−vf

〈f0, U(pv)(Fs,χ)〉
〈f , f〉

.

Modi�cation in the admissible case: instead of Kummer congruences, to estimate p-adically the

integrals of test functions: M = pv:

∫
a+(M)

(x − a)jdDalg :=

j∑
j′=0

(
j

j′

)
(−a)j−j

′
∫
a+(M)

xj
′
dDalg,

using the orthogonality of characters and the sequence of zeta distributions

∫
a+(M)

xjdDalg =

1

](O/MO)×

∑
χ mod M

χ−1(a)

∫
X

χ(x)xjdDalg,
∫
X
χdDalg

s∗−j = Dalg(s∗ − j, f, χ) =:
∫
X
χ(x)xjdDalg.

Congruences between the coe�cients of the Hermitian modular forms
In order to integrate any locally-analytic function onX, it su�ces to check the following binomial

congruences for the coe�cients of the Hermitian modular form Fs∗−j,χ =
∑
ξ v(ξ, s∗ − j, χ)qξ : for

v � 0, and a constant C

1

](O/MO)×

j∑
j′=0

(
j

j′

)
(−a)j−j

′ ∑
χ mod M

χ−1(a)v(pvξ, s∗ − j′, χ)qξ

∈ CpvjO[[q]] (This is a quasimodular form if j′ 6= s∗)

The resulting measure µD allows to integrate all continuous characters in Yp = Homcont(X,C∗p),
including Hecke characters, as they are always locally analytic.

Its p-adic Mellin transform LµD
is an analytic function on Yp of the logarithmic growth O(logh),

h = ordp(α).

Proof of the main congruences
Thus the Petersson product in `f can be expressed through the Fourier coe�cients of h in

the case when there is a �nite basis of the dual space consisting of certain Fourier coe�cients:
`Ti : h 7→ bTi(i = 1, . . . , n). It follows that `f (h) =

∑
i γibTi , where γi ∈ k.
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Using the expression for `f (hj) =
∑
i γi,jbj,Ti , the above congruences reduce to∑

i,j

γi,jβjbj,Ti ≡ 0 mod pN .

The last congruence is done by an elementary check on the Fourier coe�cients bj,Ti .
The abstract Kummer congruences are checked for a family of test elements.
In the admissible case it su�ces to check binomial congruences for the Fourier coe�cients as

above in place of Kummer congruences.

Appendix A. Rewriting the local factor at p with character θ
Notice that if θ is the quadratic character attached to K/Q then

(1− αpX)(1− αpθ(p)X) =


(1− αpX)2 if θ(p) = 1, pr = q1q2, N(qi) = p,

(1− α2
pX

2), if θ(p) = −1, pr = q, N(q) = p2,

(1− αpX) if θ(p) = 0, pr = q2, N(q) = p.

Thus, if X = p−s, X2 = p−2s, N(q) = p, Zq(X)−1

=


∏2n
i=1(1−N(q1)2nt−1

q1q2,i
X)(1−N(q2)−1tq1q2,iX), if θ(p) = 1,∏n

i=1 (1−N(q)n−1tq,iX
2)(1−N(q)nt−1

q,iX
2), if θ(p) = −1,∏n

i=1 (1−N(q)n−1tq,iX)(1−N(q)nt−1
q,iX), if θ(p) = 0.

=


∏n
i=1(1− γp,iX)2

∏n
i=1(1− δp,iX)2 if θ(p) = 1, i.e. pr = q1q2,∏n

i=1(1− α2
p,iX

2)
∏n
i=1(1− β2

p,iX
2), if θ(p) = −1, i.e. pr = q,∏n

i=1(1− α′p,iX)
∏n
i=1(1− β′p,iX) if θ(p) = 0, i.e. pr = q2,

where α′p,i = pn−1tq,i, β
′
p,ip

nt−1
q,i , γp,i = p2nt−1

q1q2,i
, p−1tq1q2,i. It follows that

∏
q|p Zq(N(q)−n−(1/2)X) =

X4n + · · ·

Appendix A (continued).Relations between αi(p) and ti,q
were studied and explained by M.Harris [Ha97] for general Hermitian zeta functions Z(s, f) of

type introduced in [Shi00], using reprsentation theory of unitary groups and Deligne's approach
to L-functions, see [De79], in terms of a n-dimensional Galois representations ρλ : Gal(K̄/K) −→
GL(Mf ,λ) ∼= GLn(Eλ) over a completion Eλ of a number �eld E containing K and the Hecke
eigenvalues of a vector-valued Hermitian modular form f :

Z(s− n′ − 1

2
, f) = D(s, f) = L(s,Mf ,λ �M(ψ))

for an algebraic Hecke ideal character ψ as above of the in�nity type mψ, see [GH16], p.20. Here the
symbol L(s,Mf ,λ �M(ψ)) denotes the Rankin-Selberg type convolution (it corresponds to tensor
product of Galois representations). Notice that L(s,Mf ,λ) is of degree 2n, and L(s,Mf ,λ �M(ψ))
is of degree 4n because L(s, ψ) = L(s,R(ψ)) is of degree 2.

Moreover, M.Harris suggested a general description of D(s) with given Gamma factors and
analytic properties as some D(s, f) some under natural conditions on Gamma factors, giving higher
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versions of Shimura-Taniyama-Weil conjecture (i.e. higher Wiles' modularity theorem). This can
be stated also over a totally real �eld F (instead of Q), and its quadratic totally imaginary extension
K, see [GH16], [Pa94].

Appendix B. Shimura's Theorem: algebraicity of critical values in Cases Sp and UT,
p.234 of [Shi00]

Let f ∈ V(Q̄) be a non zero arithmetical automorphic form of type Sp or UT. Let χ be a Hecke
character of K such that χa(x) = x`a|xa|−` with ` ∈ Za, and let σ0 ∈ 2−1Z. Assume, in the
notations of Chapter 7 of [Shi00] on the weights kv, µv, `v, that

Case Sp 2n+ 1− kv + µv ≤ 2σ0 ≤ kv − µv,
where µv = 0 if [kv]− lv ∈ 2Z
and µv = 1 if [kv]− lv 6∈ 2Z; σ0 − kv + µv

for every v ∈ a if σ0 > n and

σ0 − 1− kv + µv ∈ 2Z for every v ∈ a if σ0 ≤ n.
Case UT 4n− (2kvρ + `v) ≤ 2σ0 ≤ mv − |kv − kvρ − `v|

and 2σ0 − `v ∈ 2Z for every v ∈ a.

Appendix B. Shimura's Theorem (continued)
Further exclude the following cases

(A) Case Sp σ0 = n+ 1, F = Q and χ2 = 1;

(B) Case Sp σ0 = n+ (3/2), F = Q;χ2 = 1 and [k]− ` ∈ 2Z
(C) Case Sp σ0 = 0, c = g and χ = 1;

(D) Case Sp 0 < σ0 ≤ n, c = g, χ2 = 1 and the conductor of χ is g;

(E) Case UT 2σ0 = 2n+ 1, F = Q, χ1 = θ, and kv − kvρ = `v;

(F) Case UT 0 ≤ 2σ0 < 2n, c = g, χ1 = θ2σ0 and the conductor of χ is r

Then
Z(σ0, f , χ)/〈f , f〉 ∈ πn|m|+dεQ̄,

where d = [F : Q], |m| =
∑
v∈amv, and

ε =


(n+ 1)σ0 − n2 − n, Case Sp, k ∈ Za, and σ0 > n0),

nσ0 − n2, Case Sp, k 6∈ Za, orσ0 ≤ n0),

2nσ0 − 2n2 + n Case UT

Notice that πn|m|+dε ∈ Z in all cases; if k 6∈ Za, the above parity condition on σ0 shows that
σ0 + kv ∈ Z, so that n|m|+ dε ∈ Z.
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Appendix C. Examples of Hermitian cusp forms

The Hermitian Ikeda lift, [Ike08]. Assume n = 2n′ even. Let f(τ) =

∞∑
N=1

a(N)qN ∈

S2k+1(Γ0(DK), χ) be a primitive form, whose L-function is given by

L(f, s) =
∏
p 6 |DK

(1− a(p)p−s + θ(p)p2k−2s)−1
∏
p|DK

(1− a(p)p−s)−1.

For each prime p 6 | DK , de�ne the Satake parameter {αp, βp} = {αp, θ(p)α−1
p } by

(1− a(p)X + θ(p)p2kX2) = (1− pkαpX)(1− pkβpX)

For p|DK , we put αp = p−ka(p). Put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H;αp), H ∈ Λn(O)+

f(Z) =
∑

H∈Λn(O)+

A(H)qH , Z ∈ H2n.

Appendix C (continued).The �rst theorem (even case)

Theorem 5.1 (Case E) of [Ike08] Assume that n = 2n′ is even. Let f(τ), A(H) and

f(Z) be as above. Then we have f ∈ S2k+2n′(Γ
(n)
K ,det−k−n

′
).

In the case when n is odd, consider a similar lifting for a normalized Hecke eigenform n = 2n′+1

is odd. Let f(τ) =

∞∑
N=1

a(N)qN ∈ S2k(SL2(Z)) be a primitive form, whose L-function is given by

L(f, s) =
∏
p

(1− a(p)p−s + p2k−1−2s)−1.

For each prime p, de�ne the Satake parameter {αp, α−1
p } by

(1− a(p)X + p2k−1X2) = (1− pk−(1/2)αpX)(1− pk−(1/2)α−1X).

Put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H;αp), H ∈ Λn(O)+

f(Z) =
∑

H∈Λn(O)+

A(H)qH , Z ∈ Hn.

Appendix C (continued). The second theorem (odd case)

Theorem 5.2 (Case O) of [Ike08]. Assume that n = 2n′ + 1 is odd. Let f(τ), A(H)

and f(Z) be as above. Then we have f ∈ S2k+2n′(Γ
(n)
K ,det−k−n

′
).
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The lift Lift(n)(f) of f is a common Hecke eigenform of all Hecke operators of the unitary
group, if it is not identically zero (Theorem 13.6).

Theorem 18.1 of [Ike08]. Let n, n′, and f be as in Theorem 5.1 or as in Theorem 5.2.

Assume that Lift(n)(f) 6= 0. Let L(s, Lift(n)(f), st) be the L-function of Lift(n)(f) associated to
st : LG→ GL4n(C). Then up to bad Euler factors, L(s, Lift(n)(f), st) is equal to

n∏
i=1

L(s+ k + n′ − i+
1

2
, f)L(s+ k + n′ − i+

1

2
, f, θ).

Moreover, the 4n charcteristic roots of L(s, Lift(n)(f), st) given as follows: for i = 1, · · · , n

αpp
−k−n′+i− 1

2 , α−1
p p−k−n

′+i− 1
2 , θ(p)αpp

−k−n′+i− 1
2 , θ(p)α−1

p p−k−n
′+i− 1

2

Functional equation of the lift (thanks to Sho Takemori!)
There are two cases [Ike08]: the even case (E) and the odd case (O):
f ∈ S2k+1(Γ0(D), θ), f = Lift(n)(f) ∈ S2k+2n′(ΓK,n) (E)

(of even degree n = 2n′ and of weight 2k + 2n′)

f ∈ S2k(SL(Z)), f = Lift(n)(f) ∈ S2k+2n′(ΓK,n) (O)

(of odd degree n = 2n′ + 1 and of weight 2k + 2n′).

Then, up to bad Euler factors, the

standard L-function of f = Lift(n)(f) is given by Z(s, f)=
∏n
i=1 L(s+ k + n′ − i+ 1

2 , f)L(s+ k +
n′ − i+ 1

2 , f, θ)
Let us denote t(s, i) = s+ k + n′ − i+ 1

2 then

=



∏2n′

i=1 L(s+ k + n′ − i+ 1
2 , f)L(s+ k + n′ − i+ 1

2 , f, θ) (E)∏n′

i=1 L(t(s, i), f)L(t(s, n+ 1− i), f)

L(t(s, i), f, θ)L(t(s, n+ 1− i), f, θ)∏2n′+1
i=1 L(s+ k + n′ − i+ 1

2 , f)

×L(s+ k + n′ − i+ 1
2 , f, θ) (O)

= L(s+ k − 1
2 , f)L(s+ k − 1

2 , f, θ)∏n′

i=1 L(t(s, i), f)L(t(s, n+ 1− i), f)

L(t(s, i), f, θ)L(t(s, n+ 1− i), f, θ).

The Gamma factor ΓZ(s) of Ikeda's lift
In the even case t(1− s, n+ 1− i) = t(1− s, 2n′+ 1− i) =(2k+ 1)− t(s, i). The Hecke functional

equation s 7→ 2k+ 1− s in all symmetric terms of the product, gives the functional equation of the
standard L-function of the form s 7→ 1− s, and the gamma factor is then

n∏
i=1

ΓC(s+ k + n′ − i+ 1/2)2 = ΓD(s+ n′ +
1

2
).

In the odd case n = 2n′ + 1 when f ∈ S2k(SL2(Z)), the Lift(f) ∈ S2k+2n′(ΓK,n). By 2k − t(s, i)
= t(1 − s, n + 1 − i), the standard L functions has functional equation of the form s 7→ 1 − s and
the gamma factor is the same.
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Hence the Gamma factor of Ikeda's lifting, denoted by f , of an elliptic modular form f and used
as a pattern, extends to a general (not necessarily lifted) Hermitian modular form f of even weight
`, which equals in the lifted case to ` = 2k+ 2n′, where k = (`− 2n′)/2 = `/2− n′=`/2− n′, when
the Gamma factor of the standard zeta function with the symmetry s 7→ 1− s becomes (see p.14)∏n
i=1 ΓC(s+`/2−n′+n′−i+(1/2))2 =

∏n
i=1 ΓC(s+`/2−i+(1/2))2 =

∏n−1
i=0 ΓC(s+`/2−i−(1/2))2.

Acknowledgement

Many thanks to Academy of Sciences and Arts of Bosnia and Herzegovina (ANUBiH) for the invita-
tion to International Scienti�c Conference "Modern Algebra and Analysis and their Applications",
to Siegfried Boecherer (Mannheim), Sho Takemori (MPIM) and Emmanuel Royer (University Cler-
mont Auvergne) for valuable discussions and observations.

Best wishes to dear Mirjana Vukovic of good health, enthusiasm in life and mathematics, hap-
pieness and many new good friends and achievements!

References

[Am-V] Amice, Y. and Vélu, J., Distributions p-adiques associées aux séries de Hecke, Journées
Arithmétiques de Bordeaux (Conf. Univ. Bordeaux, 1974), Astérisque no. 24/25, Soc.
Math. France, Paris 1975, pp. 119-131

[Boe85] Böcherer, S., Über die Funktionalgleichung automorpher L�Funktionen zur Siegelscher
Modulgruppe. J. reine angew. Math. 362 (1985) 146-168

[BoeNa13] Boecherer, S., Nagaoka, S. , On p-adic properties of Siegel modular forms, in: Auto-
morphic Forms. Research in Number Theory from Oman. Springer Proceedings in Math-
ematics and Statistics 115. Springer 2014.

[Boe-Pa11] Böcherer, S., Panchishkin, A.A., Higher Twists and Higher Gauss Sums Vietnam
Journal of Mathematics 39:3 (2011) 309-326

[BS00] Böcherer, S., and Schmidt, C.-G., p-adic measures attached to Siegel modular forms,
Ann. Inst. Fourier 50, N◦5, 1375-1443 (2000).

[Bou14] Bouganis T., Non-abelian p-adic L-functions and Eisenstein series of unitary groups;
the CM method, Ann. Inst. Fourier (Grenoble), 64 no. 2 (2014), p. 793-891.

[Bou16] Bouganis T., p-adic Measures for Hermitian Modular Forms and the Rankin-Selberg
Method. in Elliptic Curves, Modular Forms and Iwasawa Theory - Conference in honour
of the 70th birthday of John Coates, pp 33-86

[Hur899] Carlitz, L. , The coe�cients of the lemniscate function, Math. Comp., 16 (1962),
475-478.

15



[CourPa] Courtieu, M., Panchishkin ,A.A., Non-Archimedean L-Functions and Arithmetical
Siegel Modular Forms, Lecture Notes in Mathematics 1471, Springer-Verlag, 2004 (2nd
augmented ed.)

[CoWi77] Coates, J. andWiles, A., On the conjecture of Birch and Swinnerton-Dyer, Inventiones
math. 39, 223-251

[Coh17] Cohen, H. Computing L -Functions: A Survey. Journal de théorie des nombres de Bor-
deaux, Tome 27 (2015) no. 3 , p. 699-726

[De79] Deligne P., Valeurs de fonctions L et périodes d'intégrales, Proc.Sympos.Pure Math. vol.
55. Amer. Math. Soc., Providence, RI, 1979 , 313-346.

[EE] Eischen, Ellen E., p-adic Di�erential Operators on Automorphic Forms on Unitary
Groups. Annales de l'Institut Fourier 62, No.1 (2012) 177-243.

[EHLS] Eischen Ellen E., Harris, Michael, Li, Jian-Shu, Skinner, Christopher M., p-adic L-
functions for unitary groups, arXiv:1602.01776v3 [math.NT]

[EZ85] Eichler, M., Zagier, D., The theory of Jacobi forms, Progress in Mathematics, vol. 55
(Birkhéuser, Boston, MA, 1985).

[Ike01] Ikeda, T., On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of
Math. (2) 154 (2001), 641-681.

[Ike08] Ikeda, T., On the lifting of Hermitian modular forms, Compositio Math. 144, 1107-1154,
(2008)

[Iw] K. Iwasawa, Lectures on p-Adic L-Functions, Ann. of Math. Studies, N◦ 74. Princeton
Univ. Press (1972).

[GMPS14] Gelbart, S.,Miller, S.D, Panchishkin, S., and Shahidi, F., A p-adic integral for the
reciprocal of L-functions. Travaux du Colloque "Automorphic Forms and Related Geome-
try, Assessing the Legacy of I.I. Piatetski-Shapiro" (23 - 27 April, 2012, Yale University in
New Haven, CT), Contemporary Mathematics, 345-374 (avec Stephen Gelbart, Stephen
D. Miller, and Freydoon Shahidi), 53-68, 2014.

[GeSha] Gelbart, S., and Shahidi, F., Analytic Properties of Automorphic L-functions, Aca-
demic Press, New York, 1988.

[GPSR] Gelbart S.,Piatetski-Shapiro I.I., Rallis S. Explicit constructions of automorphic
L-functions. Springer-Verlag, Lect. Notes in Math. N 1254 (1987) 152p.

[Ge16] Guerberoff, L., Period relations for automorphic forms on unitary groups and critical
values of L-functons, Preprint, 2016.

[GH16] Grobner, H. and Harris, M. Whittaker periods, motivic periods, and special values of
tensor product l-functions, Journal of the Institute of Mathematics of Jussieu Volume 15,
Issue 4, October 2016, pp. 711-769

[Ha81] Harris, M., Special values of zeta functions attached to Siegel modular forms. Ann. Sci.
Ecole Norm Sup. 14 (1981), 77-120.

16



[Ha97] Harris, M., L-functions and periods of polarized regular motives. J. Reine Angew. Math,
(483):75-161, 1997.

[Ha14] Harris, M., Automorphic Galois representations and the cohomology of Shimura vari-
eties. Proceedings of the International Congress of Mathematicians, Seoul, 2014

[Hur1899] Hurwitz, A., Ueber die Entwicklungskoe�zienten der lemniskatischen Funktionen,
Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhaeuser, Basel,
1962-1963, see Vol. 2, No. LXVII.

[Ich12] Ichikawa, T., Vector-valued p-adic Siegel modular forms, J. reine angew. Math., DOI
10.1515/ crelle-2012-0066.

[Ka76] Katz, N.M., p-adic interpolation of real analytic Eisenstein series. Ann. of Math. 104
(1976) 459�571

[Ka78] Katz, N.M., p- adic L-functions for CM-�elds. Invent. Math. 48 (1978) 199-297

[KiNa16] Kikuta, Toshiyuki, Nagaoka, Shoyu, Note on mod p property of Hermitian modular
forms arXiv:1601.03506 [math.NT]

[Kl] Klosin ,K., Maass spaces on U(2,2) and the Bloch-Kato conjecture for the symmetric
square motive of a modular form, Journal of the Mathematical Society of Japan, Vol. 67,
No. 2 (2015) pp. 797-860.

[Ko80] Koblitz, Neal, p-adic Analysis. A Short Course on Recent Work, Cambridge Univ. Press,
1980

[KuLe64] Kubota, T., Leopoldt, H.�W. (1964): Eine p−adische Theorie der Zetawerte. I. J. reine
u. angew. Math., 214/215, 328-339 (1964).

[Kr44] Krasner, M., Une généralisation de la notion de corps-corpoéde. Un corpoéde remar-
quable de la théorie des corps valués, C. R. Acad. Sci. Paris Sér. IMath. 219 (1944),
345-347.

[Kr50] Krasner, M., Quelques méthodes nouvelles dans la théorie des corps valués complets.
Algébre et Théorie des Nombres, 29-39. Colloques Internationaux du Centre National de
la Recherche Scienti�que, no. 24, Centre National de la Recherche Scienti�que, Paris,
1950.

[Kr66] Krasner, M., Prolongement analytique uniforme et multiforme, Collogue C.N.R.,S. né
143, Clermont-Ferrand, 1963, Paris, Ed. C.N.R.S., 1966, p. 97-141

[Kr74] Krasner, M., Rapport sur le prologement analytique dans les corps values complete par
la methode des e1ements analytiques quasiconnexes, Bull. Soc. Math. France, Mem. 39-40
(1974) 131-254.

[Kr80] Krasner, M., Anneaux gradués généraux, Colloque d'Algébre Rennes (1980), 209-308.

[KrKa51] Krasner, M., Kaloujnine, L. Produit complet des groupes de permutations et probléme
d'extension de groupes II , Acta Sci. Math. Szeged , 14 (1951) p. 39-66 et 69-82.

17



[KrVu87] Krasner, M., Vukovi¢, M. Structures paragraduées (groupes, anneaux, modules),
Queen's Papers in Pure and Applied Mathematics, 77, Queen's University, Kingston,
Ontario, Canada, 1987.

[LangMF] Lang, Serge. Introduction to modular forms. With appendixes by D. Zagier and Walter
Feit. Springer-Verlag, Berlin, 1995

[Ma73] Manin, Yu. I., Periods of cusp forms and p-adic Hecke series, Mat. Sbornik, 92 , 1973,
pp. 378-401

[Ma76] Manin, Yu. I., Non-Archimedean integration and Jacquet-Langlands p-adic L-functions,
Uspekhi Mat. Nauk, 1976, Volume 31, Issue 1(187), 5-54

[MaPa] Manin, Yu. I.,Panchishkin, A.A., Introduction to Modern Number Theory: Funda-
mental Problems, Ideas and Theories (Encyclopaedia of Mathematical Sciences), Second
Edition, 504 p., Springer (2005)

[Ma-Vi] Manin, Yu.I., Vishik, M. M., p-adic Hecke series of imaginary quadratic �elds, (Russian)
Mat. Sb. (N.S.) 95(137) (1974), 357-383.

[MTT] Mazur, B., Tate J., Teitelbaum, J., On p-adic analogues of the conjectures of Birch
and Swinnerton-Dyer. Invent. Math. 84, 1-48 (1986).

[Mi-St] J.Milnor, J. Stasheff, Characteristic Classes, Ann. of Math. Studies N◦ 76, Princeton
Univ. Press. (1974), p 231-264.

[Pa88] Panchishkin, A.A., Non-Archimedean automorphic zeta functions, Moscow University
Press (1988).

[Pa91] Panchishkin, A.A., Non-Archimedean L-Functions of Siegel and Hilbert Modular Forms.
Volume 1471 (1991)

[Pa94] Panchishkin, A., Motives over totally real �elds and p�adic L�functions. Annales de
l'Institut Fourier, Grenoble, 44, 4 (1994), 989�1023

[PaMMJ] Panchishkin, A.A., A new method of constructing p-adic L-functions associated with
modular forms, Moscow Mathematical Journal, 2 (2002), Number 2, 1-16

[PaTV] Panchishkin, A. A., Two variable p-adic L functions attached to eigenfamilies of positive
slope, Invent. Math. v. 154, N3 (2003), pp. 551 - 615

[Pa14] Panchishkin, A.A. Analytic constructions of p-adic L-functions and Eisenstein series.
Travaux du Colloque "Automorphic Forms and Related Geometry, Assessing the Legacy
of I.I.Piatetski-Shapiro (23-27 April, 2012, Yale University in New Haven, CT)", 345-374,
2014

[Pa16] Panchishkin, A.A., Graded structures and d�érential oérators on nearly holomorphic
and quasimodular forms on classical groups. Sarajevo Journal of Mathematics Vol.1 (25),
No.2, Suppl., 2016, 1-17

[Sha69] Shafarevich, I.R. Zeta Function, Moscow University Press (1969).

[Sl] Sloane N.J.A,, A047817. Denominators of Hurwitz numbers Hn The On-Line Encyclo-
pedia of Integer Sequences https://oeis.org/A047817.

18



[Se73] Serre, J.�P., Cours d'arithmétique. Paris, 1970.

[Se70] Serre, J.�P., Facteurs locaux des fonctions zêta des variétés algébriques (dé�nitions et
conjectures). Sém. Delange - Pisot - Poitou, exp. 19, 1969/70.

[Se73] Serre, J.�P., Formes modulaires et fonctions zêta p-adiques, Lect Notes in Math. 350
(1973) 191�268 (Springer Verlag)

[Shi97a] Shimura G., Euler Products and Eisenstein series, CBMS Regional Conference Series in
Mathematics, No.93, Amer. Math. Soc, 1997.

[Shi97b] Shimura G., Colloquium Paper: Zeta functions and Eisenstein series on classical groups,
Proc Nat. Acad Sci U S A. 1997 Oct 14; 94(21): 11133-11137

[Shi00] Shimura G., Arithmeticity in the theory of automorphic forms, Mathematical Surveys
and Monographs, vol. 82 (Amer. Math. Soc., Providence, 2000).

[MC] Skinner, C. and Urban, E. The Iwasawa Main Cconjecture for GL(2). Invent. Math.
195 (2014), no. 1, 1-277. MR 3148103

[U14] Urban, E., Nearly Overconvergent Modular Forms, in: Iwasawa Theory 2012. State of the
Art and Recent Advances, Contributions in Mathematical and Computational Sciences
book series (CMCS, Vol. 7), pp. 401-441

[VoKar] Voronin, S.M.,Karatsuba, A.A., The Riemann zeta-function, Moscow, Fizmatlit, 1994.

[Vu] Vukovi¢, M., Structures graduéees et paragradués. Pr�publication de l'Institut Fourier no
531(2006).

[Wa] Washington,L., Introduction to Cyclotomic Fields, Springer (1982).

[YS] Yoshida, H., Review on Goro Shimura, Arithmeticity in the theory of automorphic forms
[Shi00], Bulletin (New Series) of the AMS, vol. 39, N3 (2002), 441-448.

19


