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THE BALLISTIC ANNIHILATION THRESHOLD IS 1{4

VLADAS SIDORAVICIUS AND LAURENT TOURNIER

Abstract. We consider a system of annihilating particles where particles start from the points of a

Poisson process on the line, move at constant i.i.d. speeds symmetrically distributed in t´1, 0,`1u and

annihilate upon collision. We prove that particles with speed 0 vanish almost surely if and only if their

initial density is smaller than or equal to 1{4, and give an explicit formula for the probability of survival

of a stationary particle in the supercritical case, which is in accordance with the predictions of [2]. The

present proof relies essentially on an identity proved in J. Haslegrave’s recent paper [3].

Since a key ingredient in our proof comes from the very recent paper [3], we borrow all

notations from that paper in order to ease a joint reading, and refer to it for definitions.

Let us also only give a brief description, and refer to either [3] or [4] for a more elaborate

introduction.

We consider a system of particles, known as a particular case of ballistic annihilation,
whose initial condition is random but whose subsequent time evolution follows determin-
istically. Let p P r0, 1s. At time 0, particles (or “bullets”) are located at the points of
a Poisson point process of intensity 1 on the real line, and endowed with i.i.d. speeds
distributed according to the symmetric law 1´p

2
δ´1 `pδ0 ` 1´p

2
δ1. Then, all particles move

along the line at their given constant speed, and pairs of particles annihilate as soon
as they collide. We are interested in the eventual survival of particles with speed 0 (or
“stationary” particles). Due to symmetries, it is in fact often more convenient to only
consider particles on the real half-line p0,8q and wonder whether 0 is eventually reached
by a particle or not. For that reason, unless specified otherwise by a subscript R, we
henceforth consider that the model is defined on p0,8q.

Our main result is an explicit computation of the probability that a stationary particle
survives, which confirms predictions from the physics literature [2]. A rigorous proof of
the fact that stationary particles vanish for small p had been a surprisingly difficult open
problem until Haslegrave’s recent breakthrough [3]. Although the algebraic nature of the
proof in [3] still didn’t provide much probabilistic insight, it opened the way to explicit
computations and thus to a possible confirmation of some facts from [2]. This program is
achieved in the present paper by providing an algebraic identity that combines with the
ones in [3] into a solvable equation, and by discussing the topological arguments required
to identify the relevant solution of that equation and get the following full conclusion.

Theorem 1. This model undergoes a phase transition at pc “ 1

4
. More precisely, the

probability that 0 is reached by a particle on p0,8q is, for all p P p0, 1s,

q :“ Pp0 Ð ‚q “
#
1 if p ď 1{4
1?
p

´ 1 if p ą 1{4.
Equivalently, the probability that a given stationary particle survives in the full line process

is

θppq :“ Ppp‚ Û 0qR ^ p0 Ú ‚qRq “

$
&
%
0 if p ď 1{4´
2 ´ 1?

p

¯2

if p ą 1{4.
1
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The proof decomposes into two parts. First, combining the key identity from [3] with a
new identity, we derive algebraically that, for all p, the probability q is either equal to 1 or
to 1?

p
´1. This entails q “ 1 when p ď 1{4, but doesn’t prove the converse. For the latter,

we need a priori regularity properties of q (or θ) as a function of p. Unfortunately, we
cannot rely of monotonicity since the apparent lack thereof is precisely a major difficulty
in this model.

In a second part, we use finitary conditions characterizing the survival phase together
with the previous dichotomy in order to show that q ă 1 on the whole interval p1

4
, 1q,

which completes the proof of our main theorem.
A last section of the paper contains the definition and properties of one of the above

mentioned finitary conditions.

1. Algebraic identities

In this section, we prove

Proposition 1. For all p P p0, 1q, q “ 1 or q “ 1?
p

´ 1. In particular, q “ 1 if p ď 1

4
.

Let us first recall a key identity from [3], relating p, q and

r :“ Ppp~‚1 Ñ 9‚q ^ p0 Ð ‚qq.

Lemma 1 ([3, Lemma 2]). q “ 1´p

2
p1 ` qq ` rp1 ´ qq ` pq3.

The conclusion will follow from the next lemma:

Lemma 2. r “ 1

2
pq2.

Proof of Proposition 1. Combining Lemmas 1 and 2 yields immediately the equation

0 “ 1 ´ q ´ p ´ pq ` pq2 ` pq3

hence

0 “ 1 ´ q ´ pp1 ` q ´ q2 ´ q3q “ p1 ´ qqp1 ´ pp1 ` qq2q,
implying, since q ě 0, that either q “ 1 or q “ 1?

p
´ 1. Since q ď 1, we conclude that

q “ 1 when p ď 1{4. �

Proof of Lemma 2. Let us denote by y0 the location of the first particle that reaches 0,
if any, and by y1 the location of the particle that annihilates with the first particle ‚1, if
any.

For any configuration ω of particle locations and speeds in t~‚1 Ñ ‚u, denote by revpωq
the configuration obtained by reversing the interval rx1, y1s, that is, the configuration
where particles outside rx1, y1s are those of ω, and particles inside rx1, y1s are symmetric
to those of ω with respect to x1`y1

2
and with opposite speeds.

For ω in the event defining r, that is to say ω P t0 Ð ‚u X t~‚1 Ñ 9‚u, we clearly
have revpωq P t0 Ð ‚u X t 9‚1 Ð ‚u, and notice also that in this case the first bullet
reaches y1 before the particle initially at y0 does, i.e. y1 ´ x1 ă y0 ´ y1, and this also
holds for revpωq. Since conversely, for ω P t0 Ð ‚u X t 9‚1 Ð ‚u X ty1 ´ x1 ă y0 ´ y1u,
we have revpωq P t0 Ð ‚u X t~‚1 Ñ 9‚u, we conclude that rev is a bijection between
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t0 Ð ‚u X t~‚1 Ñ 9‚u and t0 Ð ‚u X t 9‚1 Ð ‚u X ty1 ´ x1 ă y0 ´ y1u. Because rev preserves
the measure, it follows that

P
`
p0 Ð ‚q ^ p~‚1 Ñ 9‚q

˘
“ P

`
p0 Ð ‚q ^ p 9‚1 Ð ‚q ^ py1 ´ x1 ă y0 ´ y1q

˘
.

We have t0 Ð ‚u X t 9‚1 Ð ‚u “ t 9‚1 Ð ‚u X ty1 Ð ‚upy1,8q, so that, conditional on that
event, the distances y1 ´ x1 and y0 ´ y1 are independent and have the same distribution,
which is atomless. Therefore,

P
`
p0 Ð ‚q ^ p 9‚1 Ð ‚q ^ py1 ´ x1 ă y0 ´ y1q

˘
“ 1

2
P

`
p0 Ð ‚q ^ p 9‚1 Ð ‚q

˘
.

To conclude, we finally have

P
`
p0 Ð ‚q ^ p 9‚1 Ð ‚q

˘
“ P

`
p 9‚1 Ð ‚q ^ py1 Ð ‚qpy1,8q

˘
“ pq2.

�

2. A priori regularity properties

Let us prove the following result, which in combination with Proposition 1 immediately
gives Theorem 1.

Proposition 2. For all p P p1

4
, 1q, θppq ą 0.

The proof follows from the two lemmas below. These lemmas respectively rely on
two different characterizations of the supercritical phase tp : θppq ą 0u by means of
sequences of conditions about finite subconfigurations. Let us already warn the reader
that the definition and properties of the more involved characterization are postponed
until the next section.

Lemma 3. The set of subcritical parameters tp P p1

4
, 1q : θppq “ 0u is open.

Lemma 4. The set of supercritical parameters tp P p1

4
, 1q : θppq ą 0u is open.

Proof of Proposition 2. As a conclusion of the above lemmas, the set A “ tp P p1

4
, 1q :

θppq “ 0u is both open and closed in p1

4
, 1q. By connectivity of this interval, it follows

that either A “ p1

4
, 1q or A “ H. Since we already know (cf. [4]) that A Ă p1

4
, 1
3
q, we

deduce that A “ H. �

Proof of Lemma 3. We have q “ limÒk qk where, for all k P N,

qk “ Ppp0 Ð ‚qr0,xksq,
which gives, using Proposition 1,

tp P p1
4
, 1q : θppq “ 0u “ tp P p1

4
, 1q : q “ 1u

“ tp P p1
4
, 1q : q ą 1?

p
´ 1u “

ď

kPN
tp P p1

4
, 1q : qk ą 1?

p
´ 1u,

and each qk depends only on a configuration of k particles, hence by conditioning on the
speeds of these particles we see that qk is a polynomial in p and therefore is continuous.
The lemma follows. �
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Proof of Lemma 4. Using the notation Nk from the next section, the upcoming Proposi-
tion 3 gives

tp P p1
4
, 1q : θppq ą 0u “

ď

kPN

!
p P p1

4
, 1q : ErNks ą 0

)
,

so that the lemma follows by noticing that, as can be seen by conditioning on the speeds
of the k particles, the function p ÞÑ ErNks is polynomial hence continuous. �

3. Characterization of the supercritical phase

While Lemma 3 relies on the simple monotone approximation q “ limÒk qk, where for
all k P N the probabilities qk “ Ppp0 Ð ‚qr0,xksq depend only on a configuration of k
particles, Lemma 4 relies on a formally similar but more involved characterization. This
characterization is already alluded to in the first of the final remarks of [4] as a way to
numerically upper bound pc. Given its importance in the present proof, we give it here a
more thorough presentation, and show it is necessary and sufficient.

For all k P N, consider a random configuration containing only the k bullets ‚1, . . . , ‚k

(initially located at x1, . . . , xk), and denote by Nk the difference between the number of
surviving stationary particles and the number of surviving left-going particles: letting
Ik “ rx1, xks,

Nk :“
kÿ

i“1

p1 9‚i ´ 1 ~‚i

q1p‚Û‚iqI
k

^p‚iÚ‚qI
k

In the following, the event in the last indicator function will be written “p‚i survivesqIk”.
Proposition 3. For all p P p0, 1q, θppq ą 0 ô Dk ě 1, ErNks ą 0.

Remark. The fact that ErN1s “ 1

2
p3p ´ 1q recovers (cf. [4]) that θppq ą 0 when p ą

1{3. The proof of this fact in [4] is in fact the scheme for the general one given below.
Considering ErN2s gives the same condition, however ErN3s “ 3p3 ` 7p2p ´ 3

2
pp2 ´ 8p3

(where p “ 1´p

2
) yields the value 0.32803 from the remark in [4]. As the proposition shows,

pushing this method further would give arbitrarily good numerical approximations of pc.
Let us remind that, although such approximations are rendered pointless by Theorem 1,
the existence of this method still is a theoretical tool in the proof of the said theorem.

Proof. Direct implication. Assume that θppq ą 0. Let us decompose Nk “ 9Nk´ ~Nk, where
9Nk and ~Nk respectively denote the number of stationary and left-going particles among

‚1, . . . , ‚k that survive in restriction to rx1, xks.
For any integer i, the event t 9‚i survivesuI decreases with the interval I (containing

xi). If indeed ‚i is stationary and is annihilated by a bullet inside an interval I, then
introducing new bullets outside I can possibly change the side from which ‚i is hit, but
not the fact that this bullet is hit. In particular, the number of stationary bullets among
‚1, . . . , ‚k that survive in restriction to rx1, xks is larger than or equal to the number of
such bullets that survive in “restriction” to the whole real line. Taking expectations, by
translation invariance of the process on R this gives

Er 9Nks ě kP
`
p 9‚1 survivesqR

˘
“ kpθppq,

hence in particular Er 9Nks Ñ `8 as k Ñ 8.
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On the other hand, Er ~Nks is uniformly bounded in k. Indeed, ~Nk clearly grows with

k, and its limit ~N8 “ limÒk
~Nk is the number of surviving left-going particles in p0,8q,

and this number has geometric distribution with parameter 1´ q ą 0 (notice indeed that
the configuration on the right of a surviving left-going particle is identically distributed
as the configuration on p0,8q, up to translation) and therefore is integrable.

We conclude that ErNks “ Er 9Nks ´ Er ~Nks ě kpθppq ´ q

1´q
Ñ `8 as k Ñ 8, hence

ErNks ą 0 for large k.
Reverse implication. Assume now that ErNks ą 0 for some k ě 1.

For positive integers i ă j, define Npi, jq in the same way as Nk except that only the
bullets ‚i, . . . , ‚j are considered instead of ‚1, . . . , ‚k. With this notation, Nk “ Np1, kq.
This function N satisfies “almost” a superadditivity property.

Lemma 5. Let k ă l be positive integers. For any configuration ω which, in restriction

to rx1, xks, has no surviving right-going particle, we have

Np1, lq ě Np1, kq ` Npk ` 1, lq.
Proof of Lemma 5. When the configurations in I “ rx1, xks and in J “ rxk`1, xls are
combined, the surviving left-going particles from J can interact with particles from I.
Each of them either annihilates with a surviving stationary particle (hence giving the
same 0 contribution to both hand sides) or annihilates with a stationary particle that was
annihilated in restriction to I hence unleashes its right-going peer which can either survive
(making the left-hand side greater by 1), annihilate with a surviving left-going particle
(making the left-hand side greater by 2), annihilate with a surviving stationary particle
(keeping sides equal) or again annihilate with a stationary particle that was annihilated
in restriction to J hence unleash its left-going peer which is offered the same range of
possibilities as the particle we first considered. Thus in any case the identity remains
satisfied after the effect of each of these left-going particles is taken into account. �

We shall progressively explore the configuration, starting from 0 and going to the right,
by repeating the following two steps: first, discover the next k particles, and then discover
the least necessary number of particles until there is no surviving right-going particle
in the whole discovered region. We will denote by K0 “ 0, K1, K2, . . ., the number of

particles discovered in total after each iteration, and by rN p1qp“ Nkq, rN p2q, . . . the quantity
computed analogously to Nk but on the newly discovered block of k particles at each

iteration, i.e., for all n, rN pn`1q “ NpKn ` 1, Kn ` kq. Let us explain the first iteration in
some more detail.

We start by considering the first k particles. Let rN p1q “ Np1, kq. If, in the configuration
restricted to rx1, xks, no right-going particle survives, then we let K1 “ k. Otherwise,
let τ0 denote the index of the leftmost surviving right-going particle, and appeal for
instance to [4, Lemma 3.3] to justify the existence of a minimal γ1 such that the event
t~‚τ0 Ñ ‚γ1urτ0,γ1s happens, and let K1 “ γ1. By definition we have that, in both cases, in

restriction to rx1, xK1
s, there is no surviving right-going particle and rN p1q “ Np1, K1q. We

then keep iterating this construction: define rN p2q “ NpK1`1, K1`kq, and keep exploring
on the right of ‚K1`k until no surviving right-going particle remains, define K2 to be the

index that was reached, and so on. By this construction, the random variables rN pnq are
i.i.d. with same distribution as Nk, and for all n we have Np1, Kn ` kq “ Np1, Kn`1q and
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there is no surviving right-going particle in restriction to rx1, xKn`1
s. Thus, by repeatedly

using the lemma, we have for all n,

Np1, Knq ě rN p1q ` ¨ ¨ ¨ ` rN pnq.

However, by the assumption and the law of large numbers, with positive probability
rN p2q ` ¨ ¨ ¨ ` rN pnq ą 0 for all n ě 2. Therefore, still with positive probability, it may be

that the first k particles are stationary (hence rN p1q “ k) and that rN p1q ` ¨ ¨ ¨ ` rN pnq ą k

for all n ě 2, so that Np1, Knq ą k for all n ě 2. This event ensures that 0 is never
hit: indeed after the n-th iteration of the exploration (for n ě 2) there are at least k ` 1

surviving stationary particles due to the definition of the event, but at most k of them can
be annihilated by the particles discovered between Kn and Kn`1, hence by induction the
first stationary particle survives forever and prevents 0 from being hit. Thus θppq ą 0. �

Remark. In the discrete ballistic annihilation model introduced in [1], the analog of
Lemma 2 is wrong due to triple collisions. The same arguments indeed give

r̂ “ PZpD ą D1qpq̂2 ă 1

2
pq̂2,

where D is the location of the first particle that reaches zero, and D1 is an independent
copy of D. Since D is integer valued, it holds more precisely that

PZpD ą D1q “ 1

2
PZpD ‰ D1q “ 1

2

`
1 ´ PZpD “ D1q

˘

and PZpD “ D1q can be interpreted as the probability that, on the full line, a given
stationary particle is involved in a triple collision. From r̂ ă 1

2
pq̂2, the computation done

in the proof of Theorem 1 shows that, if q̂ ă 1, then 0 ă 1 ´ pp1 ` q̂q2, hence q̂ ă 1?
p

´ 1

and thus the surviving probability of a stationary particle on the full line satisfies

ψppq “ p1 ´ q̂q2 ą
´
2 ´ 1?

p

¯2

“ θppq.

Thanks to this dichotomy, we can argue as in the original model that, for all p ą 1

4
,

ψppq ą 0 hence furthermore ψppq ą θppq. This comparison was heuristically expected
in [1].
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