Summations over generalized ribbon graphs and all genus categorical Gromov-Witten invariants.

 102e Rencontre entre mathematiciens et physicistsSerguei Barannikov (CNRS, Paris VII, NRU HSE)

15/09/2018
$\psi_{i}=c_{1}\left(T_{p_{i}}^{*}\right), \psi_{i} \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$. Consider $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$-valued generating function for products of ψ_{i}

- Theorem (SB,2009)

$$
\begin{aligned}
& \sum_{\sum d_{i}=d} \psi_{1}^{d_{1}} \ldots \psi_{n}^{d_{n}} \prod_{i=1}^{n} \frac{\left(2 d_{i}-1\right)!!}{\lambda_{i}^{2 d_{i}+1}}= \\
= & {\left[\sum_{[G] \in \Gamma_{g, n}, n}(G, \text { odd }\right.} \\
& \left.(G)) \frac{2^{-\chi(G)}}{|\operatorname{Aut}(G)|} \prod_{e \in \operatorname{Edge}(G)} \frac{1}{\lambda_{i(e)}+\lambda_{j(e)}}\right]
\end{aligned}
$$

- the sum on the right is over stable ribbon graphs of genus g with n numbered punctures, with $2 d+n$ edges, and such that the vertices of the graph have cyclically ordered subsets of arbitrary odd cardinality
- In the simplest case, corresponding to the top degree, the cohomology $H^{6 g-6+2 n}\left(\overline{\mathcal{M}}_{g, n}\right)$ is 1-dimensional, the summation is over 3 -valent usual ribbon graphs and this formula then reproduces the main identity from Kontsevich proof of Witten conjecture.

Aim of the talk

This formula is a byproduct of construction of cohomology classes

- I - an odd derivation acting on cyclic associative $/ A_{\infty}-$ algebra A, with odd scalar product, in general $I^{2} \neq 0(!)$
- Theorem (S.B.2009) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$
- This construction defines Cohomological Field Theory
- Applied to "odd matrix algebra" $A=q(N)$, $q(N)=\{[X, \pi]=0 \mid X \in \operatorname{gl}(N \mid N)\}$, where π-odd involution, $I=[\Xi, \cdot], \quad \Xi$ - odd element \rightarrow the formula for products of ψ_{i}
- This was the first nontrivial computation of categorical Gromov-Witten invariants of higher genus.

Counterexample to a Theorem of Kontsevich

Another byproduct is a counterexample to the Theorem 1.3 from Kontsevich "Feynman diagrams in low-dimansional topology" (1993)
Dual construction
We describe here a way to produce homology classes on $\mathcal{M}_{g, n}$. The starting ingredient is a finite-dimensional differential associative algebra V with a nondegenerate odd scalar product and trivial cohomology.
The right inverse to the scalar product can be considered as an odd elemen δ of $V \otimes V$. It follows from the compatibility of the scalar product with the exists $\omega \in V \otimes V$ such that. $d \omega=\delta$. We can use ω as " V) it follows that ther exists $\omega \in V \otimes V$ such that $d \omega=\delta$. We can use ω as a "propagator" and tensor $T_{(k)}: V^{\otimes k} \rightarrow \mathbf{C}$
as "interactions". Again, we obtain a state model on ribbon graphs. Now we will consider the complex which is dual to the cochain complex from the previous ection.
Theorem $1.3 \sum_{\Gamma} Z(\Gamma) \Gamma$ is a well-defined chain and it is closed. Its homology class does not depend on the choice of ω.

Counterexample $A=\langle 1, \xi\rangle / \xi^{2}=1$

- $A=\langle 1, \xi\rangle / \xi^{2}=1, \bar{\xi}=1, \beta(1, \xi)=1, d(\xi)=1, d^{2}=0$, $w=\xi \otimes \xi$.
- For this data $\sum_{\Gamma} Z(\Gamma) \Gamma$ is nonzero on the boundary of the following ribbon graph $=$ a generator of the dual complex:

Figure: $G: Z_{\widetilde{\jmath}}(\partial G) \neq 0$

Cellular decomposition of $\overline{\mathcal{M}}_{g, n} \times \mathbb{R}^{n}$

A stable ribbon graph is a connected graph G (recall: a graph G is a triple $(\operatorname{Flag}(G), \lambda, \sigma)$, where $\operatorname{Flag}(G)$ is a finite set, whose elements are called flags, λ is a partition of $\operatorname{Flag}(G) \leftrightarrow$ vertices, σ is an involution acting on $\operatorname{Flag}(G) \leftrightarrow$ edges/legs) together with:

- partitions of the set of flags adjacent to every vertex into $i(v)$ nonempty subsets

$$
\operatorname{Leg}(v)=\operatorname{Leg}(v)^{(1)} \sqcup \ldots \sqcup \operatorname{Leg}(v)^{(i(v))}, v \in \operatorname{Vert}(G)
$$

- fixed cyclic order on every subset $\operatorname{Leg}(v)^{(k)}$,
- a number $g(v) \in \mathbb{Z}_{\geq 0}$ such that $|\operatorname{Leg}(v)|>2(2-i(v)-2 g(v))$.
- Define an orientation $\operatorname{or}(G) \in \operatorname{Det}\left(\otimes_{v \in \operatorname{Vert}(G)}\left(k^{\text {Flag }(v)} \oplus k^{\text {Cycle }(v)}\right)\right.$
- $\oplus_{\{G\}} k(G$, or $(G))$ has natural "generalized contraction of edges" differential $\delta_{\text {graph }}, \delta_{\text {graph }}^{2}=0$

Cellular decomposition of $\overline{\mathcal{M}}_{g, n} \times \mathbb{R}^{n}$

A metric on the stable ribbon graph is a function
$I: \operatorname{Edge}(G) \rightarrow \mathbb{R}_{>0}$. Given a stable ribbon graph $G \mathrm{w} /$ out legs and a metric on G one can construct by standard procedure a punctured Riemann surface $\Sigma(G)$, which have double points in general.

- replace every edge by a pair of oriented strips $[0, I] \times[0+i \infty[$ one for each flag and glue them side $0 \times[0+i \infty[$ to $I \times[0+i \infty[$ according to the cyclic order of the cyclically ordered subsets at each vertex. Then glue the two strips for each edge $[0, I] \leftrightarrow[I, 0]$
- identify points corresponding to 2 subsets at vertices with $g(v)=0, i(v)=2$, (double points); for points with $2 g(v)+i(v)>2$ remplace the vertex by some Riemann surface of genus $g(v)$, which does not contain any marked point, connected to the rest via $i(v)$ double points.
- This gives an isomorphism of complexes $\left(\oplus_{\{G\}} k\left[(G\right.\right.$, or $\left.(G)], \delta_{\text {graph }}\right) \rightarrow \oplus_{g, v} C_{*}\left(\overline{\mathcal{M}}_{g, v} \times \mathbb{R}_{>0}^{v} / S_{v}\right)$

Example of the formula for products of ψ_{i}

Example: The class of ψ_{1} in $H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$ is represented as linear combination of stable $(G, \operatorname{or}(G))$ with $|\operatorname{Edge}(G)|=2+n$. It is the coefficient in front of $\frac{1}{\lambda_{1}^{3}} \prod_{i=2}^{n} \frac{1}{\lambda_{i}}$.

The Quantum Master Equation on Cyclic Cochains

- The stable ribbon graph complex is intimately related with the Quantum Master Equation on Cyclic Cochains (QMCC).
- Let $V=V_{0} \oplus V_{1}$ be $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space, $\operatorname{dim}_{k} V<\infty$, scalar product $\beta: V^{\otimes 2} \rightarrow k[p]$
- $C^{\lambda}=\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, $S \in \operatorname{Sym}\left(C^{\lambda}[1-p]\right)[[h]]$ (symmetric products for odd β, antisymmetric for even β)
- The Quantum Master Equation on Cyclic Cochains / The noncommutative Batalin-Vilkovisky equation (S.B.,2005)

$$
\begin{gathered}
\hbar \Delta_{N C} S+\frac{1}{2}\{S, S\}=0 \\
S=\sum_{g \geq 0, i>0} \hbar^{2 g-1+i} S_{g, i}, S_{g, i} \in \operatorname{Sym}^{i}\left(C^{\lambda}[1-p]\right) . \\
\left\{S_{0,1}, S_{0,1}\right\}=0
\end{gathered}
$$

QMCC
$S_{0,1}-A_{\infty}$ - algebra with (even/odd) scalar product, so S multiloop, higher genus generalization of $A_{\infty}-$ algebra.

The noncommutative BV differential

- $($ QMCC $) \Longleftrightarrow \Delta_{N C}\left(\exp \frac{1}{\hbar} S\right)=0$
- The noncommutative BV differential on $F=\operatorname{Sym}\left(C^{\lambda}[1-p]\right)$

$$
\begin{aligned}
& \Delta_{N C}\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{t}}\right)^{\lambda}= \\
& \quad=\sum_{p, q}(-1)^{\varepsilon} \beta_{\rho_{p} \tau_{q}}^{\vee}\left(a_{\rho_{1}} \ldots a_{\rho_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{q-1}} a_{\rho_{p+1}} \ldots a_{\rho_{r}}\right)^{\lambda}+ \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} \beta_{\rho_{\rho} \rho_{q}}^{\vee}\left(\ldots a_{\rho_{p-1}} a_{\rho_{q+1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\rho_{p+1}} \ldots a_{\rho_{q-1}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{t}}\right)^{\lambda} \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} \beta_{\tau_{p} \tau_{q}}^{\vee}\left(\ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{t}}\right)^{\lambda}\left(a_{\tau_{p+1}} \ldots a_{\tau_{q-1}}\right)^{\lambda}
\end{aligned}
$$

- signs are the standard Koszul signs taking into account that $\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}=1-p+\sum a_{\rho_{i}}, a_{i} \in \operatorname{Hom}(\Pi V)$.
- Theorem (S.B.,2006) $\Delta_{N C}^{2}=0$
(A, m) is a $d-\mathbb{Z} / 2 \mathbb{Z}$ graded associative algebra with odd scalar product $\beta, \operatorname{dim}_{k} A<\infty$.
H is an odd selfadjoint operator $H: A \rightarrow \Pi A, H^{\vee}=H$, such that $l d-[d, H]=P, d P=0, P^{2}=P . B$ - the image of P.
Let Γ be a 3-valent ribbon graph with legs, then put:
- on every vertex $v \rightarrow$ the 3-tensors of the cyclic product on A

$$
m^{v} \in\left((\Pi A)^{\otimes 3}\right)^{\vee}
$$

- on every interieur edge $e=\left(f f^{\prime}\right) \rightarrow$ the two tensor

$$
\beta^{\vee}\left(H^{\vee} u_{f}, v_{f^{\prime}}\right), \beta_{H}^{\vee, e} \in(\Pi A)^{\otimes 2}
$$

- on every leg $I \in \operatorname{Leg}(\Gamma) \rightarrow$ element $a_{l} \in \Pi B$
- make the contraction

$$
W_{\Gamma}\left(\bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right)=\left\langle\bigotimes_{v \in \operatorname{Vert}(\Gamma)} m^{v},\left(\bigotimes_{e \in \operatorname{Edge}(\Gamma)} \beta_{H}^{\vee, e}\right) \bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right\rangle
$$

$$
\begin{gathered}
W_{\Gamma}\left(\bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right)=\left\langle\bigotimes_{v \in \operatorname{Vert}(\Gamma)} m^{v},\left(\bigotimes_{e \in \operatorname{Edge}(\Gamma)} \beta_{H}^{\vee, e}\right) \bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right\rangle \\
S=\sum_{\{\Gamma\}} h^{1-\chi(\Gamma)} W_{\Gamma}
\end{gathered}
$$

- $S \in \operatorname{Sym}\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi B^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)[[h]]$
- Theorem (S.B. 2009) The sum over ribbon graphs S satisfy the QMCC/noncommutative Batalin-Vilkovisky equation:

$$
h \Delta_{N C} S+\frac{1}{2}\{S, S\}=0
$$

Let $S \in \operatorname{Sym}\left(C^{\lambda}[1-p]\right)[[h]]$ be a solution to the QMCC, with $S_{0,1,2}=0\left(d_{V}=0\right)$, let Γ be a stable ribbon graph, then put:

- on every vertex $v \rightarrow$ the multi-cyclic tensors

$$
S_{g, i}^{v} \in \stackrel{i}{\left.\operatorname{Sym}^{i}\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}[1-p]\right), ~\right)}
$$

- on every edge $e=\left(f f^{\prime}\right) \rightarrow$ the two tensor

$$
\beta^{\vee}\left(u_{f}, v_{f^{\prime}}\right), \beta^{\vee, e} \in(\Pi V)^{\otimes 2}
$$

- take the contraction $W_{\Gamma}=\left\langle\underset{v \in \operatorname{Vert}(\Gamma)}{\bigotimes} S_{g, i}^{v},\left(\underset{e \in \operatorname{Edge}(\Gamma)}{\otimes} \beta^{\vee, e}\right)\right\rangle$
- Theorem (S.B.,2006) For any S- a solution to the QMCC equation the following chain is a cycle in the stable ribbon graph complex

$$
\begin{gathered}
W(S)=\sum_{\{\Gamma\} \in S R G} \hbar^{1-\chi\left(\Sigma_{\Gamma}\right)} W_{\Gamma}[\Gamma] \\
\delta_{\text {graph }} W(S)=0,
\end{gathered}
$$

therefore $[W(S)] \in H_{*}\left(\overline{\mathcal{M}}_{*, *}\right)$

More constructions of solutions to the QMCC equation

- (Conjecture) (S.B,2005). Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow\left(M, \amalg L_{i}, \oplus H_{*}\left(L_{i} \cap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the QMCC equation.
- Theorem (S.B. 2013) If A is an A_{∞}-infinity algebra with the degeneration of the Hodge to de Rham spectral sequence, then the solution to the QMCC is constructed step by step starting from $\left\{S_{0,1}, S_{0,1}\right\}=0$

Homotopy theory of the QMCC equation

- Theorem (S.B.,2006) Solutions to the QMCC are in one-to-one correspondence with the structure of algebra over the Feynman transform of $\widehat{k\left[\mathrm{~S}_{n}\right]}$
- Theorem (S.B.,2006) C^{*} (The Feynman transform of $\left.\widehat{k\left[\mathrm{~S}_{n}\right]}(0, \gamma, v)\right) \simeq C_{*}\left(\overline{\mathcal{M}}_{g, v} / \mathrm{S}_{v}\right)$

Associative algebra plus odd derivation.

- A- associative algebra, with odd scalar product
- Assume: I - an odd derivation acting on A, preserving the scalar product: ,for example $I=[\Lambda, \cdot], \Lambda \in A^{\text {odd }}$, in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem(S.B.2009) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$

"Odd matrix algebra" $Q(N)$

- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g l(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \Xi$ odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$
- Theorem(S.B.2009) This is the generating function for products of tautological classes $\psi_{i}=c_{1}\left(T_{p_{i}}^{*}\right)$.
- Conjecture (S.B. 2009) This construction, applied to A_{∞}-algebra $A=\operatorname{End}(C), C$ is a generating object of the $D^{b}(\operatorname{Coh}(Y)), Y$ is the mirror dual Calabi-Yau manifold to X $\rightarrow .$.
- \rightarrow all genus Gromov-Witten invariants of X

