Summations over generalized ribbon graphs and all genus categorical Gromov-Witten invariants.

102e Rencontre entre mathematiciens et physicists

Serguei Barannikov (CNRS, Paris VII, NRU HSE)

 $\psi_i=c_1(T_{p_i}^*),\,\psi_i\in H^2(\bar{\mathcal{M}}_{g,n})$. Consider $H^*(\bar{\mathcal{M}}_{g,n})-$ valued generating function for products of ψ_i

► Theorem (SB,2009)

$$\sum_{\sum d_i = d} \psi_1^{d_1} \dots \psi_n^{d_n} \prod_{i=1}^n \frac{(2d_i - 1)!!}{\lambda_i^{2d_i + 1}} =$$

$$= \left[\sum_{[G] \in \Gamma_{g,n}^{dec,odd}} (G, or(G)) \frac{2^{-\chi(G)}}{|Aut(G)|} \prod_{e \in Edge(G)} \frac{1}{\lambda_{i(e)} + \lambda_{j(e)}} \right]$$

- b the sum on the right is over *stable ribbon* graphs of genus g with n numbered punctures, with 2d + n edges, and such that the vertices of the graph have cyclically ordered subsets of arbitrary odd cardinality
- In the simplest case, corresponding to the top degree, the cohomology $H^{6g-6+2n}(\bar{\mathcal{M}}_{g,n})$ is 1-dimensional, the summation is over 3-valent usual ribbon graphs and this formula then reproduces the main identity from Kontsevich proof of Witten conjecture.

Aim of the talk

This formula is a byproduct of construction of cohomology classes

- ▶ I an odd derivation acting on cyclic associative $/A_{\infty}$ algebra A, with odd scalar product, in general $I^2 \neq 0$ (!)
- ▶ **Theorem (S.B.2009)** This data \rightarrow Cohomology classes in $H^*(\overline{\mathcal{M}}_{g,n})$
- ► This construction defines Cohomological Field Theory
- Applied to "odd matrix algebra" A = q(N), $q(N) = \{[X, \pi] = 0 | X \in gl(N|N)\}$, where π -odd involution, $I = [\Xi, \cdot]$, Ξ odd element \to the formula for products of ψ_i
- This was the first nontrivial computation of categorical Gromov-Witten invariants of higher genus.

Counterexample to a Theorem of Kontsevich

Another byproduct is a counterexample to the Theorem 1.3 from Kontsevich "Feynman diagrams in low-dimansional topology" (1993)

Dual construction

We describe here a way to produce homology classes on $\mathcal{M}_{g,n}$. The starting ingredient is a finite-dimensional differential associative algebra V with a non-degenerate odd scalar product and trivial cohomology.

The right inverse to the scalar product can be considered as an odd element δ of $V \otimes V$. It follows from the compatibility of the scalar product with the differential that δ is closed. From the triviality of H(V) it follows that there exists $\omega \in V \otimes V$ such that $d\omega = \delta$. We can use ω as a "propagator" and tensors $T_{\rm in}: V^{\otimes k} \sim V$.

 $T(v_1 \otimes ... v_k) = (v_1 v_2 ... v_{k-1}, v_k)$

as "interactions". Again, we obtain a state model on ribbon graphs. Now we will consider the complex which is dwaf to the cochain complex from the previous section.

Theorem 1.3 $\sum_{\Gamma} Z(\Gamma)\Gamma$ is a well-defined chain and it is closed. Its homology class does not depend on the choice of ω .

It turns out this sum is NOT closed

Counterexample $A = \langle 1, \xi \rangle / \xi^2 = 1$

- $A = \langle 1, \xi \rangle / \xi^2 = 1, \bar{\xi} = 1, \beta(1, \xi) = 1, d(\xi) = 1, d^2 = 0,$ $w = \xi \otimes \xi.$
- For this data $\sum_{\Gamma} Z(\Gamma)\Gamma$ is nonzero on the boundary of the following ribbon graph =a generator of the dual complex:

Figure: $G: Z_{\widetilde{I}}(\partial G) \neq 0$

Cellular decomposition of $\bar{\mathcal{M}}_{g,n} \times \mathbb{R}^n$

A stable ribbon graph is a connected graph G (recall: a graph G is a triple $(Flag(G), \lambda, \sigma)$, where Flag(G) is a finite set, whose elements are called flags, λ is a partition of $Flag(G) \leftrightarrow$ vertices, σ is an involution acting on $Flag(G) \leftrightarrow$ edges/legs) together with:

partitions of the set of flags adjacent to every vertex into i(v) nonempty subsets

$$Leg(v) = Leg(v)^{(1)} \sqcup \ldots \sqcup Leg(v)^{(i(v))}, v \in Vert(G)$$

- fixed cyclic order on every subset $Leg(v)^{(k)}$,
- ▶ a number $g(v) \in \mathbb{Z}_{\geq 0}$ such that |Leg(v)| > 2(2 i(v) 2g(v)).
- ▶ Define an orientation $or(G) \in Det(\bigotimes_{v \in Vert(G)} (k^{Flag(v)} \oplus k^{Cycle(v)})$
- ▶ $\bigoplus_{\{G\}} k(G, or(G))$ has natural "generalized contraction of edges" differential δ_{graph} , $\delta_{graph}^2 = 0$

Cellular decomposition of $\bar{\mathcal{M}}_{g,n} imes \mathbb{R}^n$

A metric on the stable ribbon graph is a function $I: Edge(G) \to \mathbb{R}_{>0}$. Given a stable ribbon graph G w/out legs and a metric on G one can construct by standard procedure a punctured Riemann surface $\Sigma(G)$, which have double points in general.

- replace every edge by a pair of oriented strips $[0, I] \times [0 + i\infty[$ one for each flag and glue them side $0 \times [0 + i\infty[$ to $I \times [0 + i\infty[$ according to the cyclic order of the cyclically ordered subsets at each vertex. Then glue the two strips for each edge $[0, I] \leftrightarrow [I, 0]$
- identify points corresponding to 2 subsets at vertices with g(v) = 0, i(v) = 2, (double points); for points with 2g(v) + i(v) > 2 remplace the vertex by some Riemann surface of genus g(v), which does not contain any marked point, connected to the rest via i(v) double points.
- This gives an isomorphism of complexes $(\bigoplus_{\{G\}} k [(G, or(G)], \delta_{graph}) \to \bigoplus_{g,\nu} C_*(\overline{\mathcal{M}}_{g,\nu} \times \mathbb{R}^{\nu}_{>0}/\mathbb{S}_{\nu})$

Example of the formula for products of ψ_i

Example: The class of ψ_1 in $H^2(\bar{\mathcal{M}}_{g,n})$ is represented as linear combination of stable (G, or(G)) with $|\mathrm{Edge}(G)| = 2 + n$. It is the coefficient in front of $\frac{1}{\lambda_j^3} \prod_{i=2}^n \frac{1}{\lambda_i}$.

The Quantum Master Equation on Cyclic Cochains

- ► The stable ribbon graph complex is intimately related with the Quantum Master Equation on Cyclic Cochains (QMCC).
- Let $V = V_0 \oplus V_1$ be $\mathbb{Z}/2\mathbb{Z}$ -graded vector space, $\dim_k V < \infty$, scalar product $\beta : V^{\otimes 2} \to k[p]$
- $\begin{array}{l} \blacktriangleright \ C^{\lambda} = (\oplus_{j=1}^{\infty} Hom((\Pi V^{\otimes j}), k)^{\mathbb{Z}/j\mathbb{Z}}) \ , \\ S \in \operatorname{Sym}(C^{\lambda}\left[1-p\right])[[\hbar]] \ (\text{symmetric products for odd }\beta \ , \\ \text{antisymmetric for even }\beta \) \end{array}$
- ► The Quantum Master Equation on Cyclic Cochains / The noncommutative Batalin-Vilkovisky equation (S.B.,2005)

$$\hbar \Delta_{NC} S + \frac{1}{2} \{S, S\} = 0$$
 QMCC

$$S = \sum_{g \geq 0, i > 0} \mathcal{T}^{2g-1+i} S_{g,i}, \ S_{g,i} \in \operatorname{Sym}^{\mathsf{i}}(\mathit{C}^{\lambda}\left[1-p
ight])$$
 .

$$\{S_{0,1}, S_{0,1}\} = 0.$$

 $S_{0,1}$ - A_{∞} — algebra with (even/odd) scalar product, so S — multiloop, higher genus generalization of A_{∞} — algebra.

The noncommutative BV differential

 $(QMCC) \iff \Delta_{NC}(\exp \frac{1}{h}S) = 0$

 $\Delta_{NC}(a_{o_1} \dots a_{o_r})^{\lambda}(a_{\tau_1} \dots a_{\tau_r})^{\lambda} =$

▶ The noncommutative BV differential on $F = \operatorname{Sym}(C^{\lambda}[1-p])$

$$egin{aligned} &= \sum_{
ho,q} (-1)^{arepsilon} eta_{
ho_{
ho} au_{q}}^{ee}(a_{
ho_{1}}\dots a_{
ho_{
ho-1}}a_{ au_{q+1}}\dots a_{ au_{q-1}}a_{
ho_{
ho+1}}\dots a_{
ho_{r}})^{\lambda} + \ & \sum_{
ho} (-1)^{ ilde{arepsilon}} eta_{
ho_{
ho}
ho_{q}}^{ee}(\dots a_{
ho_{
ho-1}}a_{
ho_{q+1}}\dots a_{
ho_{r}})^{\lambda}(a_{
ho_{
ho+1}}\dots a_{
ho_{q-1}})^{\lambda}(a_{ au_{1}}\dots a_{ au_{t}})^{\lambda} \end{aligned}$$

$$\sum_{\rho \pm 1 \neq q} (-1)^{\tilde{\tilde{\varepsilon}}} \beta_{\tau_\rho \tau_q}^{\vee} (\dots a_{\rho_r})^{\lambda} (a_{\tau_1} \dots a_{\tau_{\rho-1}} a_{\tau_{q+1}} \dots a_{\tau_t})^{\lambda} (a_{\tau_{\rho+1}} \dots a_{\tau_{q-1}})^{\lambda}$$

- ▶ signs are the standard Koszul signs taking into account that $(a_{\rho_1} \dots a_{\rho_r})^{\lambda} = 1 p + \sum \bar{a_{\rho_i}}$, $a_i \in \text{Hom}(\Pi V)$.
- ▶ **Theorem** (S.B.,2006) $\Delta_{NC}^2 = 0$

 $n+1\neq a$

(A,m) is a d- $\mathbb{Z}/2\mathbb{Z}$ graded associative algebra with odd scalar product $\beta,\ \dim_k A<\infty$.

H is an odd selfadjoint operator $H:A\to \Pi A,\ H^\vee=H$, such that $Id-[d,H]=P,\ dP=0$, $P^2=P.\ B$ - the image of P. Let Γ be a 3-valent *ribbon* graph with legs, then put:

ightharpoonup on every vertex $v \to$ the 3-tensors of the cyclic product on A

$$m^{\mathsf{v}} \in ((\Pi A)^{\otimes 3})^{\vee}$$

▶ on every interieur edge $e = (ff') \rightarrow$ the two tensor

$$\beta^{\vee}(H^{\vee}u_f, v_{f'}), \ \beta^{\vee,e}_H \in (\Pi A)^{\otimes 2},$$

- ▶ on every leg $I \in Leg(\Gamma) \rightarrow$ element $a_I \in \Pi B$
- make the contraction

$$W_{\Gamma}(\bigotimes_{I \in Leg(\Gamma)} a_I) = \langle \bigotimes_{v \in Vert(\Gamma)} m^v, \left(\bigotimes_{e \in Edge(\Gamma)} \beta_H^{\lor,e}\right) \bigotimes_{I \in Leg(\Gamma)} a_I \rangle$$

$$W_{\Gamma}(\bigotimes_{I \in Leg(\Gamma)} a_I) = \langle \bigotimes_{v \in Vert(\Gamma)} m^v, \left(\bigotimes_{e \in Edge(\Gamma)} \beta_H^{\vee,e}\right) \bigotimes_{I \in Leg(\Gamma)} a_I \rangle$$

$$S = \sum_{\{\Gamma\}} \mathcal{T}^{1-\chi(\Gamma)} W_{\Gamma}$$

- $> S \in \operatorname{Sym}(\oplus_{j=1}^{\infty} \operatorname{Hom}((\Pi B^{\otimes j}), k)^{\mathbb{Z}/j\mathbb{Z}})[[\hbar]]$
- ► **Theorem** (S.B. 2009) The sum over ribbon graphs *S* satisfy the QMCC/noncommutative Batalin-Vilkovisky equation:

$$\hbar\Delta_{NC}S + \frac{1}{2}\{S, S\} = 0$$

Let $S\in \mathrm{Sym}(\,C^\lambda\,[1-\rho])[[\,\hbar]]$ be a solution to the QMCC, with $S_{0,1,2}=0$ ($d_V=0$), let Γ be a *stable* ribbon graph, then put:

on every vertex $v \rightarrow$ the multi-cyclic tensors

$$S_{g,i}^{\mathsf{v}} \in \mathsf{Sym}(\oplus_{j=1}^{\infty} \mathit{Hom}((\Pi V^{\otimes j}), k)^{\mathbb{Z}/j\mathbb{Z}} [1-p])$$

▶ on every edge $e = (ff') \rightarrow$ the two tensor

$$eta^ee(u_f,v_{f'}),\;eta^{ee,e}\in(\Pi V)^{\otimes 2},$$

- ▶ take the contraction $W_{\Gamma} = \langle \bigotimes_{v \in Vert(\Gamma)} S_{g,i}^{v}, \left(\bigotimes_{e \in Edge(\Gamma)} \beta^{\vee,e}\right) \rangle$ ▶ **Theorem (S.B.,2006)** For any *S* a solution to the QMCC equation the following chain is a cycle in the stable ribbon
 - Theorem (S.B.,2006) For any S- a solution to the QMCC equation the following chain is a cycle in the stable ribbon graph complex

$$W(S) = \sum_{\{\Gamma\} \in \mathit{SRG}} \, \mathcal{h}^{1-\chi(\Sigma_\Gamma)} W_\Gamma \left[\Gamma
ight] \ \delta_{\mathit{graph}} W(S) = 0,$$

therefore
$$[W(S)] \in H_*\left(\overline{\mathcal{M}}_{*,*}
ight)$$

More constructions of solutions to the QMCC equation

- ▶ (Conjecture) (S.B,2005). Counting of holomorphic curves $(\Sigma, \partial \Sigma, p_i) \to (M, \coprod L_i, \oplus H_*(L_i \cap L_j))$, with $\mathbb{Z}/2\mathbb{Z}$ -graded local systems, gives solution to the QMCC equation.
- ▶ **Theorem** (S.B. 2013) If A is an A_{∞} —infinity algebra with the degeneration of the Hodge to de Rham spectral sequence, then the solution to the QMCC is constructed step by step starting from $\{S_{0,1}, S_{0,1}\} = 0$

Homotopy theory of the QMCC equation

- ▶ Theorem (S.B.,2006) Solutions to the QMCC are in one-to-one correspondence with the structure of algebra over the Feynman transform of $\widehat{k[S_n]}$
- **Theorem (S.B.,2006)** C^* (The Feynman transform of $\widehat{k[\mathbb{S}_n]}(0,\gamma,\nu)$) $\simeq C_*(\overline{\mathcal{M}}_{g,\nu}/\mathbb{S}_{\nu})$

Associative algebra plus odd derivation.

- A- associative algebra, with odd scalar product
- Assume: I an odd derivation acting on A, preserving the scalar product: ,for example $I = [\Lambda, \cdot]$, $\Lambda \in A^{\text{odd}}$, in general $I^2 \neq 0$ (!), $\exists \widetilde{I}$, $[I, \widetilde{I}] = 1$, $str([a, \cdot]) = 0$ for any $a \in A$.
- **Theorem(S.B.2009)** This data →Cohomology classes in $H^*(\overline{\mathcal{M}}_{g,n})$

"Odd matrix algebra" Q(N)

- ► Example q(N), $q(N) = \{[X, \pi] = 0 | X \in gl(N|N)\}$, where π -odd involution, q(N) has odd trace otr, $I = [\Xi, \cdot]$, Ξ -odd element $\Xi = \begin{pmatrix} 0 & | diag(\lambda_1, \dots, \lambda_n) \end{pmatrix}$, $\begin{pmatrix} I^2 \neq 0 & (!) \end{pmatrix}$
- ▶ **Theorem(S.B.2009)** This is the generating function for products of tautological classes $\psi_i = c_1(T_{p_i}^*)$.

▶ Conjecture (S.B. 2009) This construction, applied to A_{∞} —algebra A = End(C), C is a generating object of the $D^b(Cob(X))$ X is the mirror dual Colobi You manifold to

 $D^b(Coh(Y))$, Y is the mirror dual Calabi-Yau manifold to X

→...

ightharpoonup ightharpoonup all genus Gromov-Witten invariants of X