
HAL Id: hal-01874969
https://hal.science/hal-01874969v4

Submitted on 23 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Dynamic allocation optimization in A/B tests using
classification-based preprocessing

Emmanuelle Claeys, Pierre Gancarski, Myriam Maumy-Bertrand, Hubert
Wassner

To cite this version:
Emmanuelle Claeys, Pierre Gancarski, Myriam Maumy-Bertrand, Hubert Wassner. Dynamic al-
location optimization in A/B tests using classification-based preprocessing. IEEE Transactions on
Knowledge and Data Engineering, In press, �10.1109/TKDE.2021.3076025�. �hal-01874969v4�

https://hal.science/hal-01874969v4
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Dynamic allocation optimization in A/B-Tests
using classification-based preprocessing

Emmanuelle Claeys,1, Pierre Gançarski2, Myriam Maumy-Bertrand3, and
Hubert Wassner4

1 University of Toulouse, I.R.I.T. laboratory
emmanuelle.claeys@irit.fr
www.emmanuelle-claeys.com

2 University of Strasbourg, ICUBE laboratory, Strasbourg, France
3 University of Technology of Troyes, Troyes, France

4 AB Tasty, Paris, France

Abstract. An A/B-Test evaluates the impact of a new technology by
running it in a real production environment and testing its performance
on a set of items. Recent development efforts around A/B-Tests revolve
around dynamic allocation. They allow for quicker determination of the
best variation (A or B), thus saving money for the user. However, dy-
namic allocation by traditional methods requires certain assumptions,
which are not always valid in reality. This is often due to the fact that
the populations being tested are not homogeneous. This article reports
on a new reinforcement learning methodology which has been deployed
by the commercial A/B-Test platform AB Tasty. We provide a new
method that not only builds homogeneous groups of users, but also al-
lows the best variation for these groups to be found in a short period of
time. This article provides numerical results on AB Tasty’s data, in addi-
tion to public datasets, tha demonstrate an improvement over traditional
methods.

Keywords: A/B-Test, Bandit strategies, UCB strategies, Conditional
inference tree, Non linear bandit, Regret minimisation.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data
Engineering. This is the author’s version which has not been fully edited and content may change
prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3076025

1 Introduction

In a number of economic, industrial or even social fields, it may be interesting
to evaluate the relevance of modifications to an existing entity according to one
or more objectives by directly and concretely comparing the different variations
resulting from the modifications. For instance, an e-marketing team can look
for the best modification to apply to a given web page to increase sales. A
medical laboratory may want to find the best drug composition modification to

www.emmanuelle-claeys.com

2 Claeys et al.

save more patients. A company may want to define the best modification to an
industrial process to increase product quality. Such a task requires a mechanism
to evaluate each variation in order to make the optimal choice according to a
defined objective in the given context. A/B-Test based approaches have been
proposed to respond to this problem [1] and have recently generated renewed
interest, particularly from their use in e-marketing. An A/B-Test consists in
assigning the items (patients, visitors, goods to be produced, . . .) to the different
variations in order to evaluate the relative performance of each item. During this
exploration phase, it is assumed that the result, called reward, of each assignment
can be observed and used by the algorithm to evaluate the performance of each
variation. At the end of this exploration phase, the user can better decide which
variation will be used in the future (i.e., in production phase) according to their
relative performance.

An important characteristic of such methods is that the decision to assign
an item to a variation is irrevocable. For instance, for the duration of the test, a
visitor will always see the same web page on each of his/her visit, regardless of
the number of visits. It is impossible to know what he/she would have done if
he/she had been assigned another variation. Consequently, the population that
has been assigned to a variation is distinct from those assigned to any other.
Finally, it is assumed that items are unaware of their participation in a test and
thus of the existence of different variations.

A classical approach to the exploration phase is referred to as the frequential
approach and consists in assigning items to the different variations according to
explicit fixed ratios (static allocation) for a given period of time which is unfor-
tunately difficult to define a priori. Experiments have shown that a user tends to
overestimate it, causing an inferior variation to have a large detrimental effect on
the result for a long period of time. In this case, the obtained cumulative reward
will be much lower than that which would have been produced by the allocation
of each item to the optimal variation. This difference, called regret, increases
with negative impact. Reducing the exploration phase may reduce regret, but
may also lead to a lack of data needed to calculate performance. Therefore, in
addition to determining the best option, the challenge of A/B-Test methods is
to also minimise regret. Nevertheless, it is important to note that regret cannot
be calculated during the observation phase as the optimal variation is obviously
unknown a prior : the objective of the test is, by definition, to determine it. Fi-
nally, in most cases the sooner the algorithm finds the solution (i.e. the sooner
exploration can be stopped), the better.

To address this problem, new A/B-Test methods perform dynamic alloca-
tion of items based on bandit algorithms consisting in adapting the allocation of
visitors according to the obtained rewards and thus gradually tipping the visitors
towards the optimal variation. This dynamic allocation is usually achieved using
the probabilistic comparison criteria of the empirical reward distribution of each
variation. The idea is to maintain and update the gain estimate of each variation
and to allocate items accordingly. It is therefore a matter of favoring the most

Dynamic allocation optimization in A/B-Tests 3

promising variation while continuing to refine the remaining gain estimates by
continuing to allocate items to potentially sub-optimal variations.

Experiments and theoretical studies have shown that dynamic allocation [2]
provides better results in terms of cumulative regret, and is faster at determining
the best variation. Therefore, numerous methods implementing dynamic alloca-
tion based on bandit algorithms have been proposed [3,4,5] and have proved
their ability to find optimal variations in the general case. Nevertheless, experi-
ments also show that these methods often fail when the reward obtained by an
item depends on both the variation and the item itself [6]. For instance, in web
marketing, visitors naturally tend to click and buy differently according to their
own financial resources or their geographical location. In medical treatment, the
efficiency of a drug often depends on the age and/or gender of the patient. To
address this problem, bandit algorithms have been extended to form contextual
bandits, which take into account each visitor’s context, i.e. its characteristics
(age, origin, gender, etc.) when allocating it in order to perform more relevant
allocations. Methods such as KernelUCB [7] and LinUCB [8] (Section 3.2)
have demonstrated not only the benefits of such an approach, but also their
limitations (which strongly reduce their practical use), including in particular:

– large latency (corresponding to the time required by the algorithm to allocate
an item to a variation),

– the need for a large number of items before finding the optimal variation,
– a lack of explainability of the assignments made by the algorithm

However, it is obvious that in many cases items belong to natural groups
(social classes, levels of study, age classes, . . .) for which the reward distribu-
tion each variation can differ. For instance, for a given web page students may
behave differently from workers or retired people and, in fact, can be differently
impacted by a modification. Unfortunately, these groups are often very difficult
to determine because they strongly depend on the application domain and on
the test itself.

In this paper we propose an original A/B-Test method called Ctree-Ucb
which, instead of using a contextual bandit, is based on the use of several non-
contextual bandits, each dedicated to a particular group of items. Our proposal
consists in automatically creating homogeneous groups in a pre-processing step
using a conditional inference method using information (obtained rewards, item
characteristics, temporal information, etc.) derived from items subjected to an
existing variation in production phase before the test. Then, in the exploration
phase, a non-contextual bandit is dedicated to a group and is used to find the
optimal variation associated with the group. To achieve this, each new item
submitted to the A/B-Test is classified into a group before being transmitted
to the associated bandit for its allocation to a variation.

The remainder of this paper is organized as follows. Section 2 presents the
bandit model with an illustrative example. Based on this example, Section 3
gives a comprehensive literature review of existing approaches and focuses on
contextual strategies able to take into account the characteristics of the items.
Section 4 details the proposed methods. Sections 5, 6 and 7 analyse and discuss

4 Claeys et al.

the results obtained with this method on real data provided by AB Tasty5.
Finally the conclusions of the study are drawn in Section 8.

For readability purposes, the remainder of this article focuses on tests with
only two variations. All our propositions are however directly and easily extended
to tests with more variations.

2 Bandit problem

2.1 The multi-armed bandit model

The first definition of the multi-armed bandit model was introduced by Lai and
Robbins [9], by an analogy with casino slot machines. For a player, it is a matter
of choosing from a machine with several arms the one presenting, for him, the
best expectation of gain. To do that, each time the player plays an arm and
obtains (or not) the gain, he/she updates the gain estimates of the arm. The
player’s goal is to find the best arm, called the optimal arm, while limiting
the number of tries. As introduced in Section 1, bandit-based approaches are
frequently chosen to concretely implement dynamic allocations: at each iteration
t, corresponding to the arrival of an item ct, the bandit algorithm chooses an
arm a in the set of possible arms A according to its own strategy π. Then, the
reward Xct,a=At

obtained by the assignment of the item to the chosen arm a
is observed. The main characteristic of strategy π is that the allocation of the
items depends on the reward expectation of the variations.

2.2 The bandit paradigm as reinforcement learning

The first mention of the bandit problem appears in [1]. This paper presents a
reinforcement learning problem where an autonomous agent must learn the ac-
tions to be taken from experience in order to optimise a quantitative reward over
time (per the definition of reinforcement learning: “agents ought to take actions
in an environment in order to maximize some notion of cumulative reward” [10]).
The agent evolves in an environment and makes decisions based on its current
state. In return, the environment provides a reward, which can be positive or
negative. The agent seeks an optimal decision-making behaviour (called strat-
egy or policy, which is a function associating the action to be performed with
the current state) through iterative experiments in the sense that it maximizes
the sum of rewards over time. Moreover, the agent must find a balance between
exploration of uncharted territory and exploitation of current knowledge.

Indeed, an A/B-Test (and more specifically the bandit algorithm) can be
seen as an agent with partial knowledge of the world (the different variations,
the items having been subjected to these variations, and the rewards obtained
so far). Knowledge of this world is very sparse at the beginning of the test
but is reinforced by observing the rewards of each variation in accordance with
the context of each item. Thus, initially, the bandit does not know anything
5 https://www.abtasty.com

https://www.abtasty.com

Dynamic allocation optimization in A/B-Tests 5

about the distribution of the rewards of each arm. It has to explore to find it by
assigning items to the different arms to learn these distributions with the risk of
earning less reward. However, at the same time, it has to exploit by assigning the
arm which it estimates to be the most rewarding with the risk of not discovering
the optimal arm. This well-known exploration-exploitation dilemma has been
extensively studied through the multi-armed bandit problem in [11].

Finally, when the agent has identified the best variation according to the
characteristics of the visitors, the user can:

– put one of the variations (A or B) into production,
– compose another variation to be tested.

2.3 Cumulative regret

Let A be the set of possible arms (with |A| ∈ N+), a∗ the optimal arm and
XAt,t the reward obtained at iteration t by the item with arm At selected. The
simple regret rt is defined by (Xa∗,t−XAt,t) where Xa∗,t is the reward the item
would have been obtained with a∗. Then, the cumulative regret RT is defined
as the sum of simple regret rt over all the T items. This cumulative regret and
its evolution during the tests is the main criterion used to evaluate efficiency of
bandit-based algorithms. From the definition of A/B-Test, a∗ is unknown a
priori. To evaluate RT during a test, and follow its evolution, the value of rt is
estimated by rt = maxa∈A[Xa,t]−XAt,t. The cumulative regret after n iterations
can thus be estimated by:

Rn =
n∑

t=1
max
a∈A

[Xa,t]−
n∑

t=1
XAt,t, (1)

3 State of the art

Three characteristics can discriminate the different strategies:

– All the strategies π are based on the strong hypothesis that the distribution
of all arm rewards follows the same law (Bernoulli distribution with Thomp-
son sampling [1,?], Gaussian distribution with Ucb [12]) or otherwise make
no assumption.

– Two mechanisms assigning items can be defined. The first qualifies as non-
informative as it uses no information about items (only rewards are used to
make a choice), while the second qualifies as contextual as it considers item
characteristics when assigning to a variation.

– Different mathematical models can be used in the choice mechanisms such
that the best arm (based on previous observations) is chosen according to
predefined probabilities (such as the Epsilon-Greedy algorithm [13,14])
or using adaptive probabilities (for example Softmax exploration [15]).

6 Claeys et al.

3.1 Non-informative strategy

A non-informative strategy assumes that the best arm is the same for all (or at
least, for the majority of) items and therefor, the arm is allocated independently
of the characteristics of the item.

Ucb strategy The Ucb strategy is a non-informative method based on an op-
timistic Bayesian strategy (with probabilistic upper bounds of the real average).
The principle of its strategy π to assign a new item to an arm, is to use an
overestimation of the empirical average µ̂a,t for each arm a, the total number of
items, and their allocation to different arms. Concretely, an arm is chosen if it is
promising (because its estimated average is high) or/and seldom explored (see
Algo. 1 where Ta(t) is the number of times that arm a has been chosen6).

Algorithm 1 Ucb algorithm
Require: α > 0
Require: Assign at least one iteration to each arm a
1: loop
2: ct ← a new iteration

3: At = argmax
a∈A

{µ̂a,t + α

√
2 ∗ log(t)
Ta(t) }

4: Assign arm At to ct

5: XAt,ct ← the arm At reward
6: Update µ̂At and TAt (t)
Output: A sequence of arm choices (At) and rewards XAt,ct

In fact, the µ̂At estimators may not be relevant at the beginning of the test,
due to the small number of items considered [16]. To get around this difficulty,
[12] proposes to calculate an overestimation of this average, called the upper
confidence bound. The authors justify their proposition by a policy known as
“optimistic in the face of uncertainty” and demonstrate good results.

This upper bound is the sum of the empirical average of the reward obtained
so far in addition to an exploration bonus (also known as the confidence interval).
It depends on the number of items assigned and observed. The more observations
an arm makes, the more the arm bonus decreases. If νa is Gaussian random for
all a, this bound will always be higher than the real average. Thus, the authors
define the upper bounds of each arm by:

UpperUcb(a, t) = α

√
2 ∗ log(t)
Ta(t) , (2)

6 Note that α is different from the α risk commonly used in statistics.

Dynamic allocation optimization in A/B-Tests 7

where α is a positive real parameter given by the user. In the initial version of
Ucb, α = 1 but in practice it has been shown that the optimal choice of this
value depends on the arm distributions [17].

The π algorithm consists in choosing the arm with the highest upper bound.
After each assignment, µ̂At is updated and its bound is reduced (Equation (2)).

Therefore the confidence interval depends on Ta(t). So the higher Ta(t)
(i.e.,the more the arm a is chosen), the lower the overestimation. As the overes-
timation of the chosen arm average decreases, the empirical average towards its
real average. The upper bounds of the unchosen arms remain unchanged.

Figure 1 shows an example of the confidence bound evolution for five arms
according to the number of tested items.

10 100 400 10 100 400 10 100 400 10 100 400 10 100 400
 arm#1 arm#2 arm#3 arm #4 arm #5

N : 2 11 13 2 20 45 2 9 21 2 13 84 2 47 237

1.2 -

1.0 -

0.5 -

 0 -
 12345

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

13452184237

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

13 45 21 84 237

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

11 20 9 13 47

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2 2 2 2

2

+
+

12345

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

13452184237

12345

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2222

2

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

11 20 9 13 47

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2 2 2 2

2

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

E
xp
ec
ta
tio
n

11 20 9 13 47

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

13 45 21 84 237

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2 2 2 2

2

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

11 20 9 13 47

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

E
xp
ec
ta
tio
n

13 45 21 84 237

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

E
xp
ec
ta
tio
n

11 20 9 13 47

+ +

+ +

+
+ +

+

+
+ + +

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2 2 2 2

2

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2 2 2 2

2

1 2 3 4 5
0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

Ex
pe
ct
at
io
n

2 2 2 2

2

+

N : number of times the arm has been selected, • : real average

Fig. 1: Confidence bound evolution according to empirical average (+) after 10,
100 and 400 items.

Limit of the Ucb strategy The Ucb strategy is very efficient when the real
distribution of rewards is Gaussian, an assumption that can be verified retro-
spectively using static allocation. Unfortunately, experiments have shown that
this assumption is rarely valid. In fact, the upper bound is not reliable. Con-
sequently, Ucb requires more items to find a∗[18,19]. Moreover, if the reward
presents extreme values, the convergence can be very long. Nevertheless, it has
been proved that the a∗ will eventually be found. As such, despite these imper-
fections, since Ucb focuses on the average reward that leads to a low complexity

8 Claeys et al.

and since it is generally well understood by the user of an A/B-Test, overall it
responds to the problems of interpretability and limited computation time.

The remaining problem is that the identification of a∗ may not be the only
objective of the A/B-Test. Rather than looking for the variation that maximises
the gain on average, the A/B-Test user can instead look for the best variation
according to different sub-populations (as quickly as possible).

Indeed, we suppose that there exist two sub-groups of items having different
responses to the test. For instance, in the medical field, an alternative treatment
may be efficient for the elderly and not for young people. In marketing, a page
can be optimal only for smartphone users. In this case, νa is very far from a
Gaussian distribution. Thus, recent approaches assume that νa is a mixture of
Gaussians particularly in contextual-based strategies. The idea of the contextual
strategy (presented below) is that the reward XAt,ct depends on both the arm
assigned and an item’s characteristics (features).

3.2 Contextual strategy

Contextual approaches assume that there exists sub-groups of items, each pre-
senting a different reward distribution. Nevertheless, experiments show that it
can be difficult to define such groups. Asking the user to define them is often
unproductive, as they rarely have a clear vision of these different groups. To
overcome this problem, it is assumed that there are a priori unknown links be-
tween, on the one hand, the context of the items (i.e., the characteristic vectors
describing the items [20]) and the groups, and on the other hand, the groups
and the averages of the rewards obtained. To fit this link, two approaches can
be considered:

– In contextual bandit, this link is modelled by a unique regression function,
i.e. the groups and their associated average rewards are directly set by the
bandit during the test (Section 3.2).

– In two step-based approaches, the groups are set using a pre-processing step
of the A/B-Test (Section 3.2).

Contextual bandits In contextual bandits, rewards are assumed to be gen-
erated from an unknown function depending on the item features (characteris-
tics) and the chosen arm. The objective is to fit this function during the test.
Concretely, assumptions are made about the type of function, such as linearity.
Strategies such as Lin-Ucb are based on this idea.

With linear regression based bandits, the arm parameters are often calcu-
lated by matrix inversion, which can be time consuming, depending upon the
number of item features d [21]. These approaches have shown their theoretical
and practical ability to reduce cumulative regrets [22]. In particular the Lin-
Ucb algorithm is one of the most popular form of such strategies due to its
performance and interpretability. Figure 2 shows the cumulative regret over t
calculated with simulated data and a linear reward function. From this figure,

Dynamic allocation optimization in A/B-Tests 9

0

50

100

150

200

0 250 500 750 1000
Time

Cum
ulativ

e Re
gret Algorithm

LinUCB

Thompson Sampling

UCB

Uniform

0

50

100

150

200

0 250 500 750 1000
Time

C
um

ul
at

ive
 R

eg
re

t

Algorithm
LinUCB

Thompson Sampling

UCB

Uniform

0 250 500 750 1000

150 -

100 -

50 -

0 -

Fig. 2: Cumulative regret evolution according to number of simulated data.

one can see that the Lin-Ucb algorithm outperforms Thompson Sampling,
random, and Ucb.

Statistical techniques have been proposed for cases in which the linearity
assumption is not valid. In [23], the authors propose a strategy based on the
Generalized Linear Model (GLM), called GLM-UCB. This strategy allows a
wider class of problems to be considered, in particular cases in which the rewards
are counts or binary variables using, respectively, Poisson or logistic regression.
Like Lin-Ucb, GLM-UCB requires a matrix inversion and can be very costly in
terms of time.

Recently, a bandit algorithm based on tree regression has been proposed,
called the BanditForest algorithm [24]. This algorithm uniformly assigns items
to each arm until a tree forest models the link function. This random forest is
built from the joint distribution of contexts and rewards. Thus, all past obser-
vations (context and rewards) must be stored. The uniform assignment leads to
excessive selection of sub optimal arms, causing the algorithm’s performance to
suffer. Moreover, the main limitation of the algorithm is that it depends on four
parameters, and therefore requires strong domain expertise: two parameters di-
rectly influence the level of exploration, one controls the depth of the trees, and
one determines the number of trees in the forest [25]. In [26,25,?] the authors
propose the tree bootstrap algorithm based on a similar approach but param-
eterless, i.e. tree depth is automatically determined. However, these algorithms
only consider binary rewards, which strongly limits their use.

The kernelised stochastic contextual bandit Kernel-Ucb [7] uses reproduc-
ing kernel Hilbert space (RKHS) to provide a non-linear model of the link reward
function (like GLM-UCB) but can be slow in arriving at a decision.

In addition to making assumptions (e.g., Gaussian distribution, binary re-
ward . . .) in order to remain understandable and implementable, the literature
identifies the following drawbacks.

– In [27] the authors explain that several dynamic allocation strategies do
not provide more benefits than frequentist allocation when the assumptions

10 Claeys et al.

(e.g., linear dependence between characteristics and reward, independence
between items, ...) are not valid.

– The choices made by the algorithm are not explicit (black box). While un-
derstanding choices is not always necessary in a recommendation system, it
is important in case of A/B-Tests as the user seeks to understand why and
for whom one variation is better than another.

– These strategies often require a large dataset.
– The CPU and/or memory requirements can be significant, particularly when

the difference between versions is small.

Two step-based approaches In two step-based approaches, it is assumed
that there exist natural groups, each having a Gaussian reward distribution and
that these groups can be determined before the A/B-Test itself. The idea is
to build these groups a priori. When a new item is submitted to the system,
it is first automatically classed into a group. Then, it is assigned to an arm
considering the group the item belongs to.

In [28], the authors propose the Single-K-UCB strategy and show that if
groups are well defined, the cumulative regret converges asymptotically early
in the process and the average regret falls significantly. Indeed, intuitively, the
cumulative regret is in this case bounded by the sum of the cumulative gaps
between the best arm and sub-optimal arms for each group (which is higher than
the gap of a non informative strategy). The authors assume that the reward
distributions are clustered and the clusters are determined by several latent
variables. They assume that there is a surjective function f that links each
item (with a context ct) to a group k, i.e. f(ct) = k, such that the reward
distribution of a group k applied to an arm a, νa,f(c), is σ-Gaussian (where σ2

is the variance). Unfortunately, they do not specify how to identify f and how
to obtain the groups. They only study the problem in a context-free setting and
provide a weak performance guarantee when the reward distribution is unknown
in the clusters [29].

To address this problem, we propose a new method called Ctree-Ucb, which
is detailed in the next section.

4 Ctree-Ucb: a contextual approach to A/B-Tests

4.1 Ctree-Ucb process

Our contribution aims at addressing the constraints and needs experienced by
users in real-world applications. Thus, we first focus on a method that can be
applied in real time : for instance, in e-marketing, the delay induced by the test
(i.e., the dynamic allocation) must be lower than the usual display time of a
webpage. Secondly, we consider that the items submitted to the system can be
very heterogeneous but can be clustered according to a given criterion. Finally,
we aims for the results of the exploration phase to be understandable by the
user, and possibly reusable.

Dynamic allocation optimization in A/B-Tests 11

In this context, we propose an approach that consists in defining groups based
on item features (i.e., characteristics), each of these groups having as population
homogeneous as possible. The main idea is that in such a group, the items have
similar behaviors relative to the proposed version and thus a group’s reward
distribution can be modelled by a Gaussian distribution. Each of these groups
can therefore be supported by a non-contextual bandit. The general procedure is
that each time a new item is presented to the system, it is automatically assigned
to a group according its own features and then, through the associated bandit,
a variation is assigned to it. As the complexity of this type of bandit is low, this
ensures a satisfactory response time.

In summary, the proposed method Ctree-Ucb consists in two main steps:

– an offline process for creating groups based on the available data collected
from the original variation,

– multiple A/B-Tests online.

We illustrate the general idea by an example in which the test concerns the
improvement of an existing web page (A). Before starting the test, the behaviours
of visitors who have seen page (A) are observed. We assume that the user has
collected each visitor’s characteristics (browser language, number of visits to the
site before arriving on this page, . . .) and if a transaction was made after seeing
the page. Based on these collected data, our method builds a segmentation model
able to classify a visitor into a group using the collected data.

Next, the user constructs variation B (by modification of the original page)
and starts the test. In this A/B-Test, a bandit is associated to each group
and aims at determining which variation maximises the gains to the visitors
classified into its group. Then each visitor arriving on the page is submitted to
the test: (1) the visitor is classified into a group by applying the model to its
characteristics, (2) the bandit associated to the group dynamically assigns the
visitor to a variation, (3) the bandit updates its statistics about the arms.

4.2 Step 1: Offline building of groups and associated classifier

To construct the groups, we suppose that there is information describing the
performance of the original version (i.e., the version in production before the
test). As such, a database (referred to here in as DBinit: L) contains an item’s
context and reward (conversion, number of clicks, etc.) produced on the original
version.

Thus, if the test to be carried out concerns the same type of reward and is
on a variation of the original version (referred here as the arm A), the use of
this information to build groups can only be beneficial. A model can therefore
be learned using training and validation sets extracted from DBinit, and used
to predict the group of a new item according to its context.

Many supervised methods exist to produce such a model. For instance, deci-
sion tree-based algorithms such as C4.5 [30] or C.A.R.T. [31] have shown their
effectiveness in finding such homogeneous groups according to a numeric/binary

12 Claeys et al.

rewards using an entropy measurement (C4.5) or the Gini index (C.A.R.T.).
Unfortunately, they present two fundamental issues: overfitting and selection bias
towards continuous features [32]. Conditional inference tree based approaches
have shown their robustness in comparison to these previous algorithms [33],
and thus have a high level of stability and robustness [34,?].

In the first step of our method, performed offline, a conditional inference
tree algorithm called CTREE [35,36,37] is applied to a training dataset (herein
referred to as Ln) of n items in order to identify homogeneous groups (Algo. 2).
It consists in initially creating one group containing all the items. This group is
associated with the root node of the tree. Then, a recursive divisive process is ap-
plied to this node. An independence hypothesis H0 between each j ∈ {1, . . . , d}
feature and the reward distribution are evaluated for all the items of the associ-
ated group, then:
– If the hypothesis is rejected, the group is split into two subgroups using

the feature with the highest correlation with the reward, j∗, according to
the value of this feature that maximises the difference between each group’s
distribution. The algorithm is recursively applied to the two new nodes as-
sociated with the two subgroups.

– If the hypothesis H0 cannot be rejected at the predetermined risk level ε, for
any feature, the recursion stops.

To verify the correlation hypothesis, statistical tests exist in the literature
(Bravais-Pearson test, Spearman test, Chi-squared test,. . . [35,36]). At the ini-
tialisation of the Ctree-Ucb scheme, such correlation tests must be defined
according to the feature types (continuous, binary, categorical, . . .) and reward
type (continuous or binary) [38].

The conditional inference tree does not require a pruning process, which
avoids overfitting. Moreover, selecting of the value upon which to split is based
on the univariate p-values, thus avoiding a variable selection bias towards charac-
teristics with many possible split values. If a statistically significant observation
could have risen by “chance”, because of the size of the parameter space to be
searched, Bonferroni correction could be applied [39]. However, tests integrating
categorical features can require a very long computation time when Bonferroni
correction is applied [40]. Nevertheless, Bonferroni correction by the Monte-Carlo
method [41] can be used to reduce this time. Such a correction includes a random
part, which varies the tree structure.

At the end of Step 1, groups are described by a reward average and defined by
one or more features. Using this information, a predictive function f is defined
which links each new item to a group. This function predicts a group k defined by
an expected reward according to A. Thus, this function f can also be considered
as a non-linear regression function.

This regression is based on the method described in [37] using the test statis-
tic T which is derived from [35]. The appendix gives more details on this method.
This function is used during step 2 of the A/B-Test. As step 1 is performed
offline, it does not increase the computational time of Ctree-Ucb. Figure 3
shows an example of an obtained regression tree.

Dynamic allocation optimization in A/B-Tests 13

Algorithm 2 CTREE algorithm
Require: – ε ∈]0, 1[

– A dataset of features Y and response X.
– An influence function h depending on the scale of X.
– An appropriate function gj , which depends on the scale of the feature Yj

1: Calculate the the test statistics sj0 for the observed data
2: Permute the observation in the node
3: Calculate s for all permutations
4: Calculate the p-values (number of test statistics s, where |s| > |s0|)
5: Correct p-values for multiple testing
6: if H0 not rejected (p-value > ε for all Yj) then return
7: else
8: Select feature Y ∗j with the strongest association (smallest p-value)
9: Search for the best split of Y ∗j (maximize test statistic s) and partition data
10: Apply CTREE to both of the new partitions
Output: A hierarchical partitioning

4.3 Step 2: Online A/B-Test

The online step corresponds to the A/B-Test. It consists in classifying each
item into a group. The dynamic allocation is then performed by the bandit
associated to the group.

As the bandits are independent, each of them can stop the exploration phase
at any time and switch to the exploitation mode. The test can then end either
when all the bandits are in exploitation mode, after a given number of items, or
for a predefined duration. Algorithm 3 defines the Ctree-Ucb method.

The computational complexity of using CTREE to predict an average reward
depends on the depth of the tree, and the depth of the tree is proportional to
the (base 2) logarithm of the number of leaves [36]. The logarithm of a number
grows slowly as that number gets larger; therefore even trees with a very large
number of leaves will not be very deep. That makes CTREE very fast in terms
of use and computation.

4.4 Example on simulated data

Observations made on the data collected via A/B-Tests indicate that some of
the functions linking the rewards and the feature can be modelled by a piece-wise
continuous function as for example, the link between the price of a product and
the quantity purchased. If the site offers one item for every three items purchased,
linear modelling between the feature (quantity of item) and the reward no longer
holds. If a treatment is effective for young children and older people in the
medical field but not for adults, linear modelling also does not work. However, by
using a pairwise function can represent such cases. In such a function, the link is
linear only over an interval of values taken by the feature. When the link function
between a feature and a reward is linear or piece-wise continuous, the above-
mentioned traditional bandit strategies have an increasing cumulative regret. To

14 Claeys et al.

Algorithm 3 Ctree-Ucb algorithm
Require: α > 0, DBinit, ε ∈ [0, 1]
1: Generate a conditional inference tree using DBinit and f with an accepted error
ε using CTREE.

2: loop
3: ct ← a new item with a vector Yt of features
4: Assign ct to group k by f(ct) = k
5: if Ta,k(t) = 0 then
6: At,k = a
7: else

8: At,k = argmaxa∈A {µ̂a,k,t + α

√
2∗log(

∑
a∈A

Ta,k(t))

Ta,k(t) }

9: Assign arm At,y to ct

10: Xct,At,k ← the arm At,k reward
11: Update µ̂At,k and TAt,k(t)
Output: A sequence of arm choices and rewards for each group k

validate our method, we first propose to simulate data from a pairwise function
(9600 features x and 9600 rewards for each arm) and compare the results between
Ctree-Ucb, Lin-Ucb, Ucb and random. We report an example of a simulation
that tests the performance of Ctree-Ucb under real assumptions. For each
variation (A or B), 19200 rewards are generated by the following function, related
to a feature X:

θA = (2,−1, 1.5, 0),
θB = (1.5,−0.5, 1.25, 0),

X =

XA = θA[1], XB = θB [1], if 1 ≤ x1 < 2
XA = θA[2], XB = θB [2], if 2 ≤ x1 < 3
XA = θA[3], XB = θB [3], if 3 ≤ x1 < 4
XA = θA[4], XB = θB [4], if x1 < 1 or x1 ≥ 4.

Offline step We use 30% of the data DBinit for training (thus the past rewards
of A are the only ones observed), and the remaining 70% are used for the test.
The regression tree correctly identifies groups in which the link between the
feature and reward is identical (each final leaf is a group, represented by an
estimated average, see Figure 3).

A/B-Test (Dynamic allocation) During the A/B-Test itself, a dynamic
allocation is made to each group. Figure 5 shows the cumulative regret over
time of different algorithms. Figure 4 show the cumulative regret of Ctree-
Ucb specific to each group.

The following section presents the same comparison on real datasets.

Dynamic allocation optimization in A/B-Tests 15

 Node #3 Node #4 Node #6 Node #8 Node #9
 (118 items) (112 items) (115 items) (136 items) (119 items)

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

Fig. 3: 5 groups have been identified (600 items)

0 50 100 150 200 250

−1
.0

−0
.5

0.
0

0.
5

1.
0

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r s
ub

gr
ou

p
3

1.0

0.5

0.0

-0.5

-1

 0 50 100 150 200 250

(a) Node #3

12

10

8

6

4

2

0
0 50 100 150 200 250 0 50 100 150 200 250

0
2

4
6

8
10

12

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r s
ub

gr
ou

p
4

(b) Node #4

0 50 100 150 200 250

2
4

6
8

10
12

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

6

12

10

8

6

4

2

0
0 50 100 150 200 250

(c) Node #6

 0 50 100 150 200 250
300

0 50 100 150 200 250 300

0
5

10
15

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

8

15

10

5

0

(d) Node #8
 0 50 100 150 200 250

300

0.25

0.20

0.15

0.10

0.50

0.00

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r s
ub

gr
ou

p
9

(e) Node #9

Fig. 4: Associated cumulative regret evolution of Ctree-Ucb (9000 items)

16 Claeys et al.

0

250

500

750

1000

1250

0 2000 4000 6000 8000
Time

Cum
ulat

ive
reg

ret Algorithm

Ctreeucb
LinUCB
UCB
Uniform

1000 -

750 -

500 -

250 -

0 -

0 2000 4000 6000 8000

0

250

500

750

1000

1250

0 2000 4000 6000 8000
Time

C
um

ul
at

iv
e

re
gr

et Algorithm

Ctreeucb
LinUCB
UCB
Uniform

0

250

500

750

1000

1250

0 2000 4000 6000 8000
Time

C
um

ul
at

iv
e

re
gr

et Algorithm

Ctreeucb
LinUCB
UCB
Uniform

Fig. 5: Cumulative regret evolution with a non linear reward function according
to number of submitted items.

5 Materials and experimental setting

To evaluate the performance of Ctree-Ucb, we compare it to existing A/B
strategies: a global-based bandit (Ucb), the Lin-Ucb and Kernel-Ucb bandits,
as well as a random-based algorithm that chooses variations alternatively.

The main criteria for this evaluation are the cumulative and average regret.
The experiments are carried out over three data sets: the first a public data
set, the others are from AB Tasty and correspond to e-merchant A/B-Tests.
All experiments are carried out using the R programming language on a Intel®
Core™ i5-8250U CPU with 8 threads running at 1.60 GHz with 7.5 GB of
RAM on 64-bit Ubuntu 17.10. All materials (including data, the conditional tree
regression framework CTREE [38] and Ctree-Ucb) are available from: https:
//github.com/manuclaeys/bandit4abtest.

5.1 Data

Small MovieLens dataset This dataset comes from the IMDB public database7.
It contains movies described by 14 binary characteristics (Adventure, Action,
Comedy, Drama, Thriller, Romance, Sci-Fi . . .) and their associated ratings
(from 0 to 500) given by film reviewers. To simulate an A/B-Test using this
data, we define:

– Movies as items: There are 9125 movies in the original database.
– Film reviewers as the variations denoted by A, B, C, D and E corresponding

to 5 reviewers.
– Ratings as the rewards: The reward associated to a movie ct is the rating
Rr(ct) given by reviewer r associated to the variation. In case the film has not
been rated by this reviewer (which may appear with recent films), the average

7 These datasets change over time but the former version that was used in our exper-
iments is available from: https://github.com/manuclaeys/bandit4abtest

https://github.com/manuclaeys/bandit4abtest
https://github.com/manuclaeys/bandit4abtest
https://github.com/manuclaeys/bandit4abtest

Dynamic allocation optimization in A/B-Tests 17

of all other reviews evaluates the missing value. Therefore, X.,t = Rr(t) if
Rr(t) exists in the dataset.

The objective is to obtain the best cumulative film evaluation.

AB Tasty database The AB Tasty database comes from A/B-Tests consist-
ing in comparisons of a variation of a web-page with its original state (referred
here as P2 and P1, respectively. These tests were performed in 2018 by AB Tasty
itself for several e-merchant clients. They consisted in using a static allocation
with an equal distribution of visitors between the two pages P1 and P2.

For each test, visitors who navigate on the tested web page (i.e., a potential
customer) are identified by an ID: the first time they visit the web page, a new
visitor description (see Table 1) and its associated ID are generated. This de-
scription may vary depending on the data available to the user. Then a variation
(A or B) is allocated to it. A cookie memorizes the description, the ID, and the
assigned version. Each time they return to the tested page, the same variation
is shown. Therefore we assume that no statistical associations between visitors
exist. All visitor actions during their visits are stored. At the end of the test (i.e.,
after T visitors) each visitor’s reward is computed (and collected) as the visitor’s
purchase value during all their visits regardless of the visit(s) the purchase(s)
happened in after the assignment. It is defined by cumulative sum if the visitor
ct has made a purchase on the web page.

For experiments, we have extracted two datasets from this database: ABt1,
which concerns a clothing sales website (8477 items) and ABt2, which concerns a
media website (2265 items). Their objective is to increase the value of a purchase.
In the sequel, we present the results of these two A/B-Tests performed on two
different websites.

Type Features (number of possible values or domains)
Integer Visits (N)

Categorial Navigator’s language (27), Navigator type (6),
Device (3), Operating System (7)

Table 1: Item features of the A/B-Test dataset.

Notations used throughout the paper: For N variations V0, V1, . . . , VN ,
Si is the set of items to which variation Vi has been allocated, Ti = |Si| and
T = T0 + T1 + · · ·+ TN where |.| denotes the cardinality of a set.

5.2 Comparison methods

Ctree-Ucb performance is compared to four algorithms:

18 Claeys et al.

– Two algorithms with a non informative strategy, which do not take into
account the item’s context: random which is parameter free and the Ucb
strategy described in Section 3.1.

– Two algorithms with a contextual strategy (Section 3.2). The Lin-Ucb algo-
rithm using a linear reliability assumption and the Kernel-Ucb algorithm
without a linear reliability assumption: This policy estimates each variation’s
reward, in addition to a kernel regression of characteristics.

Each algorithm will provide a sequence of choices. These sequences are com-
pared to a model that always chooses the best variation (see Section 2.1), trained
with all the data in the test set, so the cumulative and average regret at the end
of the A/B-Test (iteration T) is evaluated.

We note that Lin-Ucb and Kernel-Ucb require the transformation of cat-
egorical characteristics into binary values.

5.3 Experimental protocol

The A/B-Test parameters All the algorithms (except random) are derived
from the standard Ucb algorithm, which requires the setting of the confidence
interval parameter α (Section 3.1). To evaluate the impact of this parameter on
the results, we carried out experiments with different values of α (from 0.25 to
2.5, as generally found in the literature).

To evaluate the impact of this parameter on the results, we carried out ex-
periments with different values of α (from 0.25 to 2.5, as generally found in the
literature).

To limit the CPU time consumed by the Kernel-Ucb algorithm, we limited
the number of items used in the kernel regression to 100.

A/B-Test simulation The simulation principle is to apply each algorithm
on data sets and compare their obtained cumulative regrets. We compare the
results with a non-linear regression (CTREE) model that learns from all the
data. Thus, when assigning an item to a variation, the regret is evaluated as the
difference between the maximum prediction (from all the possible variations)
and the prediction of the chosen variation. This assessment can be seen as the
difference between conditional averages and is based on the theoretical definition
presented in Section 2.

For the Ctree-Ucb method, the offline step (see Section 5.3) is performed
first and consists in learning a conditional regression tree. Then each item is
evaluated by this tree to determine which group it belongs. Finally, the item is
submitted to the classical Ucb algorithm associated with this group.

Since a tree is built using data from the original variation, the choice of
variation A affects the rest of the process. As such, we considered each variation
as a potential original variation for each data set. . Therefore, for the MovieLens
dataset, five configurations was tested, each corresponding to a different choice
of movie rating as the original variation. In the same way, each page was tested
as the original web page (A).

Dynamic allocation optimization in A/B-Tests 19

Ctree-Ucb offline step The offline step of Ctree-Ucb consists in defining
the item groups used in the contextual A/B-Test. It is crucial as it has a large
impact on the A/B-Test process. To produce these groups, we used the R condi-
tional tree regression framework CTREE [38] with a ten-fold cross-validation and
different maximum error risk. The displayed tree represents the groups graph-
ically by an expected average and optionally (depending on the user’s choice)
the distribution boxplot.

To assess this impact, we carried out experiments with different configura-
tions of the ratio between the number of items used to learn the regression tree
and those used to simulate the A/B-Test.

Additional notations: L = |L|, where L is the set used to learn the con-
ditional regression tree. TA/B = |SA/B |, where SA/B is the set used to simulate
the A/B-Test. ε is the error risk parameter to CTREE.

In order to satisfy the assumption that, prior to the A/B-Test, the user
only knows the rewards obtained by the original variation (denoted here by VA),
the regression tree can only be constructed from the set of elements SA to which
the variation VA has been attributed, thus L ⊂ SA.

Two configurations were tested:
– Conf30,70: L = 30% of V0, SA/B =

∑
i{70% of Si},

– Conf100,100: L = V0, SA/B =
∑

i Si.

Experimental configurations Table 2 summarises the parameters and their
potential values.

Data set Algorithms Parameters

MovieLens dataset Ucb, Lin-Ucb, Kernel-Ucb α ∈{0, 0.25, 0.5, 1, 1.5, 2, 2.5}

Ctree-Ucb

VA ∈ {Vi}
ATt1 dataset Config. ∈ {Conf30,70, Conf100,100}

ATt2 dataset ε ∈ {0.01, 0.05, 0.1}
α ∈ {0, 0.25, 0.5, 1, 1.5, 2, 2.5}

Table 2: Algorithm parameters.

There are 441 combinations: 3 × 3 × 7 combinations for the 3 UCB-based
algorithms and (2× 2× 2× 3× 7) + (5× 2× 3× 7) for the Ctree-Ucb method.
For the sake of clarity, we report only 88 combinations in our experiments (cf.
Tab 3). Tab 3a (resp. 3c and 3b) summarizes the cumulative and average regret
of all the algorithms for MovieLens (resp. ABt1 and ABt2) dataset.

6 Experiments
6.1 MovieLens dataset
Offline step In our experiments, with Config.30,70, 2737 items are dedicated to
learning (Step #1) and 6388 items are tested (Step #2), while with Config.100,100,

20 Claeys et al.

both step use all the 9125 items. Figure 6 shows the obtained tree in Config.30,70
where each leaf of the tree associates an average to an identified group. The tree
leaves represent the groups identified by CTREE that will then be used in the
classification model in the dynamic allocation step.

From the rewards given by reviewer #1 before the test, 9 leaves were gen-
erated, which corresponds to 9 groups of items with statistically different dis-
tributions of rewards. Node#15 is the most represented one with 1133 items.
The group that maximises rewards for variation A is group Node#11. We also
note, for example, that reviewer #1 generally gives a higher rating if the film
is in the "Film noir" category (Node#11). The lowest average reward is given to
"Comedy" (Node#8) or "Action" (Node#7) movies.

 Node #6 Node #7 Node #8 Node #10 Node #11 Node #12 Node #15 Node #16 Node #17
 (396 items) (207 items) (660 items) (73 items) (8 items) (85 items) (1133 items) (98 items) (77 items)

genre_Drama
p < 0.001

1

� 0 > 0

genre_Musical
p < 0.001

2

� 0 > 0

genre_Mystery
p < 0.001

3

� 0 > 0

genre_Comedy
p = 0.016

4

� 0 > 0

genre_Action
p = 0.02

5

� 0 > 0

Node 6 (n = 396)

100

200

300

400

500
Node 7 (n = 207)

100

200

300

400

500
Node 8 (n = 660)

100

200

300

400

500

genre_Film_Noir
p = 0.011

9

� 0 > 0

Node 10 (n = 73)

100

200

300

400

500
Node 11 (n = 8)

100

200

300

400

500
Node 12 (n = 85)

100

200

300

400

500

genre_War
p = 0.017

13

� 0 > 0

genre_Action
p = 0.02

14

� 0 > 0

Node 15 (n = 1133)

100

200

300

400

500
Node 16 (n = 98)

100

200

300

400

500
Node 17 (n = 77)

100

200

300

400

500

genre_Drama
p < 0.001

1

� 0 > 0

genre_Musical
p < 0.001

2

� 0 > 0

genre_Mystery
p < 0.001

3

� 0 > 0

genre_Comedy
p = 0.016

4

� 0 > 0

genre_Action
p = 0.02

5

� 0 > 0

Node 6 (n = 396)

100

200

300

400

500
Node 7 (n = 207)

100

200

300

400

500
Node 8 (n = 660)

100

200

300

400

500

genre_Film_Noir
p = 0.011

9

� 0 > 0

Node 10 (n = 73)

100

200

300

400

500
Node 11 (n = 8)

100

200

300

400

500
Node 12 (n = 85)

100

200

300

400

500

genre_War
p = 0.017

13

� 0 > 0

genre_Action
p = 0.02

14

� 0 > 0

Node 15 (n = 1133)

100

200

300

400

500
Node 16 (n = 98)

100

200

300

400

500
Node 17 (n = 77)

100

200

300

400

500

Fig. 6: Conditional inference tree - MovieLens dataset (Config.30,70, VA :
Reviewer 1, ε = 0.05, 2737 items).

A/B-Test (Dynamic allocation) In the MovieLens dataset, some reviewers
have not seen many films; therefore, replacing missing scores (films without
score) results in identical scores between several reviewers. Therefore, there are
films for which the simple regret will be equal to zero regardless of the chosen
reviewer. The difference between the averages ∆a, ∀a 6= a∗, being very small,
finding the reviewer who maximises rewards (following a context) is difficult
(Section 3.1). Such a situation can reduce the performance of the tested bandit
algorithms and be comparable to a static allocation strategy (performed by
the random algorithm). The ε parameter has a slight influence on the results
(regret), and its influence on the results is covered in the later experiments. For

Dynamic allocation optimization in A/B-Tests 21

Ctree-Ucb
Lin-Ucb Kernel-Ucb Ucb randomVA : R1 VA : R2 VA : R3 VA : R4 VA : R5

Configuration ε = 0.05 ε = 0.05 ε = 0.05 ε = 0.05 ε = 0.05

Config.30,70
RT

E[RT]
19155
3

21628
3.39

28458
4.47

27894
4.37

19976
3.13

22378
3.50

21239
3.32

20650
3.23

22808
3.57

Config.100,100
RT

E[RT]
27875
3.05

34152
3.74

35679
3.91

35908
3.94

37679
4.13

68101
7.46

40848
4.48

31146
4.41

45643
5

(a) MovieLens dataset (9125 Items)

Ctree-Ucb
VA : P1 VA : P2 Lin-Ucb Kernel-Ucb Ucb random

Configuration ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.01 ε = 0.05 ε = 0.1

Conf30,70
RT

E[RT] ∗ 10−2
100
1.68

100
1.68

100
1.68

355
5.59

355
5.59

355
5.59

364
6.11

592
9.97

408
6.87

6610
1.11

Conf100,100
RT

E[RT] ∗ 10−2
152
1.79

152
1.79

152
1.79

67
0.79

67
0.79

67
0.79

24
0.28

448
5.28

241
2.840.79

8148
0.96

(b) ATt1 dataset (8477 Items).

Ctree-Ucb
VA : P1 VA : P2 Lin-Ucb Kernel-Ucb Ucb random

Configuration ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.01 ε = 0.05 ε = 0.1

Conf30,70
RT

E[RT]
1251
0.67

1263
0.67

1265
0.67

3110
1.67

3110
1.67

3110
1.67

3092
1.67

4469
2.40

4284
2.30

4279
2.30

Conf100,100
RT

E[RT]
1994
0.75

1994
0.75

1994
0.75

3843
1.44

3843
1.44

3843
1.44

2457
0.92

7007
2.63

6114
2.30

6862
2.57

(c) ATt2 dataset (2265 Items).

The best performances (cumulative regret , average) appear in bold in each table
Table 3: Influence of segmentation parameters on cumulative regret (RT) and
average regret (E[RT]) (α = 1).

22 Claeys et al.

readability of Table 3, only the classic value of the accepted error risk is reported,
i.e. ε = 0.05.

Ctree-Ucb has the lowest cumulative regret (in bold in Table 3). The Lin-
Ucb algorithm has a weak performance, one explanation could be that the lin-
earity assumption required by this algorithm is not valid. Kernel-Ucb has a
cumulative regret comparable to a static allocation (random). More data is
probably needed to complete its regression. Ctree-Ucb yields better results
with reviewer #1 (in bold) with Config.30,70 or Config.100,100. Learning on re-
viewer #3 (on Config.30.70) or reviewer #5 (Config.100.100) decreases its perfor-
mance. We assume that this implies an over- or under-learning depending on the
configuration.

To get good results with Ctree-Ucb, whatever the VA parameter, the offline
step must be performed on a population representative of the one to be tested.

Figure 7a shows the cumulative regret of each algorithm for a given configu-
ration. The lowest regret during the test is that of Ctree-Ucb (in green). The
strategy Ucb (in brown) comes in the second position in terms of performance.
The highest cumulative regret is that of random (in black). However, these
results indicate a linear regret for all algorithms.

Figure 7b shows how α affects cumulative regret. In this experiment, except
for Kernel-Ucb, the value of α has a low influence on the cumulative regret of
the studied algorithms. Whatever the value α, Ctree-Ucb produces the best
results and guarantees their stability. Unlike other algorithms, Kernel-Ucb
works differently depending on α. Its cumulative regret seems highly dependent
on this parameter. Choosing a sub-optimal value for α can therefore make it less
effective than random (Fig. 7b).

6.2 ABt1 dataset

Offline step In our experiments, with Config.30,70, 2543 visitors are dedi-
cated to learning (Step #1) and 5934 visitors are tested (Step #2) while with
Config.100,100, both steps use all the 8477 visitors. Fig. 8 shows the obtained tree
in Config.30,70. In each leaf is reported the expected reward (a purchase value).
The first step identifies 10 group. The number of past visits (visit.y : visits
until yesterday) before seeing the tested page has the strongest correlation with
the purchase values. However, purchase value can increase or decrease according
to the visitor’s user agent or language.

A/B-Test (Dynamic allocation) On Config.30,70, all results provided by
Ctree-Ucb (in bold) are the best. Table 3b gives the cumulative regret ac-
cording to the different parameters (ε and VA) for the ATt1 dataset. With
all configurations, the ε parameter does not modify the tree structure. How-
ever, the challenge in step 1 is to avoid overfitting (too many groups, as in
Config.100,100, V_A : P_1 in Table 3b) or underfitting (too fewer groups, as in
Config.30,70, V_A : P_2 in Table 3b). In fact, too few groups leads to a per-
formance similar to that of a non-contextual strategy. On the other hand, too

Dynamic allocation optimization in A/B-Tests 23

0

5000

10000

15000

20000

0 2000 4000 6000
Time

Cum
ulati

ve R
egre

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0 2000 4000 6000

20000 -

15000 -

10000 -

5000 -

0 -

0

250

500

750

1000

1250

0 2000 4000 6000 8000
Time

C
um

ul
at

iv
e

re
gr

et Algorithm

Ctreeucb
LinUCB
UCB
Uniform

(a) According to number of items (α = 0.25)

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

C
um

ul
at

iv
e

re
gr

et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

C
um

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

(b) According to α (6388 items)

Fig. 7: Cumulative regret evolution for MovieLens dataset (VA : R1, Conf30,70,
ε = 0.05)

.

many groups slows down the exploration period, although Ctree-Ucb’s results
remain more effective than those of Ucb, Kernel-Ucb, and random.

In this test, the variation A was the best for all versions regardless any
characteristics. We can conclude that all the tested bandit algorithms have a
logarithmic cumulative regret (see Fig. 9a). Finally, because the exploration pe-
riod can be stopped earlier (after 2000 visitors) with our method when compared
to a frequentist approach (random), the difference on the accumulated regret
is here more than 5000 euros.

6.3 ABt2 dataset

Offline step In our experiments, with Config.30,70, 679 visitors are dedicated to
learning (Step #1) and 1586 visitors are tested (Step #2) while with Config.100,100,
both steps use all the 2265 visitors.With Config.30,70, 7 groups are discovered in

24 Claeys et al.

 Node #4 Node #5 Node #6 Node #10 Node #11 Node #14 Node #15 Node #16 Node #18 Node #19
(16 items) (442 items) (668 items) (1015 items) (303 items) (23 items) (14 items) (33 items) (22 items) (7 items)

visit.y
p < 0.001

1

� 12 > 12

userAgent
p < 0.001

2

Android, ERREUR_OS, iPhone, LinuxiPad, Macintosh, Windows

userAgent
p = 0.021

3

Android, ERREUR_OSiPhone, Linux

Node 4 (n = 63)

0
100
200
300
400
500

Node 5 (n = 1596)

0
100
200
300
400
500

Node 6 (n = 2475)

0
100
200
300
400
500

userAgent
p < 0.001

7

ERREUR_OS, iPad, iPhone, Linux, Windows Macintosh

visit.y
p = 0.002

8

� 75 > 75

userAgent
p = 0.019

9

ERREUR_OS, iPad, iPhoneLinux, Windows

Node 10 (n = 218)

0
100
200
300
400
500

Node 11 (n = 760)

0
100
200
300
400
500

userAgent
p < 0.001

12

iPad, iPhone, WindowsLinux

visit.y
p = 0.021

13

� 96 > 96

Node 14 (n = 17)

0
100
200
300
400
500

Node 15 (n = 10)

0
100
200
300
400
500

Node 16 (n = 32)

0
100
200
300
400
500

langID
p = 0.038

17

1 3, 5

Node 18 (n = 18)

0
100
200
300
400
500

Node 19 (n = 7)

0
100
200
300
400
500

visit.y
p < 0.001

1

� 12 > 12

userAgent
p < 0.001

2

Android, ERREUR_OS, iPhone, LinuxiPad, Macintosh, Windows

userAgent
p = 0.021

3

Android, ERREUR_OSiPhone, Linux

Node 4 (n = 63)

0
100
200
300
400
500

Node 5 (n = 1596)

0
100
200
300
400
500

Node 6 (n = 2475)

0
100
200
300
400
500

userAgent
p < 0.001

7

ERREUR_OS, iPad, iPhone, Linux, Windows Macintosh

visit.y
p = 0.002

8

� 75 > 75

userAgent
p = 0.019

9

ERREUR_OS, iPad, iPhoneLinux, Windows

Node 10 (n = 218)

0
100
200
300
400
500

Node 11 (n = 760)

0
100
200
300
400
500

userAgent
p < 0.001

12

iPad, iPhone, WindowsLinux

visit.y
p = 0.021

13

� 96 > 96

Node 14 (n = 17)

0
100
200
300
400
500

Node 15 (n = 10)

0
100
200
300
400
500

Node 16 (n = 32)

0
100
200
300
400
500

langID
p = 0.038

17

1 3, 5

Node 18 (n = 18)

0
100
200
300
400
500

Node 19 (n = 7)

0
100
200
300
400
500

Fig. 8: Tree from ATt1 dataset (Config.30,70, V_A : P_1, ε = 0.05, 2543 items).

the first step. We note that the characteristics present in the previous experi-
ment (user agent, visits) also influence groups in this experiment. In addition,
the browser (called name) becomes relevant in this experiment. We hypothesise
that since the sale concerns online videos, the user’s browser can likely influence
the visual rendering.

A/B-Test (Dynamic allocation) Table 3c gives the cumulative regret ac-
cording to the different parameters (ε and VA). On VA : P1, Conf30,70 the tree
structure is only slightly modified (occurrence or avoidance of a maximum of
one/two groups). On Conf100,100 with all configurations the ε parameter does
not modify the tree structure (Figure 10b). However, according to VA = P1
Ctree-Ucb gives the best results whatever the configuration. Nevertheless, on
VA = P2, the best results are given by Lin-Ucb. Figure 10a presents the cumu-
lative regret according to α and shows the robust performance of Ctree-Ucb.

Group analysis:
The cumulative regret of Ctree-Ucb (Fig. 10b) is the sum of the cumula-

tive regret of each group. W propose a more detailed analysis of Ctree-Ucb’s
results by observing the cumulative regret of the 7 subgroups. The parameters
of Ctree-Ucb are: Conf100,100 VA = P1, ε = 0.05, α = 1.

We note that the group names in Fig. 11 refer to the id of the leaf in the tree
and not in the n-th group.

– Figures 11b, 11c, and 11e show that the cumulative regret of Group #5,
Group #7, and Group #11 converges asymptotically. For example, in Group

Dynamic allocation optimization in A/B-Tests 25

0

2000

4000

6000

0 2000 4000 6000
Time

Cu
m

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0

2000

4000

6000

0 2000 4000 6000
Time

C
um

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0

2000

4000

6000

0 2000 4000 6000
Time

Cu
m

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0

2000

4000

6000

0 2000 4000 6000
Time

Cum
ulati

ve R
egre

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0

2000

4000

6000

0 2000 4000 6000
Time

C
um

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0

2000

4000

6000

0 2000 4000 6000
Time

Cu
m

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform0

2000

4000

6000

0 2000 4000 6000
Time

Cu
m

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0

2000

4000

6000

0 2000 4000 6000
Time

Cu
m

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

0 2000 4000 6000

6000 -

4000 -

2000 -

0 -

0

250

500

750

1000

1250

0 2000 4000 6000 8000
Time

C
um

ul
at

iv
e

re
gr

et Algorithm

Ctreeucb
LinUCB
UCB
Uniform

(a) According to number of items (α = 0.25)

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

40
00

60
00

80
00

12
00

0
16

00
0

α

C
um

ul
at

ive
 re

gr
et Ctreeucb

LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

0
50

00
10

00
0

15
00

0
20

00
0

a

C
um

ul
at

iv
e

re
gr

et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

C
um

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

(b) According to α (5934 items)

Fig. 9: Conditional inference tree - ATt1 dataset (VA : P1, Conf30,70, ε = 0.05).

#7, the first half of the visitors tested produced 100% of the total cumulative
regret. For the last visitors, their regret is always equal to zero. This result
shows that for these groups, Ctree-Ucb ends the exploration in an optimal
way. This also suggests that these groups are homogeneous (Section 3.1).

– Figures 11a and 11f show each groups cumulative regret, which is almost
equal throughout the A/B-Test. Only a few visitors belonging to this group
were impacted by the A/B-Test. These results show that Ctree-Ucb sep-
arates unaffected visitors correctly (Section 5.1).

– Figure 11d shows a case in which the cumulative regret grows almost lin-
early throughout the A/B-Test. For this group, the variation chosen for
exploration either requires more items or is not the best for all visitors. Dif-
ferent reasons may explain this: the gap between the variation’s average is
very small, learning from the original page did not correctly identify all pos-
sible groups existing in the test dataset, or the characteristics used are not
sufficient to give a reliable average for this group.

Time analysis:

26 Claeys et al.

0

2000

4000

6000

0 1000 2000
Time

Cum
ulat

ive
Reg

ret Algorithm

Ctreeucb
KernelUCB
LinUCB
UCB
Uniform

0 1000 2000 2700

6000 -

4000 -

2000 -

0 -

0

250

500

750

1000

1250

0 2000 4000 6000 8000
Time

C
um

ul
at

iv
e

re
gr

et Algorithm

Ctreeucb
LinUCB
UCB
Uniform

(a) According to number of items (α = 0.25)

 0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

20
00

40
00

60
00

80
00

10
00

0

a

C
um

ul
at

iv
e

re
gr

et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

a

C
u
m

u
la

tiv
e
 r

e
g
re

t
Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

Cu
m

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

�

C
um

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

0.0 0.5 1.0 1.5 2.0 2.5

70
0

80
0

90
0

10
00

11
00

12
00

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb
LinUCB
UCB
KernelUCB
Uniform

(b) According to α (2265 items)

Fig. 10: Cumulative regret evolution - ATt2 dataset (VA : P1, Conf100,100, ε =
0.05).

We report in Tab. 4 the computation time required for Ctree-Ucb with the
three datasets (Config.100,100).

Dataset #features Size Step #1 Step #2
MovieLens 19 18250 0.297s 0.347s
ABt1 5 8477 0.117s 0.523s
ABt2 4 2265 0.36 s 0.504s

Table 4: Computation times - Ctree-Ucb (Config.100,100).

Dynamic allocation optimization in A/B-Tests 27

15

10

5

0

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

0
5

10
15

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

4

(a) Node #4 (142 items)

15

10

5

0

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0
5

10
15

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

5

(b) Node #5 (324 items)

30

25

20

15

10

5

0
0 20 40 60 80 100 120 0 20 40 60 80 100 120

0
5

10
15

20
25

30

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r s
ub

gr
ou

p
7

(c) Node #7 (130 items)

200

150

100

50

0
0 100 200 300 400 0 100 200 300 400

0
50

10
0

15
0

20
0

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

8

(d) Node #8 (422 items)

8

6

4

2

0

0 100 200 300 400 0 100 200 300 400

0
2

4
6

8

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

11

(e) Node #11 (430 items)

11

10

9

8

7

6

5

4

 0 50 100 150 200 250 0 50 100 150 200 250

4
5

6
7

8
9

10
11

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r s
ub

gr
ou

p
13

(f) Node #13 (258 items)

Fig. 11: Cumulative regret evolution for 6 groups out of 7 identified (representing
1706 of the 2265 items tested) from ABt2 dataset (Conf100,100 VA = P1, ε = 0.05,
α = 1).

Step #1 of Ctree-Ucb is performed before the A/B-Test itself (offline).
Thus, the time allocated to this step does not impact the test itself and can be
ignored.

We note that as each bandit works independently, it seems easy to reduce the
computation time by using a multicpu computer. Moreover, the most important
for us is the ability of the system to make the assignment of arm in real time.
Indeed, for example, the choice between two versions of a web page cannot suffer
any delay: for each visitor, the algorithm must choose the variation in less than
half a millisecond to avoid delays in displaying the page.

Tab 5 details and compares time responses of the four algorithms on the
ABt2 dataset. One can see that the response time per visitor for Ctree-Ucb
is less than one millisecond and outperforms all the other algorithms, except
Ucb. However, as we introduced in Section 3.1, Ucb is not contextual and tends
to produce worse results than Ctree-Ucb. Kernel-Ucb requires the longest
computation time. It is mainly due to the regression calculation of the kernel.

Experiments on one million simulated data and on the other datasets show
that the behavior of the Ctree-Ucb algorithm is very similar8.

8 To limit the paper length, these experiments have not been reported in the paper
but can be easily reproduced using data and codes available at: https://github.
com/manuclaeys/bandit4abtest

https://github.com/manuclaeys/bandit4abtest
https://github.com/manuclaeys/bandit4abtest

28 Claeys et al.

Ctree-Ucb Lin-Ucb Kernel-Ucb Ucb
Total time 0.504s 0.622s 16.013s 0.096s
Max group 0.504s
Time by item 0.18ms 0.23ms 6ms 0.03ms

Table 5: Calculation times - ABt2 dataset (Config.100,100).

7 Discussion

Based on our results, it can be concluded that Ctree-Ucb responds to different
A/B-Test issues. Our results show the performance of Ctree-Ucb on different
types of tests (continuous or categorical characteristics, continuous reward, and
several possible variations higher than two (A/B/C/. . .).

For reasons of confidentiality, only datasets provided by websites that agreed
to publish their data have been presented. If the user wants to improve per-
formance, each group can be processed independently on a server to accelerate
computation time (nevertheless it was not necessary given the good results in
calculation time for AB Tasty datasets). However, Ctree-Ucb obtained good
results on websites that could receive more than 2000 visitors per second.

Ctree-Ucb has three parameters: Conf., VA, ε, and α. From our experi-
ments, we can conclude the following.

– A partial dataset (Conf30,70) for step one is sufficient to obtain results com-
parable to the total dataset (Conf100,100).

– By considering different original variations VA, the results of Ctree-Ucb
may be different. However, Ctree-Ucb results remain good compared to
Lin-Ucb, Kernel-Ucb, and Ucb.

– The parameter ε (associated with the accepted risk in the inference tree)
has a low influence on the results, therefore the default value of 0.05 can be
used.

– An incorrect α value can lead to a degradation of Ucb performance while
Ctree-Ucb is less sensitive to the alpha parameter.

Ctree-Ucb has the following advantages.

– The model can handle both numerical and categorical values. Other tech-
niques are often usable only with specific variable types.

– The construction of groups by a conditional inference tree simplifies their in-
terpretation. Using Boolean logic, the user understands which characteristics
have the highest impact on the distribution of a group’s rewards, unlike black
box models such as neural networks, whose results are difficult to explain.

– Group construction, performed offline, results in a response time comparable
to a non-contextual strategy and can be decreased with distributed comput-
ing (e.g., one group per server). Thus, when the user wants to have a rapid
choice, Ctree-Ucb can be used.

Dynamic allocation optimization in A/B-Tests 29

However, Ctree-Ucb requires:

– an original variation, set up before the test;
– stationary reward distributions, as Lin-Ucb, Kernel-Ucb, and Ucb;
– the population of items used to provide the groups, before starting the test,

to be representative of the population of items tested.

The quality of the results obtained from Ucb and Lin-Ucb is significantly
different according to the data type. These algorithms can be equivalent to
random when their assumptions (linearity, . . .) are not verified, or when α’s
value is not optimal.

Kernel-Ucb is challenging to use in practice. As Cesa-Bianch et al. [42] note
:“when the number of kernel evaluations is bounded, there are cases where no
algorithm attains performance better than a trivial sub-sampling strategy, where
most of the data is thrown away. Also, no algorithm can work well when the
regularisation parameter is sufficiently small or the norm constraint is sufficiently
large”. Ctree-Ucb can avoid these parameters that can be wrongly chosen.
Moreover, with AB Tasty datasets, Ctree-Ucb yields the best results. These
datasets correspond to our main objective, and the other is presented to provide
results on public datasets.

8 Conclusion

In this paper, we presented a new approach of A/B-Test (called Ctree-Ucb)
based on bandit models. It proposes to extend the existing test methods to
take into in account context of the items to better learn the best arm and so,
to quickest leave the exploration phase. The Ctree-Ucb method consists in
extracting groups from past items (i.e., before the modification of the entity and
so, before the A/B-Test itself). These groups are then used as contexts to the
new items: each of them is associated to a group at its arrival. In each group a
non-contextual bandit is dedicated to find the optimal arm.

To validate our proposition we carried out experiments on, on one hand, syn-
thetic data and classical benchmarks and, on the other hand, data coming from
real e-merchant’s website. These experiments show that Ctree-Ucb achieves a
cumulative regret comparable to the best performance of current state-of-the-art
methods. We also showed that Ctree-Ucb provides good results regardless of
the parameters chosen and that a default setting is enough to obtain reliable re-
sults. Furthermore, as the main time consuming phase (building of items groups)
is processed before the test itself, the computation time required by Ctree-Ucb
to make the dynamic allocations is very low. That allows its integration in an
industrial environment where rapid response is crucial.

Moreover, experiments have shown that conditional inference tree method is
very powerful for extracting pertinent groups, leading to a decrease in cumula-
tive/average regret during the test. An interesting result is that similar groups

30 Claeys et al.

are identified by Ctree-Ucb even though the learning is done on different vari-
ations. Our results suggest a correlation between the reward distribution of the
variations. In practice, in most cases, the influence of a change made by a vari-
ation is limited. We can therefore create groups on variation A and assume that
they are similar on variation B. Finally, group identification can help guide the
user in the composition of the test itself. If the modification was irrelevant for a
group, another more specific modification can be proposed.

Nevertheless, our method is based on a strong assumption of stationarity of
these groups in the short term, i.e. that the distributions and groups do not vary
too much between the capture of rewards and items and the construction of the
tree, and thus its use in the test. Thus, launching a campaign just before the
test would be a perfect counterexample: the reward distribution will be certainly
impacted. Similarly, offering more feminine articles on a site visited mainly by
men could bring in a new clientele not present at the time the groups were built.
This is a strong scientific issue that we will address in our future work.

Finally, although the results are very good, we believe that our method can
still be improved. We propose to extend it to be able to handle temporal data
such as visitor’s navigation timeline before arriving on a test page.

Supports. This research was supported by AB Tasty and ICube laboratory
(University of Strasbourg/CNRS).
Acknowledgments We really thank Jérémie Mary for his assistance with ban-
dit concepts and techniques.

References

1. W. R. Thompson, “On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples,” Biometrika, vol. 25, no. 3-4, pp.
285–294, 1933.

2. H. Robbins, “Some aspects of the sequential design of experiments,” Bull. Amer.
Math. Soc., vol. 58, no. 5, pp. 527–535, 09 1952.

3. A. J. C. Gittins and J. C. Gittins, “Bandit processes and dynamic allocation in-
dices,” Journal of the Royal Statistical Society, Series B, pp. 148–177, 1979.

4. O. Nicol, J. Mary, and P. Preux, “Icml exploration and exploitation challenge: Keep
it simple !” in Journal of Machine Learning Research (JMLR), 2012, iJournal.

5. E. Kaufmann, O. Cappé, and A. Garivier, “On the Complexity of A/B Testing,”
ArXiv e-prints.

6. L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach
to personalized news article recommendation,” in Proceedings of the 19th Interna-
tional Conference on World Wide Web, ser. WWW ’10. ACM, 2010, pp. 661–670.

7. M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini, “Finite-time anal-
ysis of kernelised contextual bandits,” in Proceedings of the Twenty-Ninth Confer-
ence on Uncertainty in Artificial Intelligence.

8. W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with linear payoff
functions,” in Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, 2011, pp. 208–214.

Dynamic allocation optimization in A/B-Tests 31

9. T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Ad-
vances in Applied Mathematics, vol. 6, no. 1, pp. 4 – 22, 1985.

10. L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

11. M. N. Katehakis and A. F. Veinott, “The multi-armed bandit problem: Decompo-
sition and computation,” Mathematics of Operations Research, no. 2, pp. 262–268.

12. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine Learning, vol. 47, no. 2, pp. 235–256, May 2002.

13. R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” IEEE
Trans. Neural Networks, vol. 16, pp. 285–286, 1998.

14. H. Bastani, M. Bayati, and K. Khosravi, “Mostly exploration-free algorithms for
contextual bandits,” 2017.

15. M. Tokic and G. Palm.
16. M. N. Katehakis and H. Robbins, “Sequential choice from several populations,”

vol. 92, no. 19, pp. 8584–8585, 1995.
17. G. Burtini, J. Loeppky, and R. Lawrence, “A survey of online experiment design

with the stochastic multi-armed bandit,” CoRR, vol. abs/1510.00757, 2015.
18. N. Carrara, E. Leurent, R. Laroche, T. Urvoy, O.-A. Maillard, and O. Pietquin,

“Budgeted Reinforcement Learning in Continuous State Space.”
19. A. Pacchiano, M. Phan, Y. Abbasi-Yadkori, A. Rao, J. Zimmert, T. Lattimore, and

C. Szepesvari, “Model selection in contextual stochastic bandit problems,” 2020.
20. L. Zhou, “A survey on contextual multi-armed bandits,” CoRR, vol.

abs/1508.03326, 2015.
21. T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge University Press,

2020.
22. S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and nonstochastic

multi-armed bandit problems,” Foundations and Trends® in Machine Learning,
vol. 5, no. 1, pp. 1–122, 2012.

23. S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári, “Parametric bandits: The
generalized linear case,” in Advances in Neural Information Processing Systems
23.

24. R. Féraud, R. Allesiardo, T. Urvoy, and F. Clérot, “Random forest for the con-
textual bandit problem,” in Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, 2016, pp. 93–101.

25. A. N. Elmachtoub, R. McNellis, S. Oh, and M. Petrik, “A practical method for
solving contextual bandit problems using decision trees,” in Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Syd-
ney, Australia, August 11-15, 2017, 2017.

26. ——, “A practical method for solving contextual bandit problems using decision
trees,” CoRR, vol. abs/1706.04687, 2017.

27. J. Vermorel and M. Mohri.
28. O.-A. Maillard and S. Mannor, “Latent Bandits.” Jan. 2014, extended version of

the paper accepted to ICML 2014 (paper and supplementary material).
29. Y. Qi, Q. Wu, H. Wang, J. Tang, and M. Sun, “Bandit learning with implicit

feedback,” in Advances in Neural Information Processing Systems 31.
30. J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-

lishers Inc., 1993.
31. L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and Regression

Trees, ser. The Wadsworth and Brooks-Cole statistics-probability series. Taylor
& Francis, 1984.

32 Claeys et al.

32. Y.-S. Shih, “A note on split selection bias in classification trees,” Computational
Statistics & Data Analysis, vol. 45, no. 3, pp. 457–466, 2004.

33. J. Mingers, “Expert systems-rule induction with statistical data,” The Journal of
the Operational Research Society, vol. 38, no. 1, pp. 39–47, 1987.

34. C. Strobl, J. C. Malley, and G. Tutz, “An introduction to recursive partitioning:
rationale, application, and characteristics of classification and regression trees, bag-
ging, and random forests.” Psychological methods, vol. 14 4, pp. 323–48, 2009.

35. H. Strasser and C. Weber, “On the asymptotic theory of permutation statistics,”
1999.

36. T. Hothorn, K. Hornik, M. A. van de Wiel, and A. Zeileis, “A lego system for
conditional inference,” The American Statistician, vol. 60, no. 3, pp. 257–263, 2006.

37. T. Hothorn, K. Hornik, and A. Zeileis, “Unbiased recursive partitioning: A con-
ditional inference framework,” Journal of Computational and Graphical Statistics,
vol. 15, no. 3, pp. 651–674, 2006.

38. T. Hothorn, U. München, K. Hornik, W. Wien, A. Zeileis, and W. Wien, “party:
A laboratory for recursive partytioning.”

39. O. J. Dunn, “Multiple comparisons among means,” Journal of the American Sta-
tistical Association, vol. 56, no. 293, pp. 52–64, 1961.

40. T. Hothorn, K. Hornik, M. van de Wiel, and A. Zeileis, “Implementing a class
of permutation tests: The coin package,” Journal of Statistical Software, Articles,
vol. 28, no. 8, pp. 1–23, 2008.

41. T. Morikawa, A. Terao, and M. Iwasaki, “Power evaluation of various modified bon-
ferroni procedures by a monte carlo study,” Journal of Biopharmaceutical Statis-
tics, vol. 6, no. 3, pp. 343–359, 1996, pMID: 8854237.

42. N. Cesa-Bianchi, Y. Mansour, and O. Shamir, “On the complexity of learning with
kernels,” CoRR, vol. abs/1411.1158, 2014.

	Dynamic allocation optimization in A/B-Tests using classification-based preprocessing

