
HAL Id: hal-01874968
https://hal.science/hal-01874968v1

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Web of Audio Things
Benjamin Matuszewski, Frédéric Bevilacqua

To cite this version:
Benjamin Matuszewski, Frédéric Bevilacqua. Toward a Web of Audio Things. Sound and Music
Computing Conference, Jul 2018, Limassol, Cyprus. �hal-01874968�

https://hal.science/hal-01874968v1
https://hal.archives-ouvertes.fr

Toward a Web of Audio Things

Benjamin Matuszewski
CICM/musidance EA1572, Université Paris 8,

UMR STMS IRCAM-CNRS-UPMC
Paris, France

benjamin.matuszewski@ircam.fr

Frédéric Bevilacqua
UMR STMS IRCAM-CNRS-UPMC

Paris, France
frederic.bevilacqua@ircam.fr

ABSTRACT

Recent developments of web standards, such as WebAu-
dio, WebSockets or WebGL, has permitted new potentiali-
ties and developments in the field of interactive music sys-
tems. Until now, research and development efforts have
principally focused on the exploration and validation of
the concepts and on building prototypes. Nevertheless, it
remains important to provide stable and powerful develop-
ment environments for artists or researchers. The present
paper aims at proposing foundations to the development of
an experimental system, by analysing salient properties of
existing computer music systems, and showing how these
properties could be transposed to web-based distributed
systems. Particularly, we argue that changing our perspec-
tive from a Mobile Web to a Web of Thing approach could
allow us to tackle recurrent problems of web-based setups.
We finally describe a first implementation of the proposed
platform and two prototype applications.

1. INTRODUCTION

In last years, the specification and implementation of new
Application Programming Interfaces (APIs)—such as Web-
Audio, WebSockets or WebGL—in web browsers has al-
lowed for envisioning the web platform as a fertile play-
ground for artists and musicians. [1] The inherent network-
ed nature and scalability of web technologies has permitted
to simplify and democratize the use of mobile devices (e.g.
smartphones) in the diffusion of sounds. [2] As such, these
web-based distributed systems can be considered as a new
development in the long history of multi-source electroa-
coustic music that starts with the creation of the acousmo-
nium, created by Francois Bayle and Jean-Claude Lalle-
mand at the Groupe de Recherche Musicale in 1974. [3]

Moreover, recent works have demonstrated that sufficient
synchronization can be achieved for distributed audio ren-
dering in space. [4] Altogether, these technologies open
new opportunities for the exploration of intertwined sonic
and social interactions between participants [5] (see Fig.
1) or between a performer and a participative audience. [6]

Copyright: c© 2018 Benjamin Matuszewski et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Figure 1. Collective Loops - An installation based on web
technologies featuring synchronized audio-visual render-
ing over smartphones and light projection on the floor.

These works, among others, have demonstrated the qual-
ities and potential of these technologies in terms of inter-
operability. However, we can observe some recurring dif-
ficulties, particularly in supporting exploratory processes.
This paper proposes to tackle this issue in improving exist-
ing frameworks and setups. Specifically, based on our past
experience, we highlight the following issues:

• Experimenting and exploring in fast iteration cycles
—crucial to artistic and research contexts—remains
difficult due to constraints inherent to the usage of
smartphones.

• The lack of versatile and high-level tools targeted to-
wards non-expert users (e.g. artists or researchers).
Currently, experimenting with web technologies im-
plies to first learn the basic involved technologies
(e.g. HTML, JavaScript, server-side implementa-
tion).

The methodology proposed in this paper is to first ana-
lyse conceptual and design aspects that characterize suc-
cessful experimental computer music platforms. Then, we
propose to extend our formalization of such systems to re-
think the development of web-based musical experimental
system. Conceptually, our proposal can be thus consid-
ered as a generalization built on top of existing libraries
and frameworks. [4, 7, 8] As we will fully explain in the
second part of the paper, this generalization corresponds
to move from a Mobile Web approach to a Web of Things
approach. [9]

Precisely, our main contributions in this paper are three-
fold:

• Formalizing a conceptual model for conceiving and
developing experimental music systems, enabling col-

mailto:benjamin.matuszewski@ircam.fr
mailto:frederic.bevilacqua@ircam.fr
http://creativecommons.org/licenses/by/3.0/

laborative work between artists and researchers (sec-
tion 2).

• Proposing a change of perspective, from a Mobile
Web approach to a Web of Things approach, enabling
novel features facilitating the appropriation of cur-
rent setups (section 3).

• Developing building blocks along with two imple-
mented prototypes applications (section 4).

We believe that our proposal will help to deliver a more
effective experimental platform dedicated to the prototyp-
ing of distributed, embedded and interactive music. As
such, it could offer an interesting playground for multiple
artistic and research areas (e.g. collective and collaborative
human-computer interactions, spatialization, multi-agents
systems or distributed computing), as well as improve the
collaboration between different actors such as composers,
developers and researchers.

2. CONCEPTS

2.1 Experimental Platform in Art and Science

Recent studies on artistic research, [10] based on the Rhein-
berger’s epistemological work on experimental systems,
offer renewed perspectives on known issues in method-
ological and epistemological point of views. [11, 12]

In Rheinberger’s conceptual model, the experimental sys-
tem is the starting point of every research work as well as
a dynamic system composed of technical things—that em-
body what is already known—and of epistemic things—
which are still to be known and stabilized in a technical ar-
tifact. As such, an experimental system must exhibit and—
maybe more importantly—preserve two fundamental and
conflicting properties: it must be well enough defined to
be manipulated properly, while being sufficiently open and
unstable to enable serendipity and emergence of new epis-
temic things.

As illustrated in Fig. 2, we can thus consider artistic
and scientific research as processes that share similar struc-
tural properties—despite qualitative differences in the out-
comes—in which the experimental platform can act as a
shared space. Indeed, in both cases, the “completion of
the research process is marked by the stabilisation of the
epistemic object as a fact” [10]—be it a publication or an
artwork—which has to be evaluated and validated before
being re-injected into the experimental system as a stabi-
lized knowledge.

Until now, research work dedicated to distributed and web-
based music systems has focused on exploring and probing
their inherent possibilities and opportunities, rather than
in the characterization and implementation of an experi-
mental platform that could act as a shared space for artists
and researchers. We propose to examine existing computer
music systems to identify salient design properties that a
web-based experimental platform should embody.

location

stabilization

validation

Experimental System

Studio Laboratory

Artwork Writings

Aesthetic judgement
Social validation

Reproduction
Peer review

Technical / Epistemic things

kn
ow
le
dg
e

kn
ow
le
dg
e

Figure 2. Figure that highlights how the experimental plat-
form can be considered as a shared space that embodies
knowledge from different type of research outcomes.

2.2 Design Properties of Computer Music Systems

Music programming systems such as Max/MSP and Pure-
Data [13] [14] are nowadays among the most popular and
efficient prototyping and experimental platforms dedicated
to electroacoustic music. Despite the fact that these envi-
ronments are not specifically designed to tackle problems
inherent to distributed music systems—such as synchro-
nization or distributed state—nor to be integrated in a web
based framework, we can consider that some of their prop-
erties are particularly interesting for approaching the de-
velopment of a web-based experimental platform.

More precisely, we postulate that their success relies in
part to their effective implementation of specific patterns
that greatly facilitate the user to accomplish particular tasks.
To explain such a statement, let’s first recall two important
concepts from software design: extensibility and compos-
ability.

2.2.1 Extensibility and Composability

In software architecture, extensibility is a common sys-
temic design pattern that describes the possibility of adding
or modifying functionalities of a program without impact-
ing its dataflow or internal structure. From a user-centered
perspective, it allows the user (e.g. composer, musician) to
include new functionalities—implemented and shared by
others—seamlessly into its own workflow.

The composability pattern—closely related to extensibil-
ity—defines the ability of a system to provide components
that can be selected and assembled in multiple ways. In
Max/MSP or PureData, this property is implemented by
providing to the user a Domain Specific Language (DSL)
in the form of a Visual Programming Language. More
precisely, these environments expose a number of boxes—
each one implementing some very specific and possibly
high-level functionality—that can be linked together in mul-
tiple ways [15]. Hence any user (e.g. artist, researcher, cre-
ative coder) can define the final behavior of the program by
composing a graph of boxes.

As shown in Fig. 3, these music programming environ-
ments implement extensibility and composability by estab-
lishing a clear separation among users and/or tasks, such as

Artist Developer

Music Programming
Systems

Low-level General
Purpose Language

Domain Specific
Language

ExtensibilityComposability

Figure 3. Figure that highlights how traditional Computer
Programming Systems, such as Max/MSP and PureData,
implement the composability and extensibility patterns by
establishing a clear distinction between two types of users.

low-level programming or high-level patching. On the one
hand, an important part of the extensibility of the system
is realized by using a low-level General Purpose Language
(e.g C/C++); in turns, this part of the system becomes ac-
cessible only to users that have expert and very special-
ized programming skills. On the other hand, composability
is achieved by exposing a number of (black-)boxes to the
high-level user. 1

2.2.2 Immediate Feedback and State of Flow

We argue that the most important characteristic, that makes
these environment such efficient experimental and proto-
typing platforms, appears when formalizing the immedi-
ate feedback property. Indeed, unlike many programming
tasks where the problem to solve is well defined, artistic
and research practices can be considered as exploratory
tasks were the problem to solve—the epistemic thing—is
intrinsically ill-defined.

Therefore—and more critically when programming in an
experimental setup composed of multiple devices distribu-
ted in space—a conflict appears between the time devoted
to write and update the application and, the need to main-
tain the required state of flow [16] for working on an ex-
ploratory task. In current web-based setups, this conflict is
generally solved by providing the end user (e.g. artist, re-
searcher) a closed application that limits de facto its agency
and ability to explore possibilities not implemented by the
developer in the first place.

Max and PureData successfully resolved these issues by
providing a versatile programming environment where any
modification leads to an auditory or visual feedback in real-
time, and that allows non-expert programmers to mostly
forget about many complex tasks (e.g. creation of Graph-
ical User Interfaces) that are not related to their particular
domain or current activity.

3. FROM MOBILE WEB TO WEB OF THINGS

We will now present how the concepts described in the
previous section apply to Web technologies. First, Web
technologies, in the context of artistic practices, hold the
promise to blur the differences in the environments used

1 Such DSL—even in the Visual Programming Language paradigm—
necessitate some learning and skills that generally cannot be reused in
other domains.

by developers, artists and researchers, since they are based
on a common platform and a common scripting language
(i.e. JavaScript). This common environment is specified by
a consortium, the W3C (World Wide Web Consortium), and
implemented in web browsers by majors companies such
as Google or Mozilla (which tends to guarantee a certain
stability). In this context some of the lower-level aspects of
the extensibility of the system are thus managed by exter-
nal actors (see Fig. 4). In turn, this situation provides a full
featured scripting language that allows users with different
background and objectives to work at various levels of the
same system. For example, a composer or researcher could
intervene directly in the implementation of a domain spe-
cific functionality without facing the necessity of learning
a new language nor need to have a specialized developer
on its side.

W3C / Browser vendorsArtist / Developer

Distributed Music
Systems

Web Technologies

ExtensibilityComposability

Public / Environment

Accessibility Scalability

Figure 4. Figure that shows the changes, in regard to Fig.
3, introduced by the distributed aspects and Web technolo-
gies in Music Programming Systems.

3.1 From Mobile Web...

3.1.1 Definition and Potentialities

Web technologies used conjointly with mobile devices (e.g.
smartphones) has been shown powerful to design musical
interactive systems. [5] We can refer to this approach as
a Mobile Web approach, or in other words, the possibil-
ity of accessing browser-based applications from handheld
devices through wireless networks (e.g. WiFi).

Indeed, such systems benefit from the ubiquity of mobiles
devices. Moreover, the use of web technologies impor-
tantly ease the cross-platform deployments, avoiding cur-
rent limitations in publishing native applications.

3.1.2 Drawbacks

However, such setup hardly manages to deliver an effective
and efficient experimental platform, especially regarding
the need of immediate feedback described earlier. Indeed,
using smartphones as main components of the technical
setup impedes prototyping and experimental processes by
several aspects.

Principally, the complexity and difficulty of the workflow
imposed by closed source operating systems and manufac-
turers, that do not allow to automate some of the more

repetitive tasks. For example, the need to manually per-
form numerous tasks such as: configure and launch the ap-
plication on each device independently, necessity to touch
the screen to start the audio playback each time the appli-
cation is reloaded, etc. Another important aspect is the cost
of such devices that hinders the possibility to create such
prototyping setup in the first place.

3.2 ...To Web of Things

To tackle these issues, we propose to move from a Mobile
Web to a Web of Things approach. We argue that this new
perspective could resolve some of the problems described
above, and thus allow to define and build a more efficient
experimental platform.

3.2.1 Definition

The notion of the Internet of Things—closely related to the
computer science field of pervasive computing or ubiqui-
tous computing— has been defined in the early 90s at the
Xerox PARC Research Lab by Mark Weiser in its seminal
paper The Computer for the 21st Century: [17]

The most profound technologies are those that
disappear. They weave themselves into the
fabric of everyday life until they are indistin-
guishable from it. [...] Therefore we are trying
to conceive a new way of thinking about com-
puters in the world, one that takes into account
the natural human environment and allows the
computers themselves to vanish into the back-
ground.

In recent years, the reduction of size and cost of micro-
controllers has allowed the development of such things in
many application domains such as smart home and cities,
industry or wearables. In this context, the Web of Thing
approach, [9] together with the spread of microcomputers,
proposes to simplify the development, deployment and in-
teroperability of multiple devices by relying on Web stan-
dards.

3.2.2 Improving Immediate Feedback

In the domain of distributed music systems, the use of tiny
computers—such as the Raspberry PI—could strengthen
the current technical setups in several ways, particularly
regarding the immediate feedback property described ear-
lier (see Fig. 5).

Additionally to the reduced cost of these devices, some of
their properties make them particularly interesting in our
objective:

• They run under a Linux operating system (which
makes them quite simple to install and setup), have
a low energy footprint and out of the box WiFi capa-
bilities.

• They have enough processing capabilities to run a
Node.js environment, allowing to use the same pro-
gramming language (i.e. JavaScript) on every part
of the system. Importantly, as described in the next

if (flag == 42)
 playSound();

?

Figure 5. Figure that illustrates the envisioned distributed
prototyping platform where any modification leads to an
immediate feedback from the test devices (smartphones
and/or embedded devices) to the user.

section, this allows us to reuse existing powerful li-
braries for building collective interactions using web
technologies.

• They can be easily scripted to automate repetitive
tasks, such as relaunching an application whenever
a change occur in the codebase.

3.2.3 Opportunities

Using such microcomputers also comes with the possibil-
ity of extending each module with dedicated sensors and
actuators. Together with the scalability offered by Web
technologies, such technical setup—composed of numer-
ous modules—could enable new possibilities of expressive
interactions between people, environment, tangible inter-
faces and spatialized sounds.

Furthermore, the more controllable and standardized as-
pect of the hardware and software could help to create a
bridge—both technological and pedagogical—with more
traditional computer music approaches and tools.

4. BUILDING BLOCKS & PROTOTYPES

The technology required for ubiquitous com-
puting comes in three parts: cheap, low-power
computers that include equally convenient dis-
plays, a network that ties them together, and
a software systems implementing ubiquitous
applications. [17]

In the design of the system, we choose to build from
modular and exchangeable elements over an all-in-one but
more monolithic approach. This architecture results of tra-
deoffs between: compatibility with current web based sys-
tems, scalability, simplicity of maintenance, sustainabil-
ity and openness to evolutions. These points appear to be
of primary importance, particularly in a technical context
where hardware and software evolutions occur at very high
rate.

4.1 Hardware

A single module is composed of the following minimal
hardware setup:

• A microcomputer system, such as the Raspberry PI
Model 3, a popular microcomputer featuring in-built
wireless abilities such as WiFi and bluetooth, a Quad
Core 1.2GHz 64bit CPU and 1GB of RAM, running
the Raspbian Stretch Lite operating system.

• A soundcard with 2 channels inputs and outputs.

• A battery for embedding a module into the environ-
ment with a relative autonomy, at minima for the du-
ration of a concert.

The choice of such common hardware relies in large part
in the necessity to minimize price and maintenance of a
fleet composed of numerous devices. Additionally, it al-
lows to replace or update each component independently
which improves sustainability, and leaves the door open
for extensions with sensors and actuators.

Figure 6. Figure that shows two modules composed of a
Raspberry PI 3, a soundcard and a small speaker.

4.2 Software Prototypes

On the software side, we explored two concurrent strate-
gies for the implementation of our modules as clients of a
distributed system. Both approaches are based on a Java-
Script environment, enabling the use of the same program-
ming language on every element of the system (eg. server,
mobile or thing clients). As such, they also allow to reuse—
or simply adapt—many existing software components such
as clock synchronization, [4] scheduling [8], stream pro-
cessing [18] or, at the application level, functionalities of-
fered by existing frameworks. [7]

To explore the strengths and drawbacks of each solution,
we implemented two simple generative music systems ba-
sed on an array of the hardware modules described above. 2

4.2.1 Etude 1: Pteroptyx Malaccae

Pteroptyx Malaccae is based on the firefly synchronization
algorithm described in [19]. In this prototype, each mod-
ule embodies a single firefly that tries to synchronize with
its peers. The emergent synchronization process is sonified
using short burst of noise. All modules also contribute to
a common sonic environment by playing a part in a dis-
tributed additive synthesis.

2 The source code of each prototype is available at
https://github.com/b-ma/pteroptyx-malaccae and,
https://github.com/b-ma/clock-s-.

Technically, each module runs the Web application using
a headless Chromium browser, and thus, acts as generic
client of the system. In term of operability, this approach
proves to be very convenient as things follow thus the exact
same technical paradigm as mobile clients.

However, this solution also comes with all the constraints
and limitations common to the sandboxed nature of web
browsers. For example, it prevents from accessing the file
system or using sensors and actuators in a simple and con-
venient way. Indeed, doing such tasks would imply to run
a parallel application on each module and to create a bridge
for communicating between the Chromium browser and
this dedicated application.

4.2.2 Etude 2: Clock(s)

Clocks illustrate the synchronization possibilities enabled
by simple adaptation of existing libraries. In this proto-
type, each module plays a simple periodic rhythmical pat-
tern built on a single pitch. The sonic result can be consid-
ered as a distributed polymetric and polyrhythmic texture
where complexity arises from the number of devices and
their distribution over space.

From a technical point of view, the prototype is based
on a Node.js—a JavaScript environment built on top of
the Google Chrome’s V8 engine—application. The envi-
ronment however, does not yet provide an implementation
of the WebAudio API for audio rendering. To overcome
this problem, we developed a native Node.js extension 3 4

on top of the lib-pd library. [20] This new functionality
enables audio rendering by allowing to open and control
PureData patches directly from the JavaScript code.

However, this solution also comes with its own strengths
and drawbacks. On the one hand, using Node.JS applica-
tions as clients of the system allows for the simple usage of
all the capabilities of the underlying platform. For exam-
ple, a number of third-party libraries are dedicated to the
usage of sensors and actuators on microcontrollers. 5

On the other hand, this approach implies, for now, the
introduction of a technology that is not part of the Web
APIs and, as such, limits the possibilities of code reuse and
cross-platform developments concerning audio synthesis.
Nevertheless, the usage of the lib-pd library in this con-
text also propose an interesting and proven pattern for the
decoupling of application logic, scheduling and audio ren-
dering that could serve as model for future developments.

4.2.3 Performance Considerations

As described in the two previous examples, each of the en-
visioned approach—Chromium or Node.JS—comes with
its advantages and limitations. To acquire a better pic-
ture of their respective implications in term of audio la-
tency and memory footprint, we created a simple synchro-
nized metronome application implemented following both
approaches. 6

3 In the Node.js environment, the JavaScript runtime can be extended
with new functionalities using native languages such as C/C++ or Rust.

4 https://github.com/b-ma/node-libpd.
5 http://johnny-five.io/, https://cylonjs.com/.
6 The measures presented are only meant to give an idea of the order

of magnitude of the performances of each approach. In any case, they can
be considered as accurate or precise results.

https://github.com/b-ma/pteroptyx-malaccae
https://github.com/b-ma/clock-s-
https://github.com/b-ma/node-libpd
http://johnny-five.io/
https://cylonjs.com/

Concerning latency, we could observe a delay of around
70ms introduced by the Chromium version compared to the
Node.js / lib-pd version of the application.

In term of memory footprint, a slight difference seems to
appear in favor of the Node.js approach too. Indeed, while
the CPU usage is around 10% in both cases, Chromium
uses around 20% of RAM, while the Node.js process only
uses around 5% of RAM.

Overall, despite the current unavailability of the WebAu-
dio API in a Node.js context, this approach seems to exhibit
more qualities and interesting properties than the browser-
based one. Additionally, we can reasonably expect that an
implementation of the WebAudio API will be available in
this environment in a near future. As such, it should be
considered as an interesting basis for our future develop-
ments.

5. DISCUSSION AND CONCLUSION

In this paper, we have proposed a system dedicated to web-
based distributed music designed from the point of view
of the artist or researcher in situation of exploratory tasks.
Starting from the notion of experimental system, we de-
scribed some of the design properties that characterize ex-
isting computer music systems and their articulation within
our specific context. We then proposed to generalize the
current Mobile Web approach to a Web of Things approach
as a mean to overcome some of the drawbacks of existing
prototyping setups. We finally described a first implemen-
tation of the proposed solution, and two prototype applica-
tions to assess its feasibility.

Concerning the use of microcomputer, with Linux oper-
ating system, our proposal can be compared to two exist-
ing platforms, the Bela [21] and the Satellite CCRMA. [22]
Both projects are designed toward the implementation of
new musical instruments, embedded projects and installa-
tions.

The Bela is an environment focused on low latency based
on the BeagleBone Black microcomputer. The environ-
ment is a combination of an extension board dedicated to
audio and sensors processing and a Linux distribution fea-
turing a real-time kernel.

The Satellite CCRMA is a project based on the compo-
sition of a Raspberry PI microcomputer and an Arduino
Nano microcontroller. The kit also comes with a specific
Linux distribution (i.e. the Satellite CCRMA distribution)
specifically configured for interactive media.

Both projects share the same philosophy of proposing
a dedicated Linux distribution. However, the example of
Satellite CCRMA shows that this strategy introduces a fra-
gility in terms of sustainability and maintenance. Indeed,
the last published version of the Satellite CCRMA distri-
bution targets the Raspberry PI 2 and has not been up-
dated since then. In contrast, our strategy tries to mini-
mize this risk by accepting drawbacks of standard—and
exchangeable—hardware and software (e.g. operating sys-
tem), and by building on top of widespread technologies.

We believe that our proposal can serve as a basis for the
implementation of an effective experimental platform ded-
icated to web-based distributed and interactive music sys-
tems. As such, it could simplify and democratize the us-
age of these technologies—while retroactively improving
them—in artistic and research contexts. However, to suc-
cessfully achieve this goal, many points still need to be
tackled.

First of all, a first set of possible hardware setups need to
be stabilized and characterized. An application dedicated
to the deployment and management of the fleet of modules
must be implemented. Parallely, a set of high-level tools
dedicated to the simplification of the experimentation (e.g.
GUI tools) will have to be defined and implemented. Each
of these tools will need to be designed iteratively using
feedbacks from non-expert developer users such as com-
posers, researchers or computer music designers.

Acknowledgments

We would like to thank our colleagues Norbert Schnell,
Jean-Philippe Lambert, Diemo Schwarz and Joseph Lar-
ralde for their precious contributions to this work.

6. REFERENCES

[1] L. Wyse and S. Subramanian, “The Viability of the
Web Browser as a Computer Music Platform,” Com-
puter Music Journal, vol. 37, no. 4, pp. 10–23, 2013.

[2] L. Wyse, “Spatially Distributed Sound Computing and
Rendering Using the Web Audio Platform,” in 1st Web
Audio Conference. Paris, 2015.

[3] B. Tayler, “A History of the Audience as a Speaker Ar-
ray,” in Proceedings of the NIME17 Conference, 2017.

[4] J.-P. Lambert, S. Robaszkiewicz, and N. Schnell, “Syn-
chronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTML5,” in Proceedings
of the 2nd Web Audio Conference, Atlanta, US, 2016.

[5] N. Schnell, B. Matuszewski, J.-P. Lambert,
S. Robaszkiewicz, O. Mubarak, D. Cunin, S. Bian-
chini, X. Boissarie, and G. Cieslik, “Collective Loops
Multimodal Interactions Through Co-Located Mobile
Devices and Synchronized Audiovisual Rendering
Based on Web Standards,” in Proceedings of the
Eleventh International Conference on Tangible,
Embedded, and Embodied Interaction. Yokohama,
Japan: ACM, 2017.

[6] B. Matuszewski and N. Schnell, “GrainField,” in Pro-
ceedings of the Audio Mostly Conference. London,
UK: ACM, 2017.

[7] S. Robaszkiewicz and N. Schnell, “Soundworks a
playground for artists and developers to create collab-
orative mobile web performances,” in Proceedings of
the 1rst Web Audio Conference, Paris, France, 2015.

[8] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt,
“Of Time Engines and Masters An API for Schedul-
ing and Synchronizing the Generation and Playback of
Event Sequences and Media Streams for the Web Au-
dio API,” in 1st Web Audio Conference. Paris, Paris,
France, 2015.

[9] D. Guinard and V. Trifa, Building the Web of Things,
1st ed. Greenwich, CT, USA: Manning Publications
Co., 2016.

[10] M. Schwab, Experimental Systems: Future Knowl-
edge in Artistic Research, ser. Orpheus Institute series.
Leuven University Press, 2013.

[11] C. Frayling, Research in Art and Design, ser. Royal
College of Art research papers. Royal College of Art
(Great Britain), 1993.

[12] M. Schwab, “Between a rock and a hard place,” in
Intellectual Birdhouse. Artistic Practice as Research.
London, UK: Koenig Books, 2012, pp. 229–246.

[13] M. Puckette, “The Patcher,” in Proceedings of the In-
ternational Computer Music Conference, 1988.

[14] ——, “A case study in software for artists: Max/MSP
and Pd,” in Art++, hyx ed. David-Olivier Lartigaud,
2016.

[15] ——, “Combining Event and Signal Processing in the
MAX Graphical Programming Environment,” Com-
puter Music Journal, vol. 15, no. 3, pp. 68–77, 1991.

[16] M. Csikszentmihalyi, Creativity: Flow and the Psy-
chology of Discovery and Invention. New York:
HarperCollinsPublishers, 1996.

[17] M. Weiser, “The Computer for the 21st Century,” Sci-
entific american, vol. 265, no. 3, pp. 94–105, 1991.

[18] B. Matuszewski and N. Schnell, “LFO - A Graph-
based Modular Approach to the Processing of Data
Streams,” in Proceedings of the 3rd Web Audio Con-
ference, London, UK, 2017.

[19] B. Ermentrout, “An adaptive model for synchrony in
the firefly Pteroptyx malaccae,” Journal of Mathemati-
cal Biology, vol. 29, no. 6, pp. 571–585, Jun. 1991.

[20] P. Brinkmann, C. McCormick, P. Kirn, M. Roth,
R. Lawler, and H.-C. Steiner, “Embedding Pure Data
with libpd,” in Proceedings of the Pure Data Conven-
tion, 2011.

[21] A. McPherson and V. Zappi, “An environment for
submillisecond-latency audio and sensor processing
on BeagleBone Black,” in Audio Engineering Society
Convention 138. Audio Engineering Society, 2015.

[22] E. Berdahl, S. Salazar, and M. Borins, “Embedded
Networking and Hardware-Accelerated Graphics with
Satellite CCRMA.” in NIME, 2013.

	 1. Introduction
	 2. Concepts
	2.1 Experimental Platform in Art and Science
	2.2 Design Properties of Computer Music Systems
	2.2.1 Extensibility and Composability
	2.2.2 Immediate Feedback and State of Flow

	 3. From Mobile Web to Web of Things
	3.1 From Mobile Web...
	3.1.1 Definition and Potentialities
	3.1.2 Drawbacks

	3.2 ...To Web of Things
	3.2.1 Definition
	3.2.2 Improving Immediate Feedback
	3.2.3 Opportunities

	 4. Building Blocks & Prototypes
	4.1 Hardware
	4.2 Software Prototypes
	4.2.1 Etude 1: Pteroptyx Malaccae
	4.2.2 Etude 2: Clock(s)
	4.2.3 Performance Considerations

	 5. Discussion and Conclusion
	 6. References

