
HAL Id: hal-01874966
https://hal.science/hal-01874966v1

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Movement Driven Audio Applications Using a
Web-Based Interactive Machine Learning Toolkit

Benjamin Matuszewski, Joseph Larralde, Frédéric Bevilacqua

To cite this version:
Benjamin Matuszewski, Joseph Larralde, Frédéric Bevilacqua. Designing Movement Driven Audio Ap-
plications Using a Web-Based Interactive Machine Learning Toolkit. Web Audio Conference (WAC),
Sep 2018, Berlin, Germany. �hal-01874966�

https://hal.science/hal-01874966v1
https://hal.archives-ouvertes.fr

Designing Movement Driven Audio Applications Using a
Web-Based Interactive Machine Learning Toolkit

Benjamin Matuszewski
CICM/musidance EA1572,

Université Paris 8
STMS Ircam-CNRS-Sorbonne

Université
Paris, France

benjamin.matuszewski@ircam.fr

Joseph Larralde
STMS Ircam-CNRS-Sorbonne

Université
Paris, France

joseph.larralde@ircam.fr

Frédéric Bevilacqua
STMS Ircam-CNRS-Sorbonne

Université
Paris, France

frederic.bevilacqua@ircam.fr

ABSTRACT
This paper presents a web based toolkit for implementing Interac-
tive Machine Learning (IML) dedicated to creative audio applica-
tions. The toolkit, composed of a main library and a template ap-
plication, facilitates the creation of experiences on collective mu-
sical interactions with a strong emphasis on real-time movement
processing and recognition.

At its lower level, the mano-js library proposes a user-friendly
API built on top of existing libraries. The library is designed to
assist developers and creative coders in the appropriation and us-
age of the Interactive Machine Learning concepts and workflow, as
well as to simplify development of new applications. The library is
open-source, based on web standards and released under the BSD-
3-Clause Licence.

At its higher level, the toolkit proposes Elements, a template ap-
plication designed towards non-developer users. The application
specifically aims at providing a mean for researchers and designers
to prototype new movement-based distributed Interactive Machine
Learning scenarios. The application allows to create a new scenario
by simply providing a JSON configuration file that defines the role
and the abilities of each client. The application has been iteratively
tested and developed in the context of several workshops.

1. INTRODUCTION
The use of mobiles devices (e.g. smartphones) for multimodal

interactions is promising. The ubiquity of embedded motion
sensors in such devices potentially allows for using gesture and
body motions to significantly enhance standard interaction tech-
niques. This could thus enable for the creation of novel interaction
paradigms beyond the standard use of the multi-touch screen. In-
terestingly, the use of such motion capabilities is currently largely
lacking in most applications, with few exceptions such as the
‘shake’ gestures and the use of basic orientation detection. The
most promising applications can be found in games or creative ap-
plications (as recently proposed by the musical application SNAP
-Reactable1). Nevertheless, movement-based interaction remains

1http://reactable.com/snap/

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.

© 2018 Copyright held by the owner/author(s).

difficult to implement since designers and developers are currently
missing simple and user-centered tools to implement gesture pro-
cessing and recognition..

In last years, we developed and demonstrated a series of libraries
and applications for collective musical interaction using the We-
bAudio API [13–15]. However, while our previous web applica-
tions are using the motion sensors capabilities of smartphones, the
gestural vocabulary remained simple, mainly using ‘slow rotation’
and ‘hit’ gestures. In order to significantly enhance such gestural
vocabularies, we developed a complete set of tools to implement
gesture recognition in our framework, which we report here.

Our approach is based on Interactive Machine Learning (IML)
[1,8]. In such an approach, the gestural vocabulary (or elements) is
defined by the users or the designers. We particularly intend to fa-
cilitate any training procedure, for example by permitting to record
a single example for each gesture class, and by providing the users
the possibility to ‘instantaneously’ test how the system actually rec-
ognize the learned gestures [3, 9, 16]. To allow for rapid cycles in
designing the gestures, more examples can be added to extend or
refine the behavior of the system. Importantly, the gestural vocab-
ulary can also be designed in a participatory setting [4].

In this paper, we describe how we developed a web-based Inter-
active Machine Learning toolkit, that can be used to design and
implement movement-based interaction with mobiles. First, we
present how we adapted XMM, an open-source C++ library for ges-
ture recognition2, within our existing javascript framework dedi-
cated to collective musical interactions using WebAudio. This in-
tegration led to a new javascript library called mano-js.

Second, we present the template application called Elements,
that has been developed and tested in several workshops. As we
will see, our toolkit offers an original solution for Interactive Ma-
chine Learning in general. Indeed, the web plaform brings the pos-
sibility to easily share data and gesture models, allowing for de-
signing gestural interaction in participatory design setting.

2. RELATED WORKS
In this section, we will shortly present related works concerning

Interactive Machine Learning [5]. We will particularly present its
use in creative audio applications for gesture-based control. The
term Interactive Machine Learning has been broadly used to de-
scribe several types of applications. Here, we refer it as a machine
learning approach where the user or designer is involved interac-
tively in the creation of the database, in the choice of the algorithms

2Originally developed by Jules Françoise,
https://github.com/Ircam-RnD/xmm

http://reactable.com/snap/

and possibly in the manual refining of their exposed parameters [8].
Please note that the term User-centered Machine Learning has also
been used in [12].

Concerning gesture recognition, several toolkits such as the Ges-
ture Recognition Toolkit [11], standalone applications such as the
Wekinator [7], or Max externals have been developed [2, 3, 10].
Most of these pieces of software, found very fruitful for creative
audio applications [6] were not—at least in their original version—
available as tools usable on the web.

While there is a large number of machine learning tools avail-
able in javascript (even for deep learning, e.g. TensorFlow.js), they
are generally not designed as the aforementioned software that was
especially developed for Interactive Machine Learning. For these
reasons, several attempts were found recently to also expose these
tools to the web [17]. As we will describe, the use of web technolo-
gies also enables to expand Interactive Machine Learning towards
what we call Collaborative Interactive Machine Learning.

3. MANO-JS

3.1 Overview
The mano-js library provides a high level and user-friendly API

for the implementation of movement driven audio applications us-
ing motion sensors such as Inertial Measurement Units (IMUs)
with accelerometers and/or gyroscope. The library is based on web
standard and written in the javascript programming language. The
mano-js library allows for gesture recognition, using an Interac-
tive Machine Learning approach, by enabling users to record their
own gestures.

The library is designed to propose a generic API, based on the
RapidMix API, that allows to further extend it with new inputs and
machine learning algorithms. Furthermore, communications be-
tween components of the library are handled using a JSON format,
the Rapid-Mix JSON format, specified for enabling interoperability
between multiple preprocessing and interactive machine learning
libraries. 3

Processed Source

Example

Training Set

ML Processor

ML Processor

Array

JSON

JSON

Browser

NodeJS

Training Decoding

Processed Source

ML Processor

Array

Browser

Results

JSON (model)

Figure 1: Possible data flows between different components of
the mano-js library.

As shown in Figure 1, such a formalism enables communication
between components over the network. It thus allows to create a
3 The description of the format is available at https:
//www.doc.gold.ac.uk/eavi/rapidmixapi.com/index.php/
documentation/json-documentation/

wide range of application topologies, from simple and traditional
client applications to complex distributed applications using shared
models.

3.2 Implementation
As shown in Figure 2, mano-js is mainly built on top of two ex-

isting libraries. The pre-processing of the sensors data (accelerom-
eters and gyroscope) is based on the waves-lfo library [13]. The
machine learning part is built on top of the XMM [10] library, that
makes use of probabilistic models for motion recognition. In par-
ticular, it implements Gaussian Mixture Models (GMM) and Hier-
archical Hidden Markov Models (HHMM).

RapidMix
JSON Format

Training Data

Model

R
ap

id
M

ix
 A

da
pt

er

R
ap

id
M

ix
 A

da
pt

er

server-sideclient-side

xmm-serverxmm-client

lfo / lfo-motion

motion-input

Figure 2: Underlying building blocks and formalization of the
mano-js library.

The library implements a generic Interactive Machine Learning
workflow. As such, it exposes of four classes dedicated to a specific
task in the data flow and user workflow. Figure 3 shows a minimal
example of the integration of the library and highlights how the four
components interact with each others.

1 import ∗ as mano from 'mano−js/ client ';
2 // instantiate classes
3 const processedSensors = new mano.ProcessedSensors ()

;
4 const example = new mano.Example ();
5 const trainingSet = new mano.TrainingSet ();
6 const xmmProcessor = new mano.XmmProcesssor ();
7 // create a labeled example and record data
8 // from the processedSensors
9 example.setLabel ('my−label ');

10 processedSensors.addListener (example.addElement);
11 // later...
12 // stop recording data from the processedSensors
13 processedSensors.removeListener (example.addElement);
14 // add the example the training set
15 const rapidMixJsonExample = example.toJSON ();
16 trainingSet.addExample (rapidMixJsonExample);
17 // train the model
18 const rapidMixJsonTrainingSet = trainingSet.toJSON ()

;
19 xmmProcessor
20 . train (rapidMixJsonTrainingSet)
21 .then (() => {
22 // start decoding the processedSensors data
23 // using the trained model
24 processedSensors.addListener (data => {
25 const results = xmmProcessor.run (data);
26 console.log (results);
27 });
28 });

Figure 3: Data flow between the components exposed by the
mano-js library.

ProcessedSensors

The ProcessedSensors class is responsible for acquiring the de-
vice’s motion sensors data (accelerometers and gyroscope) as well

https://www.doc.gold.ac.uk/eavi/rapidmixapi.com/index.php/documentation/json-documentation/
https://www.doc.gold.ac.uk/eavi/rapidmixapi.com/index.php/documentation/json-documentation/
https://www.doc.gold.ac.uk/eavi/rapidmixapi.com/index.php/documentation/json-documentation/

as for pre-processing acquired raw signals into higher-level motion
descriptors. The abstraction is built on top of waves-lfo4 [13]
using an extension of the library dedicated to movement analysis.5

The class implements a generic listener API that allows to easily
replace it to match other use cases.

Example and TrainingSet

The Example class can arbitrarily represent timed data, multidi-
mensional data or labelled data. Once recorded, an example can
be serialized and added to the TrainingSet using its RapidMix
JSON representation. In a similar way, the TrainingSet—which
acts as a collection of examples—can be exported to a specific
JSON representation in order to feed the machine learning algo-
rithm.

XmmProcessor

In the formalism proposed by the library, a processor mainly ex-
poses two methods: train() that is responsible for creating a
model from the JSON representation of a training set and run(),
responsible to decode incoming data in real-time using the trained
model. For now the library exposes one machine learning proces-
sor built on top of the XMM library, enabling the use of GMM and
hierarchical HMM. [9, 10] Other algorithms will be added in the
future to handle different use-cases.

4. ELEMENTS

4.1 Overview
Elements is a template application implemented on top of

mano-js and designed toward non-developer users. The applica-
tion is designed to provide an environment where users without
programming knowledge can create their own instance of the appli-
cation (e.g. behavior and mappings of different clients) by simply
editing a JSON configuration file.

2. The Example is

sent to the server

3. The Example is added

to the TrainingSet and the

model is (re)trained

4. The updated model is

sent back to every

clients of the project

1. A user records

a gesture

Figure 4: Usual workflow of Elements.

Each instance of Elements can host multiple projects in parallel.
Figure 4 shows the generic workflow proposed by the application:

• A client records a new gesture example.
• The example is sent to the server to be added to the common

training set.
• The model is updated according to the new training set.
• The new trained model is sent to all clients of the same

project.
• Every client can make use of this new gesture.

4 The waves-lfo library is available at https://github.com/wavesjs/
waves-lfo
5 The lfo-motion library is available at https://github.com/
Ircam-RnD/lfo-motion

The centralized state of the project on the server thus enables
the automatic sharing of the gesture models among clients of the
project, allowing for creating a large set of collective interaction
scenarios.

4.2 Players & Designers
A configuration file allows to define and configure multiple types

of mobile clients in the application. For example, a user can define
if a specific type of client can create new projects, record new ges-
tures, update project and machine learning parameters.

Figure 5: Examples of interfaces for different clients of Ele-
ments. Left: a client (called designer) exposing many control
possibilities. Right: a client (called player) with control over
simple options (e.g. mute).

Furthermore, as shown in figure 5, the graphical user interface
can also be defined from the configuration file: from complex inter-
faces with many controls to very simple and minimalist interfaces
without touch interactions. For example, a client that we typically
refer to as player, generally exposes only one or two buttons (to
control the mute and one other option). On the contrary, the de-
signer allows for modifying all parameters of the recognition al-
gorithms. Such granularity proved to be very useful in workshops
situation where not every users must have the same level of control
over the application. Also, it allows for modulating the degree of
attention to the different parameters appearing on the screen.

4.3 Controller
The application exposes another type of client, the controller,

that provides a centralized interface dedicated at controlling every
aspects of the application as well as gathering feedback from users.

As shown in Figure 6, the interface provides information and
controls at three different levels. At application level, for managing
projects (e.g. creation, deletion, import and export); at the project
level, for controlling machine learning parameters, or default state
of all clients of the project; and finally at the client level for re-
motely controlling or monitoring a specific player or designer.

Indeed, the controller can display real-time visualizations of the
processed sensors streams and decoding results as well as recre-
ating the audio synthesis of each of the connected clients. This
possibility proved to be very useful in many cases, from debugging
to explaining how the system works in educational situations.

https://github.com/wavesjs/waves-lfo
https://github.com/wavesjs/waves-lfo
https://github.com/Ircam-RnD/lfo-motion
https://github.com/Ircam-RnD/lfo-motion

Figure 6: Elements’ controller interface highlighting different
possibilities of control.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we have presented a novel set of tools for the de-

sign and implementation of Interactive Machine Learning in the
context of web-based collective musical systems. The proposed
toolkit is composed of a javascript library, mano-js, that exposes
a simple yet extendable API dedicated to developers and creative-
coders, and of a template application easily configurable dedicated
to non expert developer users such as researchers and designers.

In the current state of the toolkit, the proposed approach proved
to be successful in several workshops.6 We will pursue this devel-
opment in providing alternative pre-processing and machine learn-
ing components. For efficiency and maintainability, we will also
consider the WebAssembly format for these new components.

6. AKNOWLEDGEMENTS
The presented work has been developed in the framework of the

Rapid-Mix Project from the European Union’s Horizon 2020 re-
search and innovation programme (H2020-ICT-2014-1, Project ID
644862). We would like to thank our project partners and our col-
leagues at IRCAM for their precious contributions to the project.

7. REFERENCES
[1] F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell,

F. Guedy, and N. Rasamimanana. Continuous realtime
gesture following and recognition. In Lecture Notes in
Computer Science, volume 5934, pages 73–84. Springer
Verlag, 2010.

[2] J. Bullock and A. Momeni. Ml. lib: robust, cross-platform,
open-source machine learning for max and pure data. In
Proceedings of the 2015 International Conference on New
Interfaces for Musical Expression, pages 265–270, 2015.

[3] B. Caramiaux, N. Montecchio, A. Tanaka, and F. Bevilacqua.
Adaptive gesture recognition with variation estimation for
interactive systems. ACM Transactions on Interactive
Intelligent Systems, 4(4), 2015.

6http://gesturedesign.ircam.fr/

[4] A. Dubos, F. Bevilacqua, J. Larralde, J. Chevrier, and J.-F.
Jego. Designing gestures for interactive systems: Towards
multicultural perspectives. In 16th IFIP Conference on
Human-Computer Interaction (INTERACT), number Part IV,
pages 524–526. Springer International Publishing, 2017.

[5] J. A. Fails and D. R. Olsen Jr. Interactive machine learning.
In Proceedings of the 8th international conference on
Intelligent user interfaces, pages 39–45. ACM, 2003.

[6] R. Fiebrink and B. Caramiaux. The machine learning
algorithm as creative musical tool. arXiv preprint
arXiv:1611.00379, 2016.

[7] R. Fiebrink and P. R. Cook. The wekinator: a system for
real-time, interactive machine learning in music. In
Proceedings of The Eleventh International Society for Music
Information Retrieval Conference (ISMIR 2010), 2010.

[8] R. Fiebrink, P. R. Cook, and D. Trueman. Human model
evaluation in interactive supervised learning. In Proceedings
of the 2011 annual conference on Human factors in
computing systems, CHI ’11, pages 147–156, New York, NY,
USA, 2011.

[9] J. Françoise, N. Schnell, and F. Bevilacqua. A multimodal
probabilistic model for gesture–based control of sound
synthesis. In Proceedings of the 21st ACM International
Conference on Multimedia (MM’13), pages 705–708. ACM
Press, 2013.

[10] J. Françoise, N. Schnell, R. Borghesi, and F. Bevilacqua.
Probabilistic Models for Designing Motion and Sound
Relationships. In Proceedings of the 2014 International
Conference on New Interfaces for Musical Expression, pages
287–292, London, UK, United Kingdom, June 2014.

[11] N. E. Gillian and J. A. Paradiso. The gesture recognition
toolkit. Journal of Machine Learning Research,
15(1):3483–3487, 2014.

[12] M. Gillies, R. Fiebrink, A. Tanaka, J. Garcia, F. Bevilacqua,
A. Heloir, F. Nunnari, W. Mackay, S. Amershi, B. Lee, et al.
Human-centred machine learning. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, pages 3558–3565. ACM, 2016.

[13] B. Matuszewski and N. Schnell. LFO — A Graph-based
Modular Approach to the Processing of Data Streams. In
Proceedings of the 3rd Web Audio Conference, London, UK,
2017.

[14] S. Robaszkiewicz and N. Schnell. Soundworks – a
playground for artists and developers to create collaborative
mobile web performances. In Proceedings of the 1rst Web
Audio Conference, Paris, France, 2015.

[15] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt. Of Time
Engines and Masters An API for Scheduling and
Synchronizing the Generation and Playback of Event
Sequences and Media Streams for the Web Audio API. In 1st
Web Audio Conference. Paris, Paris, France, 2015.

[16] B. Zamborlin, F. Bevilacqua, M. Gillies, and M. D’inverno.
Fluid gesture interaction design: Applications of continuous
recognition for the design of modern gestural interfaces.
ACM Transactions on Interactive Intelligent Systems (TiiS),
3(4):22, 2014.

[17] M. Zbyszyski, M. Grierson, and L. Fedden. Write once run
anywhere revisited: machine learning and audio tools in the
browser with C++ and emscripten. In Proceedings of the 3rd
Web Audio Conference, page 6, London, UK, 2017.

http://gesturedesign.ircam.fr/

	Introduction
	Related works
	mano-js
	Overview
	Implementation

	Elements
	Overview
	Players & Designers
	Controller

	Conclusions and Future Works
	Aknowledgements
	References

