Aimene Belfodil

Adnene Belfodil

Mehdi Kaytoue

Anytime Subgroup Discovery in Numerical Domains with Guarantees

Keywords: Subgroup discovery, Anytime algorithms, Discretization

Subgroup discovery is the task of discovering patterns that accurately discriminate a class label from the others. Existing approaches can uncover such patterns either through an exhaustive or an approximate exploration of the pattern search space. However, an exhaustive exploration is generally unfeasible whereas approximate approaches do not provide guarantees bounding the error of the best pattern quality nor the exploration progression ("How far are we of an exhaustive search"). We design here an algorithm for mining numerical data with three key properties w.r.t. the state of the art: (i) It yields progressively interval patterns whose quality improves over time; (ii) It can be interrupted anytime and always gives a guarantee bounding the error on the top pattern quality and (iii) It always bounds a distance to the exhaustive exploration. After reporting experimentations showing the effectiveness of our method, we discuss its generalization to other kinds of patterns.

Introduction

We address the problem of discovering patterns that accurately discriminate one class label from the others in a numerical dataset. Subgroup discovery (SD) [START_REF] Wrobel | An algorithm for multi-relational discovery of subgroups[END_REF] is a well established pattern mining framework which strives to find out data regions uncovering such interesting patterns. When it comes to numerical attributes, a pattern is generally a conjunction of restrictions over the attributes, e.g., pattern 50 ≤ age < 70∧smoke per day ≥ 3 fosters lung cancer incidence. To look for such patterns (namely interval patterns), various approaches are usually implemented. Common techniques perform a discretization transforming the numerical attributes to categorical ones in a pre-processing phase before using the wide spectrum of existing mining techniques [START_REF] Atzmueller | Sd-map-a fast algorithm for exhaustive subgroup discovery[END_REF][START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF][START_REF] Lucas | A new evolutionary algorithm for mining top-k discriminative patterns in high dimensional data[END_REF][START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF]. This leads, however, to a loss of information even if an exhaustive enumeration is performed on the transformed data [START_REF] Atzmueller | Sd-map-a fast algorithm for exhaustive subgroup discovery[END_REF]. Other approaches explore the whole search space of all restrictions either exhaustively [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF][START_REF] Grosskreutz | On subgroup discovery in numerical domains[END_REF][START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF] or heuristically [START_REF] Mampaey | Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF]. While an exhaustive enumeration is generally unfeasible in large data, the various state-of-the-art algorithms that heuristically explore the search space provide no provable guarantee on how they approximate the top quality patterns and on how far they are from an exhaustive search. Recent techniques set up a third and elegant paradigm, that is direct sampling approaches [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF][START_REF] Boley | Linear space direct pattern sampling using coupling from the past[END_REF][START_REF] Giacometti | Dense neighborhood pattern sampling in numerical data[END_REF]. Algorithms falling under this category are non-enumerative methods which directly sample solutions from the pattern space. They simulate a distribution which rewards high quality patterns with respect to some interestingness measure. While [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF][START_REF] Boley | Linear space direct pattern sampling using coupling from the past[END_REF] propose a direct two-step sampling procedure dedicated for categorical/boolean datasets, authors in [START_REF] Giacometti | Dense neighborhood pattern sampling in numerical data[END_REF] devise an interesting framework which add a third step to handle the specificity of numerical data. The proposed algorithm addresses the discovery of dense neighborhood patterns by defining a new density metric. Nevertheless, it does not consider the discovery of discriminant numerical patterns in labeled numerical datasets. Direct sampling approaches abandon the completeness property and generate only approximate results. In contrast, anytime pattern mining algorithms [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF][START_REF] Hu | Alpine: Progressive itemset mining with definite guarantees[END_REF] are enumerative methods which exhibits the anytime feature [START_REF] Zilberstein | Using anytime algorithms in intelligent systems[END_REF], a solution is always available whose quality improves gradually over time and which converges to an exhaustive search if given enough time, hence ensuring completeness. However, to the best of our knowledge, no existing anytime algorithm in SD framework, makes it possible to ensure guarantees on the patterns discriminative power and the remaining distance to an exhaustive search while taking into account the nature of numerical data.

To achieve this goal, we propose a novel anytime algorithm, RefineAndMine, tailored for discriminant interval patterns discovery in numerical data. It starts by mining interval patterns in a coarse discretization, followed by successive refinements yielding increasingly finer discretizations highlighting potentially new interesting patterns. Eventually, it performs an exhaustive search, if given enough time. Additionally, our method gives two provable guarantees at each refinement. The first evaluates how close is the best found pattern so far to the optimal one in the whole search space. The second measures how already found patterns are diverse and cover well all the interesting regions in the dataset.

The outline is as follows. We recall in Sec. 2 basic definitions. Next, we define formally the problem in Sec. [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF]. Subsequently We introduce in Sec. 4 our mining algorithm before formulating the guarantees it provides in Sec. [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF]. We empirically evaluate the efficiency of RefineAndMine in Sec. [START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF] and discuss its potential improvements in Sec. 7. Additional materials are available in our companion page 4 . For more details and proofs, please see the appendix A-E.

to each object g ∈ G a value m i (g) ∈ R. We can also see M as a mapping M : G → R p , g → (m i (g)) 1≤i≤p . We denote m i [G] = {m i (g) | g ∈ G} (More generally, for a function f : E → F and a subset A ⊆ E, f [A] = {f (e) | e ∈ A}). Fig. 1 (left table) presents a 2-dimensional labeled numerical dataset and its representation in the Cartesian plane (filled dots represent positive instances).

Interval patterns and their extents. When dealing with numerical domains in SD, we generally consider for intelligibility interval patterns [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]. An Interval pattern is a conjunction of restrictions over the numerical attributes; i.e. a set of conditions attribute ≷ v with ≷∈ {=, ≤, <, ≥, >}. Geometrically, interval patterns are axis-parallel hyper-rectangles. Fig. 1 (center-left) depicts pattern (non-hatched rectangle)

c 2 = (1 ≤ m 1 ≤ 4) ∧ (0 ≤ m 2 ≤ 3) [1, 4] × [0, 3].
Interval patterns are naturally partially ordered thanks to "hyper-rectangle inclusion". We denote the infinite partially ordered set (poset) of all interval patterns by (D,) where (same order used in [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]) denotes the dual order ⊇ of hyper-rectangle inclusion. That is pattern

d 1 d 2 iff d 1 encloses d 2 (d 1 ⊇ d 2)
. It is worth mentioning that (D,) forms a complete lattice [START_REF] Roman | Lattices and Ordered Sets[END_REF]. For a subset S ⊆ D, the join S (i.e. smallest upper bound) is given by the rectangle intersection. Dually, the meet S (i.e the largest lower bound) is given by the smallest hyperrectangle enclosing all patterns in S. Note that the top (resp. bottom) pattern in (D,) is given by = ∅ (resp. ⊥ = R p). Fig. 1 (right) depicts two patterns (hatched) e 1 = [START_REF] Abudawood | Evaluation measures for multi-class subgroup discovery[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF] × [START_REF] Abudawood | Evaluation measures for multi-class subgroup discovery[END_REF][START_REF] Boley | Linear space direct pattern sampling using coupling from the past[END_REF]] and e 2 = [0, 4) × [START_REF] Atzmueller | Sd-map-a fast algorithm for exhaustive subgroup discovery[END_REF][START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF], their meet (non hatched) e 1 e 2 = [0, 5] × [START_REF] Abudawood | Evaluation measures for multi-class subgroup discovery[END_REF][START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF] and their join (black) e 1 e 2 = [1, 4) × [START_REF] Atzmueller | Sd-map-a fast algorithm for exhaustive subgroup discovery[END_REF][START_REF] Boley | Linear space direct pattern sampling using coupling from the past[END_REF].

A pattern d ∈ D is said to cover an object g ∈ G iff M(g) ∈ d. To use the same order to define such a relationship, we associate to each g ∈ G its corresponding pattern δ(g) ∈ D which is the degenerated hyper-rectangle

δ(g) = {M(g)} = × p i=1 [m i (g), m i (g)].
The cover relationship becomes d δ(g). The extent of a pattern is the set of objects supporting it. Formally, there is a function ext :

D → ℘(G), d → {g ∈ G | d δ(g)} = {g ∈ G | M(g) ∈ d} (where ℘(G) denotes the set of all subsets of G). Note that if d 1 d 2 then ext(d 2) ⊆ ext(d 1)
. We define also the positive (resp. negative) extent as follows:

ext + (d) = ext(d) ∩ G + (resp. ext -(d) = ext(d) ∩ G -).
With the mapping δ : G → D and the complete lattice (D,), we call the triple P = (G, (D,), δ) the interval pattern structure [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF][START_REF] Ganter | Pattern structures and their projections[END_REF]. [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF][START_REF] Lenca | On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid[END_REF]. A measure is said to be objective or probability based [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF] if it depends solely on the number of cooccurrences and non co-occurrences of the pattern and the target label. In other words, those measures can be defined using only tpr, f pr and potentially other constants (e.g. |G|). Formally,

m1 m2 label g1 1 2 + g2 1 3 + g3 2 1 + g4 3 5 + g5 2 4 - g6 2 5 - g7 3 4 - g8 4
∃φ * : [0, 1] 2 → R s.t. φ(d) = φ * (tpr(d), f pr(d)).
Objective measures depends only on the pattern extent. Hence, we use interchangeably φ(ext(d)) and φ(d). An objective quality measure φ is said to be discriminant if its associated measure φ * is increasing with tpr (f pr being fixed) and decreasing with f pr (tpr being fixed). For instance, with α + = |G + |/|G| and α -= |G -|/|G| denoting labels prevalence, wracc * (tpr, f pr) = α + •α -•(tpr-f pr) and inf ormedness * (tpr, f pr) = tprf pr are discriminant measures.

Compressing the set of interesting patterns using closure. Since discriminant quality measures depend only on the extent, closed patterns can be leveraged to reduce the number of resulting patterns [START_REF] Ganter | Pattern structures and their projections[END_REF]. A pattern d ∈ D is said to be closed (w.r.t. pattern structure P) if and only if it is the most restrictive pattern (i.e. the smallest hyper-rectangle) enclosing its extent. Formally, d = int(ext(d)) where int mapping (called intent) is given by: int : Relevance theory [START_REF] Garriga | Closed sets for labeled data[END_REF] formalizes this observation and helps us to remove some clearly uninteresting closed patterns. In a nutshell, a closed pattern d 1 ∈ D is said to be more relevant than a closed pattern

℘(G) → D, A → g∈A δ(g) = × p i=1 [min g∈A m i (g), max g∈A m i (g)].
d 2 ∈ D iff ext + (d 2) ⊆ ext + (d 1) and ext -(d 1) ⊆ ext -(d 2). For φ discriminant, if d 1 is more relevant than d 2 then φ(d 1) ≥ φ(d 2).
A closed pattern d is said to be relevant iff there is no other closed pattern c that is more relevant than d. It follows that if a closed pattern is relevant then it is closed on the positive (cotp for short). An interval pattern is said to be cotp if any smaller interval pattern will at least drop one positive instance (i.e. d = int(ext + (d))). interestingly, int • ext + is a closure operator on (D,).

Problem Statement

Correct enumeration of relevant extents. First, consider the (simpler) problem of enumerating all relevant extents in R. For a (relevant extents) enumeration algorithm, three properties need generally to hold. An algorithm which output is the set of solutions S is said to be (1) complete if S ⊇ R, (2) sound if S ⊆ R and (3) non redundant if each solution in S is outputted only once. It is said to be correct if the three properties hold. Guyet et al. [START_REF] Guyet | Mining relevant interval rules[END_REF] proposed a correct algorithm that enumerate relevant extents induced by the interval pattern structure in two steps: [START_REF] Abudawood | Evaluation measures for multi-class subgroup discovery[END_REF] Start by a DFS complete and non redundant enumeration of all cotp patterns (extents) using MinIntChange algorithm [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF];

(2) Post-process the found cotp patterns by removing non relevant ones using [START_REF] Garriga | Closed sets for labeled data[END_REF] characterization (this step adds the soundness property to the algorithm). Problem Statement. Given a discriminant objective quality measure φ, we want to design an anytime enumeration algorithm such that: (1) given enough time, outputs all relevant extents in R, (2) when interrupted, provides a guarantee bounding the difference of quality between the top-quality found extent and the top possible quality w.r.t. φ; and (3) outputs a second guarantee ensuring that the resulting patterns are diverse.

Formally, let S i be the set of outputted solutions by the anytime algorithm at some step (or instant) i (at i + 1 we have S i ⊆ S i+1). We want that (1) when i is big enough, S i ⊇ R (only completeness is required). For (2) and (3), we define two metrics5 to compare the results in S i with the ones in R. The first metric, called accuracy (eq. 1), evaluates the difference between top pattern quality φ in S i and R while the second metric, called specif icity (eq. 2), evaluates how diverse and complete are patterns in S i .

accuracy φ (S i , R) = sup A∈R φ(A) -sup B∈Si φ(B) (1)
specif icity(S i , R) = sup A∈R inf B∈Si (|A ∆ B|/|G|) (2)
The idea behind specif icity is that each extent A in R is "approximated" by the most similar extent in S i ; that is the set B ∈ S i minimizing the metric distance A, B → |A ∆ B|/|G| in ℘(G). The specif icity6 is then the highest possible distance (pessimistic). Note that specif icity(S i , R) = 0 is equivalent to S i ⊇ R. Clearly, the lower these two metrics are, the closer we get to the desired output R. While accuracy φ and specif icity can be evaluated when a complete exploration of R is possible, our aim is to bound the two aforementioned measures independently from R providing a guarantee. In other words, the anytime algorithm need to output additionally to S i , the two following measures: (2) accuracy φ (S i) and (3) specif icity(S i) s.t. accuracy φ (S i , R) ≤ accuracy φ (S i) and specif icity(S i , R) ≤ specif icity(S i). These two bounds need to decrease overtime providing better information on R through S i .

Anytime Interval Pattern Mining

Discretizations and pattern space. Our algorithm relies on the enumeration of a chain of discretization from the coarsest to the finest. A discretization of R is any partition of R using intervals. In particular, let C = {c i } 1≤i≤|C| ⊆ R be a finite set with c i < c i+1 for i ∈ {1, ..., |C| -1}. Element of C are called cut points or cuts. We associate to C a finite discretization denoted by dr(C) and given by dr

(C) = {(-∞, c 1)} ∪ {[c i , c i+1) | i ∈ {1, ..., |C| -1]}} ∪ [c |C| , +∞) .
Generally speaking, let p ∈ N * and let C = (C k) 1≤k≤p ∈ ℘(R) p representing sets of cut points associated to each dimension k (i.e. C k ⊆ R finite ∀k ∈ {1, ..., p}). The partition dr(C) of R p is given by: dr(C) = p k=1 dr(C k). Fig. 2 depicts two discretizations. Discretizations are ordered using the natural order between partitions7 . Moreover, cut-points sets are ordered by ≤ as follows:

C 1 ≤ C 2 ≡ (∀k ∈ {1, ..., p}) C 1 k ⊆ C 2 k with C i = (C i k) 1≤k≤p . Clearly, if C 1 ≤ C 2 then discretization dr(C 1) is coarser than dr(C 2).
Let C = (C k) 1≤k≤p be the cut-points. Using the elementary hyper-rectangles (i.e. cells) in the discretization dr(C), one can build a (finite) subset of descriptions D C ⊆ D which is the set of all possible descriptions (hyper-rectangles) that can be built using these cells. Formally:

D C = { S | S ⊆ dr(C)}. Note that = ∅ ∈ D C since ∅ = D = by definition. Proposition 1 states that (D C ,) is a complete sub-lattice of (D,). Proposition 1. (D C ,) is a finite (complete) sub-lattice of (D,) that is: ∀d 1 , d 2 ∈ D C : d 1 d 2 ∈ D C and d 1 d 2 ∈ D C . Moreover, if C 1 ≤ C 2 are two cut-points sets, then (D C 1 ,) is a (complete) sub-lattice of (D C 2 ,).

Finest discretization for a complete enumeration of relevant extents.

There exist cut points C ⊆ ℘(R) p such that the space (D C ,) holds all relevant extents (i.e. ext[D C] ⊇ R). For instance, if we consider C = (m k [G]) 1≤k≤p , the description space (D C ,) holds all relevant extents. However, is there coarser discretization that holds all the relevant extents? The answer is affirmative. One can show that the only interesting cuts are those separating between positive and negative instances (called boundary cut-points by [START_REF] Fayyad | Multi-interval discretization of continuous-valued attributes for classification learning[END_REF]). We call such cuts, relevant cuts. They are denoted by C rel = (C rel k) 1≤k≤p and we have ext [START_REF] Fayyad | Multi-interval discretization of continuous-valued attributes for classification learning[END_REF]. In the dataset depicted in Fig. 1, relevant cuts are given by C rel = ({2, 3, 4, 5}, {4, 5}). Discretization dr(C rel 2) is depicted in Fig. 2 (center). Anytime enumeration of relevant extents. We design an anytime and interruptible algorithm dubbed RefineAndMine. This method, presented in Algorithm 1, relies on the enumeration of a chain of discretizations on the data space, from the coarsest to the finest. It begins by searching relevant cuts in pre-processing phase (line 2). Then, it builds a coarse discretization (line 3) containing a small set of relevant cut-points. Once the initial discretization built, cotp patterns are mined thanks to MinIntChange Algorithm (line 4) [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]. Then as long as the algorithm is not interrupted (or within the computational budget), we add new cut-points (line 6) building finer discretizations. For each added cut-point (line 8), only new interval patterns are searched for (mined descriptions d are new but their extents ext(d) are not necessarily new) . That is cotp patterns which left or right bound is cut on the considered attribute attr (i.e.

[D C rel] ⊇ R. Formally, for each dimension k, a value c ∈ m k [G] is a relevant cut in C rel k for attribute m k iff: (c ∈ m k [G +] and prev(c, m k [G]) ∈ m k [G -]) or (c ∈ m k [G -] and prev(c, m k [G]) ∈ m k [G +]) where next(c, A) = inf{a ∈ A | c < a} (resp. prev(c, A) = sup{a ∈ A | a < c}) is the following (resp. preceding) element of c in A. Finding relevant cuts C rel k is of the same complexity of sorting m k [G]
d.I attr ∈ {[cut, a), [cut, +∞), [a, cut), (-∞, cut) | a ∈ C cur
attr } with d.I attr is the attr th interval of d). This can be done by a slight modification of MinIntChange method. RefineAndMine terminates when the set of relevant cuts is exhausted (i.e. C cur = C rel) ensuring a complete enumeration of relevant extents R.

The initial discretization (Line 3) can be done by various strategies (see [START_REF] Yang | Discretization methods[END_REF]). A simple, yet efficient, choice is the equal frequency discretization with a fixed number of cuts. Other strategies can be used, e.g. [START_REF] Fayyad | Multi-interval discretization of continuous-valued attributes for classification learning[END_REF]. Adding new cutpoints (Line 6) can also be done in various ways. One strategy is to add a random relevant cut on a random attribute to build the next discretization. Section 5.3 proposes another more elaborated strategy that heuristically guide RefineAndMine to rapidly find good quality patterns (observed experimentally).

Algorithm 1: RefineAndMine

Input: (G, M) a numerical datasets with {G + , G -} partition of G 1 procedure RefineAndMine() 2 Compute relevant cuts C rel 3 Build an initial set of cut-points C cur ≤ C rel 4
Mine cotp patterns in DCcur (and their extents) using MinIntChange According to Proposition 1, the description spaces built on discretizations are complete sub-lattices of the total description space. A similar idea involves performing successive enumeration of growing pattern languages (projections) [START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF].

In our case, it is a successive enumeration of growing complete sub-lattices. For the sake of generality, in the following of this section (D,) denotes a complete lattice, and for all i ∈ N * , (D i ,) denotes complete sub-lattices of (D,) such that D i ⊆ D i+1 ⊆ D. For instance, in RefineAndMine, the total complete lattice is (D C rel ,) while the (D i ,) are (D C cur ,) at each step. Following Sec. 3 notation, the outputted set S i at a step i contains the set of all cotp extents associated to D i . Before giving the formulas of accuracy φ (S i) and specif icity(S i), we give some necessary definitions and underlying properties. At the end of this section, we show how RefineAndMine can be adapted to efficiently compute these two bounds for the case of interval patterns.

Similarly to the interval pattern structure [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF], we define in the general case a pattern structure P = (G, (D,), δ) on the complete lattice (D,) where G is a non empty finite set (partitioned into {G + , G -}) and δ : G → D is a mapping associating to each object its description (recall that in interval pattern structure, δ is the degenerated hyper-rectangle representing a single point). The extent ext and intent int operators are then respectively given by ext :

D → ℘(G), d → {g ∈ G | d δ(g)} and int : ℘(G) → ℘(G), A → g∈A δ(g)
with represents the meet operator in (D,) [START_REF] Ganter | Pattern structures and their projections[END_REF].

Approximating descriptions in a complete sub-lattice

Upper and lower approximations of a pattern. We start by approximating each pattern in D using two patterns in D i . Consider for instance Fig. 3 where D is the space of interval patterns in R 2 while D C is the space containing only rectangles that can be built over discretization dr(C) with C = ({1, 4, 6, 8}, {1, 3, 5, 6}). Since the hatched rectangle d = [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF][START_REF] Buzmakov | Revisiting pattern structure projections[END_REF] × [2, 5.5] ∈ D does not belong to D C , two descriptions in D C can be used to encapsulate it. The first one, depicted by a gray rectangle, is called the upper approximation of d. It is given by the smallest rectangle in D C enclosing d. Dually, the second approximation represented as a black rectangle and coined lower approximation of d, is given by the greatest rectangle in D C enclosed by d. This two denominations comes from Rough Set Theory [START_REF] Pawlak | Rough sets[END_REF] where lower and upper approximations form together a rough set and try to capture the undefined rectangle d ∈ D\D C . Definition 1 formalizes these two approximations in the general case.

Definition 1. The upper approximation mapping ψ i and lower approximation mapping ψ i are the mappings defined as follows: The existence of these two mappings is ensured by the fact that (D i ,) is a complete sublattice of (D,). Theorem 4.1 in [START_REF] Denecke | Galois connections and complete sublattices[END_REF] provides more properties for the two aforementioned mappings. Proposition 2 restates an important property.

ψ i : D → D i , d → c ∈ D i | c d ψ i : D → D i , d → c ∈ D i | d c
Proposition 2. ∀d ∈ D : ψ i (d) d ψ i (d).
The term lower and upperapproximation here are reversed to fit the fact that in term of extent we have ∀d ∈ D:

ext(ψ i (d)) ⊆ ext(d) ⊆ ext(ψ i (d)).
A projected pattern structure. Now that we have the upper-approximation mapping ψ i , one can associate a new pattern structure 8to the pattern space (D i ,). It is worth mentioning, that while extent ext i mapping associated to P i is equal to ext, the intent int i of P i is given by int i :

P i = (G, (D i ,), ψ i • δ)
℘(G) → D i , A → ψ i (int(A)). Note that, the set of cotp patterns associated to P i are given by int i [℘(G +)] = ψ i [int[℘(G +)]].
That is, the upper approximation of a cotp pattern in P is a cotp pattern in P i .

Encapsulating patterns using their upper-approximations. We want to encapsulate any description by knowing only its upper-approximation. Formally, we want some function f :

D i → D i such that (∀d ∈ D) ψ i (d) d f (ψ i (d)).
Proposition 3 define such a function f (called core) and states that the core is the tightest (w.r.t.) possible function f . Proposition 3. The function core i defined by:

core i : D i → D i , c → core(c) = ψ i d ∈ D | ψ i (d) = c
verifies the following property: ∀d ∈ D :

ψ i (d) d ψ i (d) core i (ψ i (d)). Moreover, for f : D i → D i , (∀d ∈ D) d f (ψ i (d)) ⇔ (∀c ∈ D i) core i (c) f (c).
Note that, while the core operator definition depends clearly on the complete lattice (D,), its computation should be done independently from (D,).

We show here how to compute the core in RefineAndMine. In each step and for cut-points C = (C k) ⊆ ℘(R) p , the finite lattice (D C ,) is a sub-lattice of the finest finite lattice (D C rel ,) (since C ≤ C rel). Thereby, the core is computed according to this latter as follows:

Let d ∈ D C with d.I k = [a k , b k) for all k ∈ {1, ..., p}. The left (resp. right) bound of core C (d).I k for any k is equal to next(a k , C k) (resp. prev(b k , C k)) if next(a k , C rel k) ∈ C k (resp. prev(b k , C rel k) ∈ C k). Otherwise, it is equal to a k (resp. b k). Consider the step C = ({2, 3}, {4, 5})
in RefineAndMine (its associated discretization is depicted in Fig. 2 (left)) and recall that the relevant cuts set is C rel = ({2, 3, 4, 5}, {4, 5}). The core of the bottom pattern ⊥ = R 2 at this step is core C cur (⊥) = (-∞, 3) × R. Indeed, there is three descriptions in D C rel which upper approximation is ⊥, namely ⊥, c 1 = (-∞, 4) × R and c 2 = (-∞, 5) × R. Their lower approximations are respectively ⊥, (-∞, 3) × R and (-∞, 3) × R. The join (intersection) of these three descriptions is then core C cur (⊥) = (-∞, 3) × (-∞, +∞). Note that particularly for interval patterns, the core has monotonicity, that is

(∀c, d ∈ D C) c d ⇒ core C (c) core C (d).

Bounding accuracy and specificity metrics

At the i th step, the outputted extents S i contains the set of cotp extents in

P i . Formally, int i [S i] ⊇ int i [℘(G +)]
. Theorem 1 and Theorem 2 gives respectively the bounds accuracy φ and specif icity.

Theorem 1. Let φ : D → R be a discriminant objective quality measure. The accuracy metric is bounded by:

accuracy φ (S i) = sup c∈inti[Si] φ * tpr c , f pr core i (c) -φ * (tpr(c), f pr(c)) Moreover accuracy φ (S i+1) ≤ accuracy φ (S i).
Theorem 2. The specif icity metric is bounded by:

specif icity(S i) = sup c∈inti[Si] |ext(c)| -|ext(core + i (c))|)/(2 • |G|)
where core + i (c) = int i (ext + (core i (c))), that is core + i (c) is the closure on the positive of core i (c) in P i . Moreover specif icity(S i+1) ≤ specif icity(S i).

Computing and updating bounds in RefineAndMine

We show below how the different steps of the method RefineAndMine (see Algorithm 1) should be updated in order to compute the two bounds accuracy and specif icity. For the sake of brevity, we explain here a naive approach to provide an overview of the algorithm. Note that here, core (resp. core +) refers to core C cur (resp. core + C cur).

Compute the initial bounds (line 4).

As MinIntChange enumerates all cotp patterns d ∈ D C cur , RefineAndMine stores in a key-value structure (i.e. map) called BoundPerPosExt the following entries:

ext + (d) : φ(d), φ * tpr d , f pr core(d) , (|ext(d)| -|ext(core + (d))|)/(2 • |G|)
The error-bounds accuracy φ and specif icity are then computed at the end by a single pass on the entries of BoundPerPosExt using Theorems 1 and 2.

Update the bounds after adding a new cut-point (line 8). In order to compute the new error-bounds accuracy φ and specif icity which decrease according to theorems 1 and 2, one need to add/update some entries in the structure BoundPerPosExt. For that, only two types of patterns should be looked for: Adding a new cut-point (line 7). We have implemented for now a strategy which aims to decrease the accuracy φ . For that, we search in BoundPerPosExt for the description d having the maximal value φ * tpr d , f pr core(d) . In order to decrease accuracy φ , we increase the size of core(d) (to potentially increase f pr core(d)). This is equivalent to choose a cut-point in the border region C rel attr \C cur attr for some attribute attr such that cut ∈ d.I attr \core(d).I attr . Consider that we are in the step where the current discretization C cur is the one depicted in Fig. 2. Imagine that the bottom pattern ⊥ = R 2 is the one associated to the maximal value φ * tpr ⊥ , f pr core(⊥) . The new cut-point should be chosen in {4, 5} for attr = 1 (recall that core(⊥) = (-∞, 3) × (-∞, +∞)). Note that if for such description there is no remaining relevant cut in its border regions for all attr ∈ {1, ..., p} then core(d) = d ensuring that d is the top pattern.

Empirical Study

In this section we report quantitative experiments over the implemented algorithms. For reproducibility purpose, the source code is made available in our companion page 9 which also provide a wider set of experiments. Experiments were carried out on a variety of datasets (Tab. 1) involving ordinal or continuous numerical attributes from the UCI repository. First, we study the effectiveness of RefineAndMine in terms of the speed of convergence to the optimal solution, as well as regarding the evolution over time of the accuracy of the provided bounding quality's guarantee. To this end, we report in Fig. 4, the behavior of RefineAndMine (i.e. quality and bounding guarantee) according to the execution time to evaluate the time/quality tradeoff of the devised approach. accuracy as presented in Theorem 1 is the difference between the quality and its bounding measure. The experiments were conducted by running both RefineAndMine and the exhaustive enumeration algorithm (MinIntChange performed considering D C rel) on the benchmark datasets using informedness measure. The exhaustive algorithm execution time enables the estimation of the computational overhead incurred by RefineAndMine. We interrupt a method if its execution time exceeds two hours. Note that, in the experiments, we choose to disable the computation of specificity since the latter is only optional and does not affect the effectiveness of the algorithm. This in contrast to the quality bound computation which is essential as it guides RefineAndMine in the cut-points selection strategy. The experiments give evidence of the effectiveness of RefineAndMine both in terms of finding the optimal solution as well as in providing stringent bound on the top quality pattern in a prompt manner. Two important milestones achieved by RefineAndMine during its execution are highlighted in Fig. 4. The first one, illustrated by the green dotted line, points out the required time to find the best pattern. The second milestone (purple line) is reached when the quality's and the bound's curves meet, this ensures that the best quality was already found by RefineAndMine. Interestingly, we observe that for most configurations the second milestone is attained by RefineAndMine promptly and well before the exhaustive method termination time. This is explained by the fact that the adopted cut points selection strategy aims to decrease as early as possible the accuracy metric. Finally, RefineAndMine requires in average 2 times of the requested execution time (red dotted line) by the exhaustive algorithm. This overhead is mostly incurred by the quality guarantee computation. We illustrate in Fig. 5 the behavior of RefineAndMine in terms of finding diverse set of high quality patterns covering different parts of the dataset. To evaluate how quickly the devised approach finds a diverse patterns set, we run the exhaustive approach over the benchmark datasets to constitute a top-k diverse patterns set heuristically as following: the patterns extracted by the exhaustive search algorithm are sorted according to the quality measure and the best pattern is kept in the returned top-k list. Next, the complete patterns list are iterated over, and the top-k list is augmented by a pattern if and only if its similarity with all the patterns of the current content of the top-k list is lower than a given threshold (a Jaccard index between extents). This process is interrupted if the desired number of patterns of the top-k list is reached or no remaining dissimilar pattern is available. Similar post-processing techniques were used by [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF]. Once this ground truth top-k list is constituted over some benchmark dataset, we run RefineAndMine and measure the specificity quantity of the obtained results set Sol with the top-k list. specificity metric is rewritten in eq. 3 to accommodate the desired evaluation objective of these experiments. Still, it remains upper-bounded by the general formula of specif icity given in Theorem 2. This in order to evaluate at what extent the visited patterns by RefineAndMine well-cover the ground-truth patterns which are scattered over different parts of some input dataset. We report in Fig. 5 both specificity and its bounding guarantee specif icity, as well as, a diversity metric defined in eq. 4. Such a metric was defined in [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF] to evaluate the ability of an approximate algorithm to retrieve a given ground-truth (i.e. diversified top-k discriminant patterns set). This diversity metric relies on a similarity rather than a distance (as in specificity), and is equal to 1 when all patterns of the top-k list are fully discovered.

SpecificityBound Specificity Diversity ExhaustiveTime In most configurations, we notice that RefineAndMine is able to uncover approximately 80% (given by diversity) of the ground truth's patterns in less than 20% of the time required by the exhaustive search algorithm. For instance, in ABALONE 02 M, we observe that after 2 seconds (12% of the required time for the exhaustive algorithm), the patterns outputted by RefineAndMine approximate 92% of the ground truth. Moreover, we observe that the specificity and specif icity decrease quickly with time, guaranteeing a high level of diversity.

For a comparative study, we choose to compare RefineAndMine with the closest approach following the same paradigm (anytime) in the literature, that is the recent MCTS4DM technique [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF]. MCTS4DM is depicted by the authors as an algorithm which enables the anytime discovery of a diverse patterns set of high quality. While MCTS4DM ensures interruptibility and an exhaustive exploration if given enough time and memory budget, it does not ensures any theoretical guarantees on the distance from optimality and on the diversity. We report in Fig. 6 a comparative evaluation between the two techniques. To realize this study, we investigate the ability of the two methods in retrieving the ground truth patterns, this by evaluating the quality of their respective diversified top-k lists against the ground truth using the diversity metric (eq. 4). We observe that RefineAndMine outperforms MCTS4DM both in terms of finding the best pattern, and of uncovering diverse patterns set of high qualities. This is partially due to the fact that our method is specifically tailored for mining discriminant patterns in numerical data, in contrast to MCTS4DM which is agnostic of the interestingness measure and the description language. Note that, to enable a fair comparison of the two approaches, we report the full time spent by the methods including the overhead induced by the post-computation of the diversified top-k patterns set.

Discussions and Conclusion

We introduced a novel anytime pattern mining technique for uncovering discriminant patterns in numerical data. We took a close look to discriminant interestingness measures to focus on hyper-rectangles in the dataset fostering the presence of some class. By leveraging the properties of the quality measures, we defined a guarantee on the accuracy of RefineAndMine in approximating the optimal solution which improves over time. We also presented a guarantee on the specificity of RefineAndMine -which is agnostic of the quality measureensuring its diversity and completeness. Empirical evaluation gives evidence of the effectiveness both in terms of finding the optimal solution (w.r.t. the quality measure φ) and revealing local optimas located in different parts of the data.

This work paves the way for many improvements. RefineAndMine can be initialized with more sophisticated discretization techniques [START_REF] Kurgan | Discretization algorithm that uses class-attribute interdependence maximization[END_REF][START_REF] Fayyad | Multi-interval discretization of continuous-valued attributes for classification learning[END_REF]. We have to investigate additional cut-points selection strategies. While we considered here discriminant pattern mining, the enumeration process (i.e. successive refinement of discretizations) can be tailored to various other quality measures in subgroup discovery. For example, the accuracy bound guarantee definition can be extended to handle several other traditional measures such as Mutual Information, χ 2 and Gini split by exploiting their (quasi)-convexity properties w.r.t. tpr and f pr variables [START_REF] Morishita | Traversing itemset lattice with statistical metric pruning[END_REF][START_REF] Abudawood | Evaluation measures for multi-class subgroup discovery[END_REF]. Other improvements include the adaptation of RefineAndMine for high-dimensional datasets and its generalization for handling additional types of attributes (categorical, itemsets, etc.). The latter is facilitated by the generic notions from Section 5 and the recent works of Buzmakov et al. [START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF].

Aknowledgement. This work has been partially supported by the project ContentCheck ANR-15-CE23-0025 funded by the French National Research Agency, the Association Nationale Recherche Technologie (ANRt) French program and the APRC Conf Pap -CNRS project. The authors would like to thank the reviewers for their valuable remarks. They also warmly thank Loïc Cerf, Marc Plantevit and Anes Bendimerad for interesting discussions.

A Appendix -Proofs

d 1 d 2 = S 1 S 2 = S 1 ∪ S 2 ∈ D C since S 1 ∪ S 2 ⊆ dr(C).
Let us show now that (D C ,) is also a kernel system (preserve join) on (D,).

We have C = (C k) 1≤k≤p . Consider the following case of d 1 and d 2 :

d j = p k=1 I j k with I j k = [a j k , b j k), j ∈ {1, 2} and a j k < b j k ∈ C k
We have: We conclude that (D C ,) is a finite (complete) sub-lattice of (D,) (since any finite lattice is by definition complete).

d 1 d 2 = p k=1 [sup(a 1 k , a 2 k), inf (b 1 k , b 2 k)) Clearly, d 1 d 2 ∈ D C , since the left bound sup(a 1 k , a 2 k) and the right bound inf (b 1 k , b 2 k) remains in C k for all k ∈ p. Note that if sup(a 1 k , a 2 k) > inf (b 1 k , b 2
The second part of the proposition is straight-forward since both posets (D C1 ,) and (D C2 ,) are complete sub-lattice of the same complete lattice (D,) and

D C1 ⊆ D C2 (dr(C 1) ≤ dr(C 2) since C 1 ≤ C 2).

A.2 Proof of Proposition 2

Proof. Proposition 2 is a small result from Theorem 4.1 [START_REF] Denecke | Galois connections and complete sublattices[END_REF]. Since (D i ,) is a complete sub-lattice of (D,), then the mappings ψ * i and ψ * i defined below

ψ * i (d) : D → D, d → ψ i (d) and ψ * i (d) : D → D, d → ψ i (d)
are respectively join-preserving closure (thus extensive d ψ * i (d)) and meetpreserving kernel (thus contractive ψ * i (d) d) operators on (D,) such that they ranges in D C (i.e.

ψ * i [D] = {ψ * i (d) | d ∈ D i } = D i and ψ * i [D] = D i).
Note that D i is the set of fix-points of both mappings according to Theorem 4.1 [START_REF] Denecke | Galois connections and complete sublattices[END_REF].

Recalling that ext is order-reversing concludes the proof

A.3 Proof of Proposition 3

Proof. Let f : D i → D i be a function. We want to show the following property:

(∀d ∈ D) d f (ψ i (d)) ⇐⇒ (∀c ∈ D i) core i (c) f (c)
We start by implication (⇐=). Let d ∈ D, we have:

core i (ψ i (d)) = ψ i x ∈ D | ψ i (x) = ψ i (d) Clearly, we have d ∈ x ∈ D | ψ i (x) = ψ i (d)
by reflexivity of equality. Thus,

d x ∈ D | ψ i (x) = ψ i (d) .
By monotonicity and extensivity of ψ i :

d ψ i (d) ψ i x ∈ D | ψ i (x) = ψ i (d) = core i (ψ i (d)) Since from the hypothesis core i (ψ i (d)) f (ψ i (d)), we conclude that d f (ψ i (d)).
It remains to show the other implication (⇐=). Let c ∈ D i and let be the set

S c = {x ∈ D | ψ i (x) = c}. Since, from the hypothesis, ∀x ∈ S c : x f (ψ i (x)) = f (c) then (f (c
) is an upper bound of S c and the join is the smallest upper bound by definition):

S c f (c) Since f (c) ∈ D i we have ψ i (f (c)) = f (c).
We obtain by monotonicity of ψ i :

core i (c) = ψ i S c ψ i (f (c)) = f (c)
This concludes the demonstration.

A.4 Proof of Theorem 1

Before giving the proof of the theorem, we formulate below the following three Lemmas:

Lemma 1. The richer (D i ,) is, the more constraining are the surrounding approximations. Formally: ∀d ∈ D :

ψ i (d) ψ i+1 (d) d ψ i+1 (d) ψ i (d). Generally speaking: ψ i • ψ i+1 = ψ i and ψ i • ψ i+1 = ψ i . Proof. Without loss of generality, let i = 1. Let us show before that ψ 1 ψ 2 (d) = ψ 1 (d) and ψ 1 ψ 2 (d) = ψ 1 (d) for all d ∈ D.
Since D 1 ⊆ D 2 then for all x ∈ D 1 and for all d ∈ D we have (since ψ 2 and ψ 2 come respectively from kernel and closure operators -See previous proof):

x ψ 2 (d) ⇔ x d and ψ 2 (d) x ⇔ d x Thus: ψ 1 ψ 2 (d) = x ∈ D 1 | x ψ 2 (d) = x ∈ D 1 | x d = ψ 1 (d) ψ 1 ψ 2 (d) = x ∈ D 1 | ψ 2 (d) x = x ∈ D 1 | d x = ψ 1 (d)
The first part of the proposition is a straight-forward corollary of the first properties. Indeed, since ψ 1 and ψ 2 are respectively contractive and extensive, we conclude:

ψ 1 (d) = ψ 1 ψ 2 (d) ψ 2 (d) and ψ 2 (d) ψ 1 ψ 2 (d) = ψ 1 (d) Thus: ψ 1 (d) ψ 2 (d) d ψ 2 (d) ψ 1 (d). Lemma 2. ∀d ∈ D : core i+1 (ψ i+1 (d)) core i (ψ i (d))
. That is, the core of the upper approximation is less restrictive in richer spaces.

Proof. Without loss of generality, let i = 1. Let d ∈ D, we need to show that core 2 (ψ 2 (d)) core 1 (ψ 1 (d)). According to Lemma 1 we have

ψ 1 • ψ 2 = ψ 1 , thus: x ∈ D | ψ 2 (x) = ψ 2 (d) ⊆ x ∈ D | ψ 1 (x) = ψ 1 (d)
Thus:

x ∈ D | ψ 2 (x) = ψ 2 (d) x ∈ D | ψ 1 (x) = ψ 1 (d)
Since ψ 2 is monotonic, we obtain:

ψ 2 x ∈ D | ψ 2 (x) = ψ 2 (d) ψ 2 x ∈ D | ψ 1 (x) = ψ 1 (d)
Since ψ 1 is extensive and ψ 1 • ψ 2 = ψ 1 , we obtain:

ψ 2 x ∈ D | ψ 2 (x) = ψ 2 (d) ψ 1 x ∈ D | ψ 1 (x) = ψ 1 (d)
We conclude that:

core 2 (ψ 2 (d)) core 1 (ψ 1 (d))
This ends the demonstration.

Lemma 3. Using the same notation of Theorem 1,we have:

∀d ∈ D : φ(d) ≤ φ * tpr ψ i (d) , f pr core i ψ i (d)
Proof. By application of Proposition 3 we have with c = ψ i (d) ∈ D i :

c d core i (c)
Thus, since ext operator is order-reversing we obtain:

ext(core i (c)) ⊆ ext(d) ⊆ ext(c)
Thus, since tpr and f pr increase with the extent. We conclude that:

tpr(core i (c)) ≤ tpr(d) ≤ tpr(c) f pr(core i (c)) ≤ f pr(d) ≤ f pr(c)
Since φ is an objective discriminant quality measure we conclude that:

φ(d) = φ * (tpr(d), f pr(d)) ≤ φ * (tpr(c), f pr(d)) ≤ φ * (tpr(c), f pr(core i (c)))
This ends the demonstration.

Theorem 1 proof. Below the proof. Without loss of generality i = 1:

Proof. According to lemma 3 and by considering d a cotp pattern in int[℘(G +)], we have:

φ(d) ≤ φ * tpr ψ 1 (d) , f pr core 1 ψ 1 (d) Since ψ 1 (d) is a cotp pattern induced by (D 1 ,), we have: sup int[℘(G +)] φ(d) ≤ sup c∈ψ1[int[℘(G +)]]
φ * tpr c , f pr core 1 c

The set

ψ 1 [int[℘(G +)]] represent the set of cotp patterns in D 1 , that is int 1 [S 1]
(S 1 represents the set of cotp extents induced by D 1), we obtain:

sup d∈int[℘(G +)] φ(d) ≤ sup c∈int1[S1]
φ * tpr c , f pr core 1 c

Thus, since the left quantity is the same as sup A∈R φ(A), we subtract from both side the quantity sup B∈S1 φ(B) = sup c∈int1[S1] φ * (tpr(c), f pr(c)). Hence:

sup A∈R φ(A) -sup B∈S1 φ(B) ≤ sup c∈int1[S1] φ * tpr c , f pr core 1 (c)) -φ (c)
That is:

accuracy φ (S 1) = sup c∈int1[S1] φ * tpr c , f pr core 1 (c)) -φ * (tpr(c), f pr(c))
It remains to show that accuracy is "order-reversing". From Lemma 1 and Lemma 2 we have for all d ∈ D:

ψ 1 (d) ψ 2 (d) d core 2 (ψ 2 (d)) core 1 (ψ 1 (d))
Thus, by the property of the discriminant to the positive quality measure φ we have for all d ∈ D:

φ * tpr ψ 2 (d) , f pr core 2 ψ 2 (d) ≤ φ * tpr ψ 1 (d) , f pr core 1 ψ 1 (d)
Particularly, for c ∈ D 2 (c is a fix-point for ψ 2) we have:

φ * tpr c , f pr core 2 c ≤ φ * tpr ψ 1 (c) , f pr core 1 ψ 1 (c)
We conclude that:

sup c∈int2[S2] φ * tpr c , f pr core 2 (c) ≤ sup c∈int1[S1] φ * tpr c , f pr core 1 (c)
On the other hand, since D 1 ⊆ D 2 , we have:

-sup c∈D2 φ(c) ≤ -sup c∈D1 φ(c)
that is:

-sup c∈int2[S2] φ(c) ≤ -sup c∈int1[S1] φ(c)
We conclude that:

accuracy φ (S 2) ≤ accuracy φ (S 1)
This concludes the demonstration.

A.5 Proof of Theorem 2

Before giving a demonstration to the theorem, below a necessary lemma: Lemma 4. Using the same notation of Theorem 2, we have:

∀d ∈ int[℘(G +)] : inf c∈inti[Si] |ext(d) ∆ ext(c)| |G| ≤ |ext(ψ i (d))| -|ext(core + i (ψ i (d)))| 2 • |G|
Proof. Since the upper approximations (which is a cotp in P i and thus is in int i [S i]) and the closure of the positive of the core (it is in int i [S i]) are already good approximations for d (but not necessarily the bests), let u = ψ i (d), we have ext(d) ⊆ ext(u). On the other hand, since d core i (u)

core + i (u) (Proposi- tion 3), we have ext(core + i (u)) ⊆ ext(d). Thus, we have |ext(d) ∆ ext(u)| = |ext(u)| -|ext(d)| and in the other hand |ext(d) ∆ ext(core + i (u))| = |ext(d)| - |ext(core + i (u))|. We obtain: inf c∈inti[Si] |ext(d) ∆ ext(c)| ≤ |ext(u)| -|ext(d)| inf c∈inti[Si] |ext(d) ∆ ext(c)| ≤ |ext(d)| -|ext(core + i (u))|
We conclude:

2 × inf c∈inti[Si] |ext(d) ∆ ext(c)| ≤ |ext(u)| -|ext(core + i (u))| Since |G| is a constant, we obtain (with u = ψ i (d)): inf c∈inti[Si] |ext(d) ∆ ext(c)| |G| ≤ |ext(u)| -|ext(core + i (u))| 2 • |G|
This ends the demonstration.

Theorem 2 proof. Without loss of generality, let i = 1.

Proof. According to Lemma 4, we have for a relevant (thus cotp

) extent A ∈ R (int 1 (A) ∈ int 1 [℘(G +)]] and thus int 1 (A) ∈ int 1 [S 1]): inf B∈S1 |A ∆ B| |G| ≤ |ext(int 1 (A))| -|ext(core + 1 (int 1 (A)))| 2 • |G| We conclude thus: sup A∈R inf B∈S1 |A ∆ B| |G| ≤ sup c∈int1[S1] |ext(c)| -|ext(core + 1 (c))| 2 • |G| That is to say: specif icity(S 1) = sup c∈int1[S1] |ext(c)| -|ext(core + 1 (c))| 2 • |G|
It remains to show that specif icity is also order reversing. From Lemma 1 and Lemma 2 we have for all d ∈ D:

ψ 1 (d) ψ 2 (d) d core 2 (ψ 2 (d)) core 1 (ψ 1 (d))
We can conclude directly using Lemma 4 (recall that ext is an order reversing) that for all d ∈ D:

|ext(ψ 2 (d))| -|ext(core 2 (ψ 2 (d)))| 2 • |G| ≤ |ext(ψ 1 (d))| -|ext(core 1 (ψ 1 (d)))| 2 • |G|
Particularity, for c ∈ D 2 (c is a fix-point for ψ 2) we obtain:

|ext(c)| -|ext(core 2 (c))| 2 • |G| ≤ |ext(ψ 1 (c))| -|ext(core 1 (ψ 1 (c)))| 2 • |G|
We conclude that:

sup c∈int2[S2] |ext(c)| -|ext(core + 2 (c))| 2 • |G| ≤ sup c∈int1[S1] |ext(c)| -|ext(core + 1 (c))| 2 • |G|
In other word:

specif icity(S 2) ≤ specif icity(S 1)
This conclude the demonstration.

B Additional Experiments

This section provides additional materials on the performed empirical study to evaluate the effectiveness our proposed method. For the purpose of reproducibility, we maintain a companion page 10 which includes all scripts utilized for experiments. For MCTS4DM scripts please refer to its corresponding companion page 11 .

Note that, for some datasets (CMC and AUTOS), we observe that the exhaustive algorithm execution ends before RefineAndMine guarantees the retrieval of the optimal solution (i.e. second milestone), this stems from the fact that we considered mainly ordinal attributes (i.e. having a small number of dif- ferent values) in the above datasets. Hence involving a small number of relevant cuts making the exhaustive algorithm already a good option, since the latter makes use of the preprocessing phase computing the relevant cuts.

C Preliminary Notions on Order Theory

This appendix, largely inspired by [START_REF] Roman | Lattices and Ordered Sets[END_REF] and [START_REF] Ganter | Formal Concept Analysis[END_REF] books, gives basic definitions and results from order theory. For any set P , ℘(P) denotes the powerset of P . For a function f :

E → F ,the image of set A ⊆ E is denoted f [A] = {f (a) | a ∈ A}.
C.1 Basic definitions Definition 2 (Poset). A partial order on a non-empty set P is a binary relation ≤ on P that is reflexive (∀x ∈ P : x ≤ x), transitive (∀x, y, z ∈ P : x ≤ y, y ≤ z ⇒ x ≤ z), and antisymmetric (∀x, y ∈ P : x ≤ y and y ≤ x ⇒ x = y). The pair (P, ≤) is called a partially ordered set or poset. Two elements x and y from P are said to be comparable if x ≤ y or y ≤ x. Otherwise, they are said to be incomparable and we denote x y. Note 4. For any (finite or infinite) set E, the poset (℘(E), ⊆) is a complete lattice and it is called the Boolean lattice. The meet is the set intersection while the join is the set union. For instance, Fig. 11 (1) depicts the Hasse diagram of the boolean lattice (℘({a, b, c}), ⊆). We have {{a, c}, {a, b}} = {∅, {a}} and {{a, c}, {a, b}} u = {{a, b, c}}. Therefore {{a, c}, {a, b}} = {a} while {{a, c}, {a, b}} = {a, b, c}.

C.2 Closure and Kernel Systems

For any subset S ⊆ P , (S, ≤) forms a sub-poset of (P, ≤) (where the relationship ≤ is restricted in S). However, not any sub-poset (S, ≤) keeps properties of it parent poset (P, ≤). That is, a sub-poset of a lattice could be arbitrary (not a lattice). Moreover, even if (S, ≤) is a complete lattice. It could have different meet and join than its parent poset. Fig. 11 shows three examples of sub-poset of the boolean lattice (℘({a, b, c, d}), ⊆) (from the second left to the right). The second (2) is a sub-poset that is clearly neither a meet-semilattice nor a join-semilattice. The third (3) is a sub-poset that is a lattice, however the new meet and the new join are different from set intersection and set union. Indeed, {a, b} ∧ {b, c} = ∅ and {a, b} ∨ {b, c} = {a, b, c, d}. Finally, the forth (4) sub-poset inherit both meet and join. We say that such the sub-poset is a sub-lattice. ⊆) (1), subposet of (P({a, b, c, d}), ⊆) that is not a lattice (2), subposet of (P({a, b, c, d}), ⊆) that is a lattice (3), sublattice of (P({a, b, c, d}), ⊆) (4).

Definition 8 (Closure and Kernel System). Let (P, ≤) be a complete lattice such that its meet is P and its join is P . Let S ⊆ P be a subset. Poset (S, ≤) is said to be a:

-Closure system or a meet-structure on (P, ≤) iff: -Complete sublattice of (P, ≤) if it is both closure and kernel system. That is both arbitrary meets and arbitrary joins are preserved. Note that top and bottom elements of P (P , ⊥ P) are also in S.

∀A ⊆ S :

Note 5. Reconsider Fig. 11 (1) where now (℘({a, b, c}, ⊆)) is seen as a subposet of (℘({a, b, c, d}, ⊆)). Clearly, for almost all subsets S ⊆ ℘({a, b, c} the intersection and the union are preserved. However, the (℘({a, b, c}, ⊆)) cannot be seen as a closure system in (℘({a, b, c, d}, ⊆)). Indeed, = {a, b, c, d} ∈ ℘({a, b, c}). Thus, (℘({a, b, c}, ⊆)) is only a kernel system in (℘({a, b, c, d}, ⊆)) but not a sub-lattice. Definition 9 (Mapping properties in a poset). A function f : P → P is said to be:

-Extensive. if (∀a ∈ P) a ≤ f (a). -Contractive. if (∀a ∈ P) f (a) ≤ a. -Monotonic. if (∀a, b ∈ P) a ≤ b ⇒ f (a) ≤ f (b). -Idempotent. if (∀a ∈ P) f f (a) = f (a).
The set of fix-points of a function f is given by {a ∈ P | f (a) = a}. A function f is said to be a closure operator if it is extensive, monotonic and idempotent. Dually, it is said to be a kernel operator if it is contractive, monotonic and idempotent. Note 6. Note that there is a strong relationship between closure (resp. kernel) systems and closure (resp. kernel) operators. For instance, if f is closure (resp. kernel) operator in a complete lattice (P, ≤) then (f [P], ≤) is a closure (resp. kernel) system in (P, ≤). Moreover, f [P] is the set of fix-points of f , that is f [P] = {p = f (p) | p ∈ P } (if f is a closure operator, elements of f [P] are called closed elements). On the other hand, one can always associates a closure operator to a closure system (S, ≤). Indeed, the function There is an elegant theorem (see theorem 3) when (S, ≤) is a complete sublattice of (P, ≤). This theorem is the base one we use in the current paper.

Theorem 3 (Theorem 4.1 in [START_REF] Denecke | Galois connections and complete sublattices[END_REF]). Let (P, ≤) be a complete lattice and let (S, ≤) be a complete sub-lattice of (P, ≤). Let be the two functions: Operators φ and ψ are respectively join-preserving closure operator and meet-preserving kernel operator. That is, for all A ⊆ P , we have:

φ A = φ [A] ψ A = ψ [A]
Moreover, the set of fix-points is S = φ[P] = ψ[P].

Note 7. Please note that the closure (resp. kernel) operator is, still, not necessarily meet-preserving (resp. join-preserving). For instance consider the complete sub-lattice of (℘({a, b, c, d}), ⊆) depicted in Fig. 11 (4). One can show that the associated closure operator is not meet-preserving. Indeed, we have φ({a, b}) = {a, b, d} and φ({b, c}) = {b, c, d}, but: The partially ordered set (poset) of all intervals in R is denoted (C(R), ⊆) [START_REF] Ganter | Formal Concept Analysis[END_REF] and is a closure-system in (℘(R), ⊆). That is, the intersection of arbitrary set of intervals is an interval in C(R).

The poset (C(R), ⊆) of intervals is a complete lattice where the meet is set intersection while the join is the convex hull of there union, formally:

∀S ⊆ C(R) : S S S = X ∈ C(R) | S ⊆ X = ch S
There is different types of intervals in C(R). The set H p denotes the set of all possible m-dimensional hyper-rectangles in R p . The poset (H p , ⊆) is again a closure-system in (℘(R p), ⊆).

The fact of (H p , ⊆) is a complete lattice which meet is set-intersection is "inherited"12 from the direct product of m complete lattice (C(R), ⊆) (the direct product of m complete lattice is a complete lattice [10, p. 130]). We have:

∀S ⊆ H p : S S S = X ∈ H p | S ⊆ X
Thus, the meet and the join are formed component-wise. For instance, for hyper-rectangles H j = p k=1 I j k with j ∈ {1, 2} and I j k = [a j k , b j k] we have:

H 1 ∧ H 2 = p k=1 I 1 k ∧ I 2 k = p k=1 [sup(a 1 k , a 2 k), inf (b 1 k , b 2 k)] H 1 ∨ H 2 = p k=1 I 1 k ∨ I 2 k = p k=1 [inf (a 1 k , a 2 k), sup(b 1 k , b 2 k)]
Clearly, ∅ and R p are respectively bottom and top element in (H p , ⊆).

Remark 1. In this paper, we deal with the dual lattice of (H p , ⊆) denoted (H p ,). The order is given by the inverse order ⊇ while the meet and the join are inverted. The top element become ∅ while the bottom element become ⊥ R p .

E Closed Interval Pattern Mining

Algorithm 2 describe the closed interval pattern mining algorithm as proposed in [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]. We slightly change the method to compute the closed on the positives (cotp for short) intervals patterns. Please refer to [START_REF] Kaytoue | Mining gene expression data with pattern structures in fca[END_REF][START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF] for more details.

Fig. 1 :

 1 Fig. 1: (left to right) (1) a labeled numerical dataset. (2) closed c1 vs non-closed c2 interval patterns. (3) cotp d1 vs non cotp d2. (4) meet and join of two patterns.

Fig. 1 (

 1 center-left) depicts the closed interval pattern (hatched rectangle) c 1 = [1, 2] × [1, 3] which is the closure of c 2 = [1, 4] × [0, 3] (non hatched rectangle). Note that since G is finite, the set of all closed patterns is finite and is given by int[℘(G)]. A more concise set of patterns using Relevance theory. Fig. 1 (centerright) depicts two interval patterns, the hatched pattern d 1 = [1, 2] × [1, 3] and the non-hatched one d 2 = [1, 4] × [1, 4]. While both patterns are closed, d 1 has better discriminative power than d 2 since they both cover exactly the same positive instances {g 1 , g 2 , g 3 }; yet, d 2 covers more negative instances than d 1 .

Fig. 1 (

 1 center-right) depicts a non cotp pattern d 2 = [1, 4] × [1, 4] and its closure on the positive d 1 = int(ext + (d 2)) = [1, 2] × [1, 3] which is relevant. Note that not all cotp are relevant. The set of cotp patterns is given by int[℘(G +)]. We call relevant (resp. cotp) extent, any set A ⊆ G s.t. A = ext(d) with d is a relevant (resp. cotp) pattern. The set of relevant extents is denoted by R.

Fig. 2 :

 2 Fig. 2: (left) Discretization dr((C1, C2)) in R 2 with C1 = {2, 3} and C2 = {4, 5} and (right) discretization dr((C2)) in R. Adding a cut point in any C k will create finer discretization.

5 while 7 Add the relevant cut cut to C cur 8 Mine

 578 C cur = C rel and within computational budget do 6 Choose the next relevant cut (attr, cut) with cut ∈ C rel attr \C cur attr new cotp patterns (and their extents) in DCcur 5 Anytime Interval Pattern Mining with Guarantees Algorithm RefineAndMine starts by mining patterns in a coarse discretization. It continues by mining more patterns in increasingly finer discretizations until the search space is totally explored (final complete lattice being (D C rel ,)).

Fig. 3 :

 3 Fig. 3: Description d = [3, 7] × [2, 5.5] in D (hatched) and C = ({1, 4, 6, 8}, {1, 3, 5, 6}). Upper approximation of d in DC is ψC (d) = [1, 8) × [1, 6) (gray rectangle) while lower approximation of d is ψC (d) = [4, 6)×[3, 5) (black rectangle).

Fig. 4 :

 4 Fig.4: Evolution over time of top pattern quality and its bounding guarantee provided by RefineAndMine. Execution time is reported in log scale. The last figure reports that the exhaustive enumeration algorithm was not able to finish within 2 hours

 specif icity(top-k, Sol) = sup d∈top-k inf c∈Sol (|ext(d) ∆ ext(c)|/|G|) (3) diversity(top-k, Sol) = avg d∈top-k sup c∈Sol (Jaccard(ext(d), ext(c)))

Fig. 5 :

 5 Fig.5: Efficiency of RefineAndMine in terms of retrieving a diverse patterns set. Execution time is reported in log scale. The ground-truth for each benchmark dataset corresponds to the obtained Top10 diversified patterns set with a similarity threshold of 0.25 and a minimum tpr of 15% .

Fig. 6 :

 6 Fig.6: Comparative experiments between RefineAndMine (R&M) and MCTS4DM. Execution time is reported in log scale. The ground-truth for each benchmark dataset corresponds to the obtained Top10 diversified patterns set with a similarity threshold of 0.25 and no minimum support size threshold.

A. 1

 1 Proof of Proposition 1 Proof. By construction, (D C ,) is a closure system (preserve meet) on (D,). Indeed, let d 1 and d 2 be in D C we have ∃S 1 , S 2 ⊆ dr(C) such that d 1 = S 1 and d 2 = S 2 . Thus:

 k) for at least one k ∈ {1..p}, then d 1 d 2 = = ∅ ∈ D C . The two remaining cases of interval where we use +∞ and -∞ can be handled in, almost, the same way.

Fig. 7 :

 7 Fig. 7: Evolution over time of top pattern quality and its bounding guarantee provided by RefineAndMine (Part I).

Fig. 8 :

 8 Fig. 8: Evolution over time of top pattern quality and its bounding guarantee provided by RefineAndMine (Part II).

Fig. 10 :

 10 Fig. 10: Comparative experiments between RefineAndMine (R&M) and MCTS4DM

Note 1 .Note 2 .Fig. 11 (1)

 12111 Fig. 11 (1) depicts the Hasse diagram of the poset (℘({a, b, c}), ⊆).

Note 3 .

 3 Any finite lattice is by definition complete. Moreover, any complete lattice (P, ≤) is bounded. That is the bottom element P = ∅ = ⊥ and P = ∅ = exists in P . Note also that for a, b ∈ P with (P, ≤) a lattice, ∧{a, b} = a ∧ b and ∨{a, b} = a ∨ b are seen as associative, commutative and idempotent binary operator (i.e. lattice are seen also as algebraic structures).

4)Fig. 11 :

 411 Fig.11: From left to right Hasse diagram of: the lattice (P({a, b, c}), ⊆) (1), subposet of (P({a, b, c, d}), ⊆) that is not a lattice (2), subposet of (P({a, b, c, d}), ⊆) that is a lattice (3), sublattice of (P({a, b, c, d}), ⊆) (4).

P-

 A ∈ S Poset (S, ≤) is a complete lattice where the meet and the join are given by: ∀A ⊆ S : S A = P s ∈ S | (∀a ∈ A) a ≤ s Kernel system or a join-structure on (P, ≤) iff: ∀A ⊆ S : P A ∈ S Poset (S, ≤) is a complete lattice where the meet and the join are given by: ∀A ⊆ S : S A = P s ∈ S | (∀a ∈ A) s ≤ a S A = P A ⊥ P ∈ S

φ

 : P → P, P → φ(p) = {s ∈ S | p ≤ s} is a closure operator in (P, ≤) with φ[P] = S. Dually, one can also associates a kernel operator to a kernel system (S, ≤). The function ψ : P → P, P → ψ(p) = {s ∈ S | s ≤ p} is a kernel operator in (P, ≤) with ψ[P] = S.

φ

 : P → P, P → φ(p) = {s ∈ S | p ≤ s} ψ : P → P, P → ψ(p) = {s ∈ S | s ≤ p}

φ

 ({a, b} ∩ {b, c}) = φ({b}) = {b} = {b, d} = {a, b, d} ∩ {b, c, d} = φ({a, b}) ∩ φ({b, c}) D Complete lattice of p-dimensional hyper-rectangles Definition 10. An interval I ⊆ R is a convex subset of R, that is: ∀x, y ∈ I, ∀z ∈ R : x ≤ z ≤ y =⇒ z ∈ I

Definition 11 .

 11 For example: (-∞, a], (-∞, a), (a, b), [a, b], [a, b),... with a, b ∈ R. Note that the top (greatest) element of(C(R), ⊆) is R while the bottom (smallest) element is ∅. For two intervals [a 1 , b 1] and [a 2 , b 2] in (C(R), ⊆) with a < b, we have: [a 1 , b 1] ∧ [a 2 , b 2] = [sup(a 1 , a 2), inf (b 1 , b 2)] [a 1 , b 1] ∨ [a 2 , b 2] = [inf (a 1 , a 2), sup(b 1 , b 2)]With sup and inf refer to the greatest and smallest element in R wrt. natural order ≤. This computation of ∧ and ∨ is generalizable for other types of intervals. Let p ∈ N * , an p-dimensional hyper-rectangle H ⊆ R p is the result of the product of m intervals in C(R). Formally: H = p k=1 I k with ∀k ∈ {1..m} : I k ∈ C(R)

Algorithm 2 : 7 c

 27 MinIntChangeInput: (G, M) a numerical datasets with {G + , G -} partition of G and|M| = p C = (C k) 1≤k≤p cut points sets per dimension Output: cotp patterns c ∈ DC verifying d c 1 procedure MinIntChange C (d, i, f) 2 yield(d)// yield cotp pattern 3 for j ∈ {i, ..., p} do4 fstart ← 0 if j > i else f 5 for fnew ∈ {fstart, 1} do 6 dnew ← minChange C (d,j,fnew) ← intC {g ∈ ext(dnew) ∩ G + | M(g) ∈ d} 8 if c = and (∀k ∈ {1, ..., j -1}) c.I k = d.I k then 9MinIntChange C (c,j,fnew)10 function minChange C (d, j, f) 11 dnew ← d // d = 1≤i≤k [a k , b k) ∈ DC 12 if f = 0 then13 dnew.Ij ← [next(aj, Cj), bj) // next(aj, Cj) = inf {c ∈ Cj | aj < c} 14 else 15 dnew.Ij ← [aj, prev(bj, Cj) // prev(bj, Cj) = sup{c ∈ Cj | c < bj} 16 return dnew // dnew.Ij could be empty (i.e. dnew = = ∅) 17 function intC (S) 18 for k ∈ 1, ..., p do 19a k ← sup c ∈ C | c ≤ inf {m k (g) | g ∈ S} // sup(∅) = -∞ 20 b k ← inf c ∈ C | c > sup{m k (g) | g ∈ S} // inf (∅) = +∞ 21 d.I k ← [a k , b k) if a k ∈ C else (-∞, b k)22 return d 23 MinIntChange(d, 1, 0) // Start by a minLeftChange on the 1 st attribute

 1. The new cotp patterns mined by RefineAndMine, that is those which left or right bound on attribute attr is the added value cut. Visiting these patterns will add potentially new entries in BoundPerPosExt or update ancient ones. 2. The old cotp which core changes (i.e. becomes less restrictive) in the new discretization. One can show that these patterns are those which left bound is prev(cut, C cur attr) or right bound is next(cut, C cur attr) on attribute attr. Visiting these patterns will only update ancient entries of BoundPerPosExt by potentially decreasing both second and third value.

Table 1 :

 1 Benchmark datasets and their characteristics: number of numerical attributes, number of rows, number of all possible intervals, the considered class and its prevalence

	Dataset	num rows intervals class α Dataset	num rows intervals class α
	ABALONE 02 M 2 4177 56 × 10 6 M 0.37 GLASS 02 1	2 214 161 × 10 6 1 0.33
	ABALONE 03 M 3 4177 74 × 10 9 M 0.37 GLASS 04 1	4 214 5 × 10 15	1 0.33
	CREDITA 02 +	2 666 1 × 10 9 + 0.45 HABERMAN 03 2 3 306 47 × 10 6	2 0.26
	CREDITA 04 +	4 666 3 × 10 15 +	

Table 2 :

 2 Benchmark datasets and their characteristics: number of numerical attributes, number of rows, number of all possible intervals, the considered class and its prevalence

	Dataset	num rows intervals class α Dataset		num rows intervals class α
	ABALONE 02 M 2 4177 56 × 10 6	M 0.37 CREDITA 02 +	2 666 1 × 10 9	+ 0.45
	ABALONE 03 M 3 4177 74 × 10 9	M 0.37 CREDITA 03 +	3 666 11 × 10 12 + 0.45
	ABALONE 04 M 4 4177 220 × 10 15 M 0.37 CREDITA 04 +	4 666 3 × 10 15	+ 0.45
	ABALONE 05 M 5 4177 252 × 10 21 M 0.37 GLASS 02 1		2 214 161 × 10 6 1 0.33
	AUTOS 05 0		5 199 46 × 10 12	0 0.32 GLASS 04 1		4 214 5 × 10 15	1 0.33
	AUTOS 06 0		6 199 786 × 10 15 0 0.32 GLASS 06 1		4 214 97 × 10 21 1 0.33
	BREAST 07 4	7 683 1 × 10 12	4 0.35 HABERMAN 03 2 3 306 47 × 10 6	2 0.26
	BREAST 09 4	9 683 3 × 10 15	4 0.35 SONAR 03 R	3 208 4 × 10 12	R 0.47
	CMC 05 1		4 1473 7 × 10 6	1 0.43 SONAR 04 R	4 208 78 × 10 15 R 0.47
	CMC 06 1		5 1473 21 × 10 6	1 0.43 SONAR 05 R	5 208 1 × 10 21	R 0.47
		QualityBound	Quality		ExhaustiveTime	ConfirmationTime	BestFoundTime
	Quality	10 -2 0.00 0.25 0.50 0.75 1.00	10 -1	10 0		10 1	10 2	Quality	10 -2 10 -1 10 0 0.00 0.25 0.50 0.75 1.00	10 1	10 2	10 3	10 4
			Time (s) -ABALONE 02 M				Time (s) -ABALONE 03 M
	Quality	10 -1 0.00 0.25 0.50 0.75 1.00	10 0	10 1	10 2	10 3	10 4	Quality	10 -1 0.00 0.25 0.50 0.75 1.00	10 0	10 1		10 2	10 3	10 4
			Time (s) -ABALONE 04 M				Time (s) -ABALONE 05 M
	Quality	10 -2 0.00 0.25 0.50 0.75 1.00	10 -1	10 0		10 1	10 2	Quality	10 -1 0.00 0.25 0.50 0.75 1.00	10 0		10 1		10 2	10 3
			Time (s) -AUTOS 05 0				Time (s) -AUTOS 06 0

 Definition 4 (Upper and Lower bound). Let p be an element in P . p is said to be an upper bound of S if ∀s ∈ S : s ≤ p. Dually, p is said to be a lower bound of S if ∀s ∈ S : p ≤ s. The set of all upper (resp. lower) bounds of S in P is denoted by S u (resp. S). They are given by:S u = {p ∈ P | (∀s ∈ S) s ≤ p} S = {p ∈ P | (∀s ∈ S) p ≤ s} Note that, particularly, ∅ = ∅ u = P .Definition 5 (Smallest and Greatest element). An element s * ∈ S is said to be the smallest element in S iff ∀s ∈ S : s * ≤ s Dually, An element s * ∈ S is said to be the greatest element in S iff ∀s ∈ S : s ≤ s *The smallest and the greatest elements in S are unique if they exist. Definition 6 (Supremum and infimum). If the set of upper bounds S u has it smallest element it is called the supremum or the join of S and it is denoted by sup(S) or S (= S u). Dually, if the set of lower bounds S has the greatest element, it is called the infimum or the meet of S and it is denoted by inf (S) or S (= S).

Definition 7 (Lattice). A poset (P, ≤) is said to be a meet-semilattice (resp. join-semilattice) if for all x, y ∈ P the infimum (resp. supremum) of {x, y} exists in P . A poset P is said to be a lattice if it is both meet-semilattice and join-semilattice. A lattice (P, ≤) is said to be complete if for any subset S ⊆ P has it meet S and a join S in P (including the empty set).

The metrics names fall under the taxonomy of[START_REF] Zilberstein | Using anytime algorithms in intelligent systems[END_REF] for anytime algorithms.

The specif icity is actually a directed Hausdorff distance[START_REF] Huttenlocher | Comparing images using the hausdorff distance[END_REF] from R to Si.

Let E be a set, a partition P2 of E is finer than a partition P1 (or P1 is coarser than P2) and we denote P1 ≤ P2 if any subset in P1 is a subset of a subset in P2.

Pi is said to be a projected pattern structure of P by the projection ψi[START_REF] Buzmakov | Revisiting pattern structure projections[END_REF].

Companion page: https://github.com/Adnene93/RefineAndMine

https://github.com/Adnene93/RefineAndMine

https://github.com/guillaume-bosc/MCTS4DM

Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

In fact, one can use an order-embedding f : (C(R) p , ≤) -→ (℘(R p), ⊆) (where ≤ is the product order[28, p. 3]) such that f ((I k) 1≤k≤p) = p k=1 I k to build properly the complete lattice f [C(R) p] = Hp.

https://github.com/Adnene93/RefineAndMine

SpecificityBound

Specificity Diversity ExhaustiveTime