
HAL Id: hal-01874947
https://hal.science/hal-01874947

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Garbage Collection Evaluation Infrastructure for the
Cog VM

Sophie Kaleba, Clément Béra, Eliot Miranda

To cite this version:
Sophie Kaleba, Clément Béra, Eliot Miranda. Garbage Collection Evaluation Infrastructure for the
Cog VM. International Workshop on Smalltalk Technologies, Sep 2018, Cagliari, Italy. �hal-01874947�

https://hal.science/hal-01874947
https://hal.archives-ouvertes.fr


Garbage Collection Evaluation Infrastructure
for the Cog VM

Sophie Kaleba
Masters student
Université Lille 1
Lille, France

sophie.kaleba@etudiant.univ-lille1.fr

Clément Béra
Software Languages Lab
Vrije Universiteit Brussel

Brussel, Belgium
clement.bera@vub.ac.be

Eliot Miranda
Virtual Machine Architect

Feenk
San Francisco, California
eliot.miranda@gmail.com

Abstract
One of the next steps to improve Cog, the default vir-
tual machine for multiple programming languages in the
Smalltalk family, such as Pharo, Squeak and Newspeak,
is to decrease garbage collection pause times. Refer-
ence garbage collection algorithm implementations and
a benchmarking infrastructure are required to evaluate
the performance of a new algorithm and compare it. Cog
features a Mark-Compact algorithm, used in production,
to which we added a Mark-Sweep algorithm, providing
two reference algorithms. Benchmarks are built using
two different approaches. Firstly, we turned code from
memory intensive deployed applications into benchmarks
to simulate real-world applications. Secondly, we built a
configurable benchmark which simulates an application
with different heap properties to be able to stress specific
aspects of the memory management. We then evaluated
the two reference algorithms on the infrastructure built
to obtain reference benchmark results.

Keywords Benchmark, Garbage Collector, Virtual Ma-
chine, Managed Runtime

1 Introduction
The Cog virtual machine (VM), the default VM for
multiple programming languages such Pharo [BDN+09],
Squeak [BDN+07] and Newspeak [BvdAB+10], currently
features in production a stop-the-world Mark-Compact
algorithm as the full garbage collector (GC) algorithm.
The algorithm has a high throughput but a high pause
time during which the application is not responsive (the
GC interrupts the application for multiple seconds on
modern Macbooks when using multiple Gbs heaps). For
interactive applications, a new algorithm is required with
a smaller pause time.
Building and tuning a new GC algorithm requires

evaluating its behavior. A benchmarking infrastructure
is required to do so. To build GC benchmarks, we took
two approaches.
First, we contacted multiple companies looking for

production use of the Cog VM with memory intensive
applications (>1Gb heaps) and built benchmarks out of
one of the deployed applications. As an example, we will

discuss in the paper in Section 2.1 the Moose benchmarks
implemented with the help of Feenk1. Part of the busi-
ness of Feenk consists in analysing software written in
multiple programming languages using the open-source
framework Moose [DGLD05, NDG05]. Using Moose, the
application parses the software to analyse into a model,
performs analysis on it and lastly releases the model.
Models currently used are encoded in up to 11Gb. This
behaviour was turned into three benchmarks, growing,
accessing and shrinking the heap.
Second, we implemented a configurable benchmark:

the idea is to set-up specific heap characteristics that will
stress the garbage collector. A set of options is available
to the user to tune the type of allocated objects and
some of their features. These options can be associated
with different heap states: growing, stable or shrinking,
like in our other approach. We ran two benchmark cases
with this tool: large objects in heap and majority of data
objects in heap. This implementation and the use-cases
are detailed in Section 2.2

To evaluate a new algorithm, we also need to compare
it to reference implementations. The Cog VM features a
Mark-Compact algorithm used in production. The com-
paction phase is quite specific since it slides objects down
in memory while handling pinned objects and spends
time updating references to point to their eventual loca-
tions. In addition to this algorithm, we implemented a
Mark-Sweep, which does not move objects in memory
and is thus quicker to perform. Section 3 details the two
implementations.

We evaluated both algorithms on the benchmarks we
built to provide results of the reference algorithms on
the infrastructure built.
We conclude the paper by discussing some related

work, the GC benchmarks suites for Java and the ACDC
benchmarks, and some future work.

2 Building Benchmarks
Experience with applications deployed on Cog shows
that memory intensive applications often exhibit three
distinct regimes. As an application builds a new data

1https://feenk.com/



structure the heap grows, and the garbage collector
should be biassed to allow growth, rather than to favour
performing garbage collection when the current size of
the heap is reached. As an application processes the
data structure it has built the heap is stable, at least
in its size. If the application then releases significant
storage and continues processing, the garbage collector
should favour reclamation, and it is advantageous if it
attempts to free up memory segments and return them
to the OS. We have identified, therefore, growing, stable
and shrinking regimes, and these are useful abstractions
of real application behaviour, which are helpful in de-
signing meaningful benchmarks and in providing tuning
mechanisms to the system programmer.
To build GC benchmarks, we took two approaches.

We asked companies for their deployed memory intensive
applications and turned them into benchmarks. Multiple
benchmarks in this category include closed-source code.
In Section 2.1, we describe how we turned a specific ap-
plication into a benchmark with the help of the company
(this specific benchmark does not include closed-source
code). Then, to stress the GC on specific aspects, we
built a configurable benchmark that based on the con-
figuration emulates heaps with different properties.

2.1 Moose benchmark

Part of the business of Feenk consists in analyzing large
software systems. To do so, the application parses a mse
file into a model (mse is the default file format supported
by Moose), performs some analysis, and then releases the
model and generates analysis results. For business, the
application analyzes closed-sourced application of com-
panies. To build an open-source benchmark, we analyse
open-source applications instead of closed-source ones.

We built four different benchmarks that fall into three
categories: growing, stable and shrinking heaps. The
benchmarks were built on top of the stable Moose im-
age2.

Growing heap. The growing heap benchmarks increase
the heap size as they are performed, mainly creating
objects. We built two benchmarks:

∙ LoadFromMSE : parses a mse file into a moose
model, effectively loading a graph of objects. This
is the only benchmark not taking a moose model
as a parameter.

∙ ExpandProperties: computes all interesting prop-
erties of the model, discarding properties rarely
used or consuming too much memory, cacheing
common properties not using too much memory.
It effectively loads a graph of objects connected in
many points to the original graph.

2http://www.moosetechnology.org/

Stable heap. The stable heap benchmarks perform ran-
dom memory accesses in a heap whose size remains
approximately the same. We built one benchmark, Ex-
pandPropertiesWithCache, which computes all interest-
ing properties of the model, common properties with low
memory footprint are already cached and other proper-
ties are discarded once computed.

Shrinking heap. The shrinking heap benchmark frees
part of the heap and performs a GC. We built only one
benchmark, Release, which removes references to the
graph of objects and performs three garbage collections.

2.2 Configurable Benchmark

Running a new memory management strategy on real-
world applications can give an early insight into its
performance. Being able to configure a specific set-up
allows stressing specific behaviors of the new implemen-
tation. This configurable benchmarking tool has been
implemented to emulate specific heap characteristics
and states potentially to trigger edge cases. The user
has available a set of twelve options which can be sorted
into two categories:

Heap characteristics. A first set of options allows the
user to modify the heap characteristics, i.e. the amount
and sizes of objects to allocate and the possible interac-
tions with these objects.

∙ wantedAllocatedSize: the cumulative size (in Kb)
of objects that will be allocated.

∙ minSize and maxSize: the minimum and maximum
sizes of objects.

∙ dataObjects, weakStructures, classes, compiledMeth-
ods, ephemerons: the ratio for each of these object
types.

∙ accessObjects: if set to True, access half of the
objects allocated on the heap .

∙ readOnly: if set to False, modify half of the objects
allocated on the heap upon accessing.

Heap state. The heap state can also be tuned. Once
objects have been allocated on the heap according to
the selected options, it is possible to decide whether to
allocate more objects (growing heap), to release objects
that have been previously allocated (shrinking heap),
or to stay in the current state and potentially access
and modify objects that have been previously allocated
(stable heap). These options echo the 3 benchmarks de-
picted in Section 2.1

We built two benchmarks out of the potential config-
urations:

∙ LargeObjects: Only large objects with a size greater
than 65535 32-bit machine words are allocated on

2



the heap. These objects are allocated directly in
the old space.

∙ Data0bjects: The majority of the objects that will
be allocated on the heap will be Data objects,
which will only contain one-byte-sized integers in
this benchmark. Data Objects are raw data objects,
which can be used, for example, to store characters,
restricted-range integers, floats, etc: the garbage
collector will not go through their slots in the
marking phase.

3 Reference Implementations
To evaluate new full GC algorithms, we need to compare
it against existing algorithms. Two of the most common
GC algorithms are Mark-Compact and Mark-Sweep. We
describe here the current Mark-Compact implementa-
tion, which has been in production for the past few years,
and an implementation of Mark-Sweep we introduced as
a reference earlier this year.

Cog is written to allow new object representations to
be written and used. Spur [MB15] is the second object
representation written for Cog. Spur avoids the cost of
an explicit read barrier to follow forwarding pointers on
most accesses by handling the forwarding check on the
failure side of cached dynamic message send; any send
to a forwarded object will fail, and forwarding pointers
in the current frame are followed on the failure side
of lookup. Hence in Spur all objects have room for a
forwarding pointer. This is key to the implementation
of the Mark-Compact algorithm.

3.1 Mark-Compact

Cog’s Mark-Compact algorithm, named SpurPlanning-
Compactor, implements the classic planning compaction
algorithm for Spur. It uses the fact that there is room
for a forwarding pointer in all objects to store the even-
tual position of an object in the first field. It therefore
first locates a large free chunk, or the Eden space or a
memory segment, to use as the savedFirstFieldsSpace,
which it uses to store the first fields of objects that will
be compacted, these fields being overwritten by each
object’s eventual position. It then makes at least three
passes through the heap.
The first pass plans where live movable objects will

go, copying the first field to the next slot in savedFirst-
FieldsSpace, and setting the forwarding pointer to point
to the object’s eventual location. The second pass up-
dates all pointers in live pointer objects to point to
objects’ final destinations, including the fields in saved-
FirstFieldsSpace. The third pass moves objects to their
final positions, unmarking objects, and restoring saved
first fields as it does so. If the forwarding fields of live
objects in the to-be-moved portion of the entire heap

won’t fit in savedFirstFieldsSpace, then additional passes
can be made until the entire heap has been compacted.
When snapshotting (saving the system to a file for later
resumption, see below) multiple passes are made, but
when doing a normal GC only a single pass is made.

Each pass uses a three finger algorithm, a simple
extension of the classic two finger algorithm [Che70]
with an extra middle finger used to refer to the lowest
pinned object, if any, between the to and from fingers.
Objects are moved down, starting at the first free object
or chunk, provided that they fit below the lowest pinned
object above the to finger. When an object won’t fit the
to finger is moved above the pinned object and the third
finger is reset to the next pinned object below the from
finger, if any. The scheme preserves object order amongst
movable objects, making no attempt to fit objects in any
gaps left below pinned objects.

3.2 Mark-Sweep

Cog’s Mark-Sweep algorithm, named SpurSweeper, is a
sweep-only algorithm. Setting the compactor to Spur-
Sweeper effectively changes the fullGC to a mark-sweep
non-moving algorithm. It iterates over all objects in old
space in linear order. Each time an unmarked object or
a free chunk is met, it coalesces it with subsequent ones
and updates the free lists with a new larger free chunk.

3.3 Mark-SelectiveCompact

We added a new algorithm designed to reduce the pause
time due to compaction. This algorithm, to be described
fully elsewhere, chooses sparsely populated segments and
compacts these to an empty segment to reduce fragmen-
tation. It relies on Spur’s implicit following of forwarding
pointers to update references to moved objects without
requiring a complete pass over the heap.

3.4 Snapshot discussion

On top of the Cog VM, snapshots can be performed to
persist the given state of the heap. Since snapshots are
persisted, they should use a low amount of memory to
avoid using too many bytes on disk. Non compacting algo-
rithms, such as the Mark-Sweep, or algorithms compact-
ing only part of the heap, such as garbage first [DFHP04],
are a problem in this context. The heap, when collected
by the Mark-Sweep, has a lot of free chunks when the
heap size varies a lot leading to a large snapshot. How-
ever, the non compacting algorithm also has interesting
advantages, for example lower garbage collection pause
times.
To be able to have a garbage collector with a low

pause time and still be able to perform snapshots effi-
ciently, we designed a hybrid compactor solution which
includes both SpurSelectiveCompactor and SpurPlan-
ningCompactor. The VM tells the hybrid compactor if

3



the garbage collection is to be performed for snapshot or
not, and the compactor chooses to apply one algorithm
or the other to achieve either a low compaction pause
time or a snapshot with a minimised memory footprint.

4 Reference Results
We evaluated both reference algorithms on the bench-
marks built.

In the results, the compaction time includes the time
spent in the compact phase in the Mark-Compact and in
the sweep phase in the Mark-Sweep. Total full GC time
is the total time spent in full GCs, including compaction
time. Scavenge time is the time spent in scavenging, i.e.,
garbage collection of young objects only. Total execution
time is the total execution time, including scavenge and
full GC time. Scavenge time is drastically smaller with
a larger Eden, leading to better overall performance.

4.1 Moose Benchmarks

Set-up. The Moose benchmark evaluation was performed
on a MacBook pro running Mac OS 10.11.6, with a 2.9
Ghz Intel Core i5 processor, and 8 Gb of 1867MHz
DDR3 RAM. The Mac VM was compiled using Apple
LLVM version 8.0.0 (clang-800.0.38). The compiled VMs
are native 64 bit applications with 64-bit objects and
pointers.
We evaluated the Moose benchmarks using the refer-

ence Mark-Compact and Mark-Sweep algorithms and
by analysing the wildfly code base3. We distinguish four
configurations:

∙ Sweep: VM with standard GC parameters and the
Mark-Sweep algorithm.

∙ Compact : VM with standard GC parameters and
the Mark-Compact algorithm.

∙ Compact-16 : VM with standard GC parameters,
except Eden size which is 16 times larger, and the
Mark-Compact algorithm.

∙ Sweep-16 : VM with standard GC parameters, ex-
cept Eden size which is 16 times larger, and the
Mark-Sweep algorithm.

With a larger Eden, more overall memory is used (in our
case an extra 90 Mb), but scavenge time is expected to be
lower. The Spur scavenger is an extended implementation
of Ungar’s classic generation scavenger [Ung84] and the
scavenge time is proportional to the number of surviving
objects.

The results are shown in Figure 1 and 2.

LoadFromMSE. The LoadFromMSE benchmark grows
the memory by around 700Mb. Compaction time is
smaller for the sweep algorithm, making the benchmark

3http://www.wildfly.org/

a little bit faster in the Mark-Sweep, which is to be ex-
pected since Sweep does not need to waste time updating
pointers because objects are not moved in memory.

ExpandProperties. The ExpandProperties benchmark
grows the memory by around 1 Gb. Compaction time
is a little bit better with the sweep algorithm as for the
previous benchmark, but execution time is much worse.
We believe this is due to worse locality of objects. With
a larger Eden, scavenge time is much smaller and the
execution time is a bit faster due to improved object
locality.

ExpandPropertiesWithCache. The ExpandProperties
WithCache benchmark does not increase the overall mem-
ory size. Since the compacting GC has compacted the
heap before starting the benchmark, there is enough
room to allocate the large objects required by the bench-
mark (large objects are allocated directly in old space)
and there is no need for a full GC during the benchmark.
However, with the sweep algorithm, there are multiple
small free memory chunks which are not big enough
to hold all the requested large objects, so a full GC is
required. In addition, execution time is worse, as for the
previous benchmark. With a larger Eden, the scavenge
time is much smaller and the execution time is much
faster due to improved object locality.

Release. The Release benchmark releases all the graphs.
With the compacting GC, memory goes back to its orig-
inal size. With Sweep, multiple memory segments are
left with a few live objects, preventing the VM from
returning those segments to the OS. Hence, the mem-
ory decreases drastically, but not to the original size.
Compaction time is much faster with Sweep, but as we
have discussed, for less efficiency. Changing Eden size
has little if any impact here, since it’s essentially a pure
full GC benchmark.

4.2 Configurable Benchmark

Set-up. The Configurable Benchmark evaluation was
performed on an Asus Zenbook running Ubuntu 18.04
LTS, with a 2.2 Ghz processor Intel Core i5, and 8 Gb
of 1600MHz DDR3 RAM. The Linux VM was compiled
using GCC version 5.4.0. The compiled VMs are 32-bit
(x86) applications with 32-bit objects and pointers. 4

We evaluated the configurable benchmarks using the
reference Mark-Compact and Mark-Sweep algorithms
and by generating specific heap configurations. The re-
sults are shown in Figure 3 and 4.

4Spur uses a common object header for both 32-bit and 64-bit
versions, so 32-bit objects still have a 64-bit header and are all
aligned on a 64-bit boundary.

4



0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

Sweep	 Compact	 Compact-16	 Sweep-16	

Compac3on	

Full	GC		

Scavenge	

Execu3on		

(a) LoadFromMSE

0	

50000	

100000	

150000	

200000	

250000	

Sweep	 Compact	 Compact-16	 Sweep-16	

Compac2on	

Full	GC		

Scavenge	

Execu2on		

(b) ExpandProperties

0	

100000	

200000	

300000	

400000	

500000	

600000	

Sweep	 Compact	 Compact-16	 Sweep-16	

Compac4on	

Full	GC		

Scavenge	

Execu4on		

(c) ExpandPropertiesWithCache

0	

200	

400	

600	

800	

1000	

1200	

Sweep	 Compact	 Compact-16	 Sweep-16	

Compac3on	

Full	GC		

Scavenge	

Execu3on		

(d) Release

Figure 1. Moose benchmark results piled up (in ms).

Total Scavenge Total Full Compaction Initial Final
Benchmark Exec. time time GC time time Heap size Heap size

(ms) (ms) (ms) (ms) (Mb) (Mb)

LoadFromMSE

Sweep 159821 ± 2218 73599 ± 1281 10863 ± 726 1398 ± 91 193 ± 0 959 ± 9.69
Compact 162305 ± 2790 72150 ± 782 14091 ± 972 4661 ± 289 193 ± 0 909 ± 9.69

Compact-16 96043 ± 540 14279 ± 124 12440 ± 217 5575 ± 36 283 ± 0 1055 ± 0
Sweep-16 91721 ± 1131 13862 ± 49 9352 ± 73 1208 ± 9 283 ± 0 988 ± 0

ExpandProperties

Sweep 232940 ± 1287 55497 ± 238 12240 ± 285 1178 ± 6.66 959 ± 9.69 1888 ± 0
Compact 183314 ± 13090 53165 ± 2343 12496 ± 197 3775 ± 108 909 ± 9.69 1938 ± 0

Compact-16 100315 ± 138 9372 ± 75 9466 ± 87 3301 ± 31 1055 ± 0 2028 ± 0
Sweep-16 107914 ± 216 9714 ± 34 9384 ± 107 864 ± 5 988 ± 0 2011 ± 0
Sweep 510013 ± 5812 64234 ± 823 23225 ± 100 2011 ± 10 1888 ± 0 1888 ± 0

ExpandProperties Compact 408169 ± 20444 64492 ± 1234 0 ± 0 0 ± 0 1938 ± 0 1938 ± 0
WithCache Compact-16 105389 ± 1067 6467 ± 47 3019 ± 24 937 ± 6 2028 ± 0 2028 ± 0

Sweep-16 114325 ± 403 6323 ± 23 2347 ± 13 209 ± 6 2011 ± 0 2011 ± 0

Release

Sweep 606 ± 16 0 ± 0 605 ± 16 316 ± 12 1888 ± 0 534 ± 58
Compact 1092 ± 2 0 ± 0 1092 ± 1 806 ± 3 1938 ± 0 193 ± 0

Compact-16 1120 ± 13 0 ± 0 1119 ± 13 829 ± 8 2028 ± 0 300 ± 0
Sweep-16 610 ± 1 0 ± 0 610 ± 1 314 ± 2 2011 ± 0 535 ± 203

Figure 2. Moose benchmark results with standard errors.

5



LargeObjects. The LargeObjects benchmark compares
the time spent in garbage collection according to the size
of allocated objects. We distinguish four configurations:

∙ Small : VM with standard GC parameters and the
Mark-Compact algorithm. Objects smaller than
65535 32-bit machine words are allocated.

∙ Small-NewMem: VM with standard GC parame-
ters, except segment size which is 4 times larger,
number of empty segments which is multiplied by 4,
and the Mark-Compact algorithm. Objects smaller
than 65535 32-bit machine words are allocated.

∙ Large: VM with standard GC parameters and
the Mark-Compact algorithm. Objects larger than
65535 32-bit machine words are allocated.

∙ Large-NewMem: VM with standard GC parame-
ters, except segment size which is 4 times larger,
number of empty segments which is multiplied by 4,
and the Mark-Compact algorithm. Objects larger
than 65535 32-bit machine words are allocated.

The time spent in scavenging is lower for the larger
objects. Allocating large objects has an impact on the
number of memory growing and shrinking operations,
which can be altered by tuning the associated parameters
in the VM.

Data0bjects. The DataObjects benchmark compares
the time spent in garbage collection according to the
amount of allocated data objects. We distinguish four
configurations:

∙ Compact-Less: VM with standard GC parameters
and the Mark-Compact algorithm. 40% of allocated
objects are data objects.

∙ Compact : VM with standard GC parameters and
the Mark-Compact algorithm. 90% of allocated
objects are data objects.

∙ Sweep-Less: VM with standard GC parameters
and the Mark-Sweep algorithm. 40% of allocated
objects are data objects.

(a) LargeObjects (b) DataObjects

Figure 3. Configurable benchmark results piled up (in ms).

Total Scavenge Total Full Compaction
Benchmark Exec. time time GC time time

(ms) (ms) (ms) (ms)

LargeObjects

Small 43110 ± 338 3223 ± 76 541 ± 5 298 ± 2.8
Small-NewMem 42886 ± 341 3204 ± 23 605 ± 43 348 ± 8

Large 1514 ± 15 155 ± 4 414 ± 1 223 ± 4
Large-NewMem 1506 ± 20 163 ± 8 408 ± 6 219 ± 6

DataObjects

Compact-Less 55757 ± 1998 6465 ± 122 403 ± 36 232 ± 20.55
Compact 12738 ± 13090 569 ± 10 168 ± 27 98 ± 15
Sweep 13785 ± 269 604 ± 9 115 ± 2 27 ± 1

Sweep-Less 59398 ± 592 6679 ± 34 226 ± 3 56 ± 1

Figure 4. Configurable benchmark results with standard errors.

6



∙ Sweep: VM with standard GC parameters and the
Mark-Sweep algorithm. 90% of allocated objects
are data objects.

The time spent in full GC’s and the compaction time
are lower in comparison with a case with 40% of Data
Objects. This can be explained because less time is spent
in the marking and pointer update phases.

5 Related and Future Work
GC benchmark suite. The DaCapo benchmark suite
[BGH+06] is a standard set of benchmarks designed for
Java applications. It gathers together several open-source
benchmarks and runs them against specific metrics to
assess their potential significance towards different as-
pects of the Java language implementation, typically
its memory management and virtual machines. With
regard to memory management, the eleven benchmarks
selected in 2006 (and updated later in 2009 to add three
more benchmarks [Pro01]) are assessed according to the
number of allocated objects, their average size, and the
maximum number of live objects. The nursery (new
space) survival rate is also taken into account, as well
as the heap structure through object lifetime behavior.

ACDC-JS. ACDC-JS [AHK+14] is a configurable
benchmarking tool designed to measure and stress allo-
cation and deallocation time in the JavaScript memory
management model. It builds a heap model based on the
behavior of real-world applications and aims at providing
significant insights into JavaScript memory management
that cannot be obtained from standard benchmarking
suites. The value of specific heap options can be set by
the user. Their study shows the negative impact of object
liveness (time between allocation and last access, leading
to the objects to be in different spaces in the heap) and
deallocation delay on allocation time. It also stresses the
trade-offs between memory consumption and allocation
latency.

Future work: more benchmarks. We described two
approaches to bench new memory management strate-
gies: the Moose benchmark, based on a real-world ap-
plication and the configurable benchmarking tool, high-
lighting edge cases by stressing the garbage collector on
specific aspects. It would be nice to add some bench-
marks based on the standard DaCapo benchmark suite
so we could assess the performance of our memory man-
agement strategies via a reputed benchmarking suite.

Future work: stress GC tests. We can stress the
garbage collector by running the configurable bench-
marking tool with specific sets of options to test the
memory startegy in edge cases. By increasing the amount
of edge-cases benchmarks led on the garbage collector,

we could infer a serie of tests to secure the garbage
collector behaviour in these situations.

Future work: more options. The number of options
available in the configurable tool is still limited at the
moment. We can take advantage of the ACDC-JS imple-
mentation, as well as some metrics used in the DaCapo
paper, to get a higher number of options and improve
the data collected during the benchmark.

Future work: incremental GC. This investigation,
including as it does a framework for compaction that
includes a new store check, helps us in designing a fully
incremental Mark-Sweep-Compact algorithm for Spur
with very low pause times, suitable for interactive appli-
cations such as animation and gaming.

Acknowledgments
We thank Tudor Girba for providing the files needed for
the Moose benchmark.

References
[AHK+14] Martin Aigner, Thomas Hütter, Christoph M. Kirsch,

Alexander Miller, Hannes Payer, and Mario Preishu-

ber. Acdc-js: Explorative benchmarking of javascript
memory management. In Symposium on Dynamic
Languages, DLS ’14, 2014.

[BDN+07] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz,
Damien Pollet, Damien Cassou, and Marcus Denker.

Squeak by Example. Square Bracket Associates, 2007.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nier-
strasz, Damien Pollet, Damien Cassou, and Marcus

Denker. Pharo by Example. Square Bracket Asso-

ciates, Kehrsatz, Switzerland, 2009.
[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Hoff-

mann, Asjad M. Khang, Kathryn S. McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Fein-
berg, Daniel Frampton, Samuel Z. Guyer, Martin

Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Ste-

fanović, Thomas VanDrunen, Daniel von Dincklage,

and Ben Wiedermann. The dacapo benchmarks:
Java benchmarking development and analysis. In

Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, 2006.

[BvdAB+10] Gilad Bracha, Peter von der Ahé, Vassili Bykov,

Yaron Kashai, William Maddox, and Eliot Mi-

randa. Modules As Objects in Newspeak. In Euro-
pean Conference on Object-oriented Programming,

ECOOP’10, 2010.
[Che70] C. J. Cheney. A nonrecursive list compacting algo-

rithm. Commun. ACM, 13(11):677–678, November

1970.
[DFHP04] David Detlefs, Christine Flood, Steve Heller, and

Tony Printezis. Garbage-first garbage collection. In

Proceedings of the 4th International Symposium on
Memory Management, ISMM ’04, 2004.

[DGLD05] Stéphane Ducasse, Tudor Gı̂rba, Michele Lanza, and

Serge Demeyer. Moose: a collaborative and extensi-
ble reengineering environment. In Tools for Software

7



Maintenance and Reengineering, RCOST / Software
Technology Series. Franco Angeli, Milano, 2005.

[MB15] Eliot Miranda and Clément Béra. A partial read

barrier for efficient support of live object-oriented
programming. In Proceedings of the 2015 Interna-

tional Symposium on Memory Management, ISMM
’15, pages 93–104, New York, NY, USA, 2015.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor

Gı̌rba. The Story of Moose: An Agile Reengineering
Environment. In European Software Engineering

Conference Held Jointly with Foundations of Soft-

ware Engineering, ESEC/FSE-13, 2005.
[Pro01] DaCapo Project. The dacapo benchmark suite, 2001.

http://dacapobench.org/.

[Ung84] David Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation al-

gorithm. In SIGSOFT/SIGPLAN Software Engi-

neering Symposium on Practical Software Develop-
ment Environments, SDE 1, 1984.

8


	Abstract
	1 Introduction
	2 Building Benchmarks
	2.1 Moose benchmark
	2.2 Configurable Benchmark

	3 Reference Implementations
	3.1 Mark-Compact
	3.2 Mark-Sweep
	3.3 Mark-SelectiveCompact
	3.4 Snapshot discussion

	4 Reference Results
	4.1 Moose Benchmarks
	4.2 Configurable Benchmark

	5 Related and Future Work
	References

