
HAL Id: hal-01874946
https://hal.science/hal-01874946v1

Submitted on 15 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing primitives performance on multi-stage
execution

Sophie Kaleba, Clément Béra, Stéphane Ducasse

To cite this version:
Sophie Kaleba, Clément Béra, Stéphane Ducasse. Assessing primitives performance on multi-stage ex-
ecution. ICOOOLPS 2017 - 12th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems, Jul 2018, Amsterdam, Netherlands. �hal-01874946�

https://hal.science/hal-01874946v1
https://hal.archives-ouvertes.fr

Assessing primitives performance
on multi-stage execution

Sophie Kaleba
RMoD - Inria Lille

sophie.kaleba@etudiant.univ-lille1.fr

Clément Béra
Software Languages Lab - Vrije

Universiteit Brussel
clement.bera@vub.ac.be

Stéphane Ducasse
RMoD - Inria Lille

stepahne.ducasse@inria.fr

Abstract
Virtual machines, besides the interpreter and just-in-time
compiler optimization facilities, also include a set of prim-
itive operations that the client language can use. Some of
these are essential and cannot be performed in any other way.
Others are optional: they can be expressed in the client lan-
guage but are often implemented in the virtual machine to
improve performance when the just-in-time compiler is un-
able to do so (start-up performance, speculative optimiza-
tions not implemented or not mature enough, etc.).

In a hybrid runtime, where code is executed by an in-
terpreter and a just-in-time compiler, the implementor can
choose to implement optional primitives in the client lan-
guage, in the virtual machine implementation language (typ-
ically C or C++), or on top of the just-in-time compiler back-
end. This raises the question of the maintenance and per-
formance trade-offs of the different alternatives. As a case
study, we implemented the String comparison optional prim-
itive in each case. This paper describes the different imple-
mentations, discusses the maintenance cost of each of them
and evaluates for different string sizes the execution time in
Cog, a Smalltalk virtual machine.

Keywords Just-in-Time compiler, Primitive, Virtual ma-
chine, Managed runtime

1. Introduction
High-level object-oriented programming languages are of-
ten implemented on top of a virtual machine (VM). As VMs
have become more popular, different techniques have been
set up using Just-In-Time (JIT) compilation to improve the
overall runtime performance: method JITs (Hölzle 1994)
which usually compile methods to native code and tracing

[Copyright notice will appear here once ’preprint’ option is removed.]

JITs (Bala et al. 2000; Bolz et al. 2009) which usually com-
pile linear traces of execution into native code.

On top of its virtual machine, the client language can
use a set of primitives1, which are performed directly by the
interpreter rather than by evaluating expressions in a method.
We distinguish two kinds of primitives:

• Essential primitives cannot be performed in any other
way. A high-level object-oriented language without prim-
itives can move values from one variable to another, but
cannot add two integers together. Many arithmetic and
comparison operations between numbers are primitives.
Some primitives allow one to communicate with I/O de-
vices such as the disk, the display and the keyboard.

• Optional primitives exist only to make the system run
faster (Goldberg and Robson 1983). They can be imple-
mented in the client language directly, making its imple-
mentation as a primitive optional, but they are often im-
plemented directly in the VM to improve performance.

Optional primitives as client code. The implementation
of an optional primitive in the VM rather than the client
language improves performance but also often increases the
implementation engineering cost. For example, accessing
objects in the VM usually requires understanding of the
memory layout or implementation details, which are not
needed in the client language.

For this reason, some virtual machine implementors at-
tempted to remove most or all optional primitives. Their
goal was to use a JIT performing speculative optimizations
to be able to implement the optional primitives in the client
language without performance loss. Ideally they wanted to
get the performance of the same primitives written in the
VM. Self (Hölzle 1994) and Strongtalk (Sun Microsystems
2006) were the first to try this approach. Early versions of the
Javascript engine V8 (Google 2008) also implemented most
of the primitives, including for example Array operations in

1 We use in the paper the Smalltalk terminology (primitive) as this is the
programming language used for our evaluation. Some other programming
languages, such as Javascript, prefer to use the term built-in instead of
primitive.

Assessing primitives performance on multi-stage execution 1 2018/9/15

Javascript itself. However, without optional primitives im-
plemented in the VM, several problems rise:

• High performance relies on a JIT with speculative op-
timizations, which is hard to implement, maintain and
evolve.

• There is a big performance gap between the baseline
performance and the peak performance.

• Even mature JITs fail to optimize some narrow cases,
where the performance is drastically slower
(Barrett et al. 2017).

Overall, this approach requires high engineering time to
get a mature optimizing JIT with speculative optimizations
and even then, it leads in practice to unreliable performance.

World border cost. VMs are traditionally implemented in
a low-level language such as C or C++. To balance between
memory footprint, start-up performance and peak perfor-
mance, the execution of code is usually done through multi-
ple execution tiers: the first few executions of a code snippet
are done through an interpreter and the JIT compiler opti-
mizes at runtime the frequently used code snippets.

This leads to annoying concerns: for example, let’s say
we implement a primitive in C. Frequently used portion of
code calling that primitive are going to be compiled to native
code by the JIT. This is problematic since the native code
generated by the JIT is not directly compatible with native
code generated by the C compiler: a call from one to another
may require to edit the stack pointer and the frame pointer
from the client stack to the C stack and to spill or move
multiple registers. Switching between both usually wastes
up to around a dozen native instructions. If the primitive
is going to execute many instructions, the switch overhead
might be negligible, but if the primitive executes only a few
instructions, the overhead can be noticeable.

Measurements. In this paper, we want to measure the
complexities and gain of different implementations. For this
purpose, we take the example of a string comparison op-
tional primitive. The primitive compares two strings and
answers if one string is greater, equal or lower than the other
string. The exact specification is detailed in Section 2.4. The
primitive is convenient for measurements since it can be ex-
ecuted with strings of small sizes or large sizes, leading the
primitive to execute many processor instructions or only a
few of them.

We implemented a first version of the optional primi-
tive in Pharo. We then implemented two versions compiling
through C compilers to native code, using different parts of
our VM infrastructure. Lastly, we implemented a version in
the back-end of the JIT. Each time, we tried to write the code
in the most efficient way possible. Then, we compared the
execution time of all versions on strings of different sizes,
showing that overall the most complex implementation is the
fastest to execute.

Section 2 describes our implementation context, i.e., the
execution model of the VM we used for our evaluation, how
it executes primitives and the specification of our string com-
parison primitive. Section 3 details the various implemen-
tations of the primitive we used for the evaluation. In Sec-
tion 4, we evaluate the performance of the different imple-
mentations with different C compilers and string sizes. We
also show the native code of the performance critical part
of the primitive generated by each version and discuss it.
Further sections compare our work to related works, discuss
future work and conclude.

2. Implementation context
Our evaluation is based on the Cog VM: a Smalltalk virtual
machine. The Cog VM is based on Dan Ingalls’ Smalltalk
VM (Ingalls et al. 1997) and has been enhanced with a JIT
(Miranda 2011) compiling one method or closure at a time
to native code. Historically, the VM implemented a 32-bits
adaptation of the Smalltalk-80 specifications (Goldberg and
Robson 1983), but the Cog VM is now the default VM for
multiple programming languages such as Pharo (Black et al.
2009), Squeak (Black et al. 2007) and Newspeak (Bracha
et al. 2010).

Section 2.1 describes briefly the compilation process of
the Cog VM. Section 2.2 explains briefly the hybrid execu-
tion model with an interpreter and a JIT. In Section 2.3, we
detail how primitives are executed. Section 2.4 discusses the
string comparison primitive specifications used for our eval-
uation.

2.1 VM compilation

Core VM code

Slang

C

Generated execution
engine code Platform code

Executable VM

Native code

Slang-to-C
compilation

C compilation

Step 1

Step 2

Figure 1: Cog VM compilation

Most of the Cog VM code base is written in Slang, a
subset of Smalltalk. Slang is compiled to C and then to native
code through standard C compilers. The execution engine
(the memory manager, the interpreter and the baseline JIT)

Assessing primitives performance on multi-stage execution 2 2018/9/15

is entirely written in Slang. The two main purposes of using
Slang code over plain C are:

• to specify with annotations what function needs to be
inlined or duplicated with constant parameters, and

• to be able to simulate VM execution, executing the Slang
code as Smalltalk code on top of a compiled VM for
debugging purposes.

The executable is generated in two steps as shown on Fig-
ure 1, similarly to the RPython toolchain (Rigo and Pedroni
2006). The first step is to generate the two C files represent-
ing the whole execution engine written in Slang using the
Slang-to-C compiler. During the second step, a C compiler
is called to compile the execution engine and the platform-
specific code written directly in C to the executable VM.

Plugins. The Cog VM can be extended using plugins
(Guzdial and Rose 2001). VM plugins enable the addition of
new features to the VM. The main benefit of writing a plugin
over extending the VM is modularity, plugins are in separate
code bases and can be easily added or removed from the
VM. Plugins can be compiled as internal or external:

• External plugins are compiled as a dynamic libraries dis-
tributed with the VM. They can be added or removed
from a compiled VM: each dynamic library can be re-
moved, or recompiled separately and modified.

• Internal plugins are compiled with the VM executable.
They can be added or removed at VM compilation time.

There is a performance overhead for the plugins com-
pared to normal VM code. For example, accesses to object
headers are dependent on the memory representation and
therefore need to be done indirectly through calls to main
VM executable, since the plugin cannot know ahead of time
which memory representation is used. Such calls cannot be
inlined by the C compiler2.

2.2 VM execution
The Cog VM executes the client’s code using an hybrid
runtime with an interpreter and a JIT. The interpreter uses
a global look-up cache to speed-up virtual calls. On a cache
hit, it requests the JIT to compile that method and the native
code version is used instead. In most case, the JIT is used at
the second activation of the method. Closures have similar
heuristics.

The VM code, including the interpreter code, is compiled
by a C compiler and uses the C stack at runtime. During its
execution, the interpreter modifies the execution stack of the
client language, which is different from its own C execution
stack as shown on Figure 2. This means for example that
the frame pointer register in the processor refers to a stack
frame on the C stack and that a processor push instruction

2 In the case of specific internal plugins, C compiler linking time optimiza-
tions can be enabled to limit this overhead.

pushes a value on the C stack. When executing the native
code generated by JIT, only the client language stack is used.
This means for example that the frame pointer register in the
processor refers to a stack frame on the client stack and that a
processor push instruction pushes a value on the client stack.

Client
Stack

C
Stack

Execution of C code
Interpreter, GC
JIT compilation

Execution of native code
generated by the JIT,

Manipulated by the Interpreter,
Scanned by the GC

Stack switch
Save and restore FP, SP & LR

Caller-saved register flush

Figure 2: Client and C stacks.

Because of this design, switching the execution between
the interpreter and the native code generated by the JIT has a
cost. Effectively, the VM needs to switch the frame pointer,
the stack pointer and the link register (the latter only on
some architectures) from one stack to the other one. It also
needs to save those pointers to be able to resume execution
from one stack to the other one. In addition, caller-saved
registers on the C conventions or the JIT convention need
to be saved since the VM cannot tell ahead what code is
going to be used in the other execution model and what
registers are required. We estimate the overhead to up to
around a dozen of processor instructions, the exact number
of numbers varies a lot (the number of registers to edit
depends on the processor used and on the code executed).

Most of the primitives are implemented either in Slang
or directly in C. They benefit from the C compiler optimiza-
tions to be efficient. When called from the interpreter, ac-
tivating a primitive is just a C function call (the primitive
function pointer is cached in the look-up cache next to the
method to activate). When called from the native code gen-
erated by the JIT, activating a primitive requires to switch
the execution from the client stack to the C stack, perform
the primitive, and switch back to resume execution. If the
primitive takes a significant amount of instructions to exe-
cute, for example, the primitive is copying 100kb from one
array to another one, the stack switch dance overhead is neg-
ligible. If the primitive is very quick to perform, for example,
the primitive is adding two integers which do not overflow,
the overhead is massive: the execution cost of the addition
goes from a few processor instructions to a few dozen in-
structions.

Assessing primitives performance on multi-stage execution 3 2018/9/15

To solve this performance bottleneck, the Cog VM al-
lows one to redefine primitives in Cog’s Register Transfer
Language (RTL), an abstract assembly which is compiled to
native code through Cog’s JIT back-end. Such primitives are
then generated to native code at runtime when a method an-
notated with the primitive is compiled to native code. This
allows the primitive to be performed in the client stack with
the client calling convention, saving register moves and the
stack switch dance. Primitives redefined in such way can be
entirely or partially redefined. In the latter case, only the
common cases are re-implemented on top of the JIT back-
end. If an unimplemented case happens at runtime, the gen-
erated native code calls the C primitive instead, adding over-
head only in uncommon cases.

2.3 Primitive execution
In the Cog VM, primitives are always associated with com-
piled methods. A compiled method has information in its
header to inform the virtual machine if it has a primitive op-
eration or not. When activating a method with a primitive,
the primitive function is executed before the method’s byte-
code. If the primitive succeeds, the primitive returns a result,
as if it were the result of the virtual call. If the primitive
fails, it does so without side-effects and execution continues
executing the method’s bytecode, as if the primitive had not
been present.

To fail without side-effects a primitive must validate any
parameters and any state fetched from them, before chang-
ing execution state by performing its operations. Validation
involves any of testing for a specific class, testing for bit
vs pointer objects, bounds checks, and recursively applying
these tests to substructure of the parameters. For example,
the primitive that installs a cursor examines the first parame-
ter to check that it represents a valid cursor object, comprised
of two bitmaps, one for the image and one for the shape, plus
a point to specify the cursor’s hotspot.

2.4 String comparison primitive
In this section we describe first the string representations
then the string comparison primitive specification.

String representations. Strings are represented on top
of the Cog VM in two possible forms: ByteStrings and
WideStrings. ByteStrings encode each character of the string
in a single byte. The encoding usually follows the Latin-1
(ISO 8859-1) standard. WideStrings encode each character
in 32 bits. The encoding usually follows Unicode specifi-
cations. In this paper, we will discuss only the implemen-
tation of the string comparison primitive for ByteStrings.
WideStrings use an implementation entirely implemented in
the client language, and so far, it has not been reported as
a performance bottleneck for any program of any users. To
sort arrays of strings, strings can be compared. They can be
compared in the default order (Latin-1) or using different
orders, for example, the case insensitive order.

Primitive specification. The String comparison optional
primitive takes two or three parameters. The two first operands
are the two ByteStrings to compare and the third operand,
optional, is the order table (a ByteArray of size 256 en-
coding the order of characters). If no order is specified, the
VM assumes the byte ordering (Latin-1 order) is the order
to compare against, and compares directly the bytes of the
ByteStrings. If an order is specified, for example a case in-
sensitive order (the entries for the 41 and 61 in the order
byte array, respectively characters A and a in the ASCII ta-
ble, both answer the same value), the primitive compares
the bytes through the indirection order. Having the order
optional allows to have quicker string comparison in the
common case where the Latin-1 order is used. The primi-
tive answers a negative integer, zero, or a positive integer as
the first parameter is less than, equal to, or greater than the
second parameter.

In the paper we will focus on the comparison of two
strings with the default Latin-1 ordering and measure the
performance only of this case. The goal of this work was
to improve the performance of common string operations,
typically string equality which internally uses the primitive,
and the cases where the order is non-Latin-1 are considered
uncommon.

Conceptually, the primitive with two parameters first
checks if the operands are ByteStrings and fails if they are
not. It then extract the ByteString sizes from their object
header and computes the minimum size. Lastly, it iterates
over the two ByteStrings until the minimum size is reached.
If a difference is found, if answers the difference between the
two different characters. If no difference is found, it answers
the difference between the two string sizes.

3. Different primitive implementations
This section describes the different implementations of
the string comparison optional primitive and then compare
them.

We then explain how each of these versions is executed
by the VM and the pros and cons of each and every.

3.1 Different implementations
We distinguish four implementations: the Baseline in pure
Smalltalk, the Plugin version, the Slang version and the
Slang+RTL version.

Baseline. To evaluate the primitive performance, we use
as baseline an implementation in pure Smalltalk. There are
multiple ways of writing the comparison of two strings in
Smalltalk, following Smalltalk coding conventions, a stan-
dard developer would likely use high-level constructs which
apply a closure on each element of the strings. We did
not use high-level construct and chose to implement the
Smalltalk version the most optimized way Smalltalk allows,
i.e., we used the constructs to:do: and ifFalse:, which are
both recognized by the Smalltalk to bytecode compiler and

Assessing primitives performance on multi-stage execution 4 2018/9/15

compiled respectively to loops and branches at the bytecode
level3. The implementation follows the new specification,
hence two methods are available, baselineCompareWith:
and baselineCompareWith:order:. Since the focus is only
on Latin-1 ordered comparison, we show the code only of
baselineCompareWith:.

baselineCompareWith: aString
| c1 c2 length1 length2 |
length1 := self size.
length2 := aString size.
1 to: (length1 min: length2) do: [:i |

(c1 := self basicAt: i) = (c2 := aString basicAt: i) ifFalse: [ˆ
c1 − c2]].

ˆ length1 − length2

Plugin. Written in Slang, the VM plugin implementation
is compiled to C independently to the VM and is then com-
piled to native code through the C compiler as an inter-
nal plugin, without enabling linking time optimizations. Ac-
cesses to the ByteString object header (to check if they are
actually ByteString and not other objects as well as ex-
tracting their size), and accesses to the stack (to read the
operands) are done indirectly through the main VM API
since they’re dependent on the memory representation of ob-
jects and stack layout used. These calls generate some over-
head since they cannot be inlined. To avoid such calls in the
main comparison loop, the primitive requests the main VM
to provide a pointer to the first byte of each string and then
assumes all bytes are then contiguous.

Slang. The Slang implementation is written inside the in-
terpreter and has access to the full interpreter APIs. It is com-
piled to C and then to native code as part of the main VM.
There is no overhead in accessing the object memory repre-
sentation or the stack as in the Plugin version.

Slang+RTL. In addition to the previous implementation,
we’ve re-implemented here the primitive on top of Cog’s
JIT back-end. The primitive is written in Cog’s RTL, an
abstract assembly whose instructions compile almost one-
to-one to native instructions. This primitive requires a more
important amount of work to be written: we had to be careful
to generate efficient machine code (there is no C compiler
to optimize the code) and debugging such code requires
the use of a processor simulator such as Bochs. Since only
performance critical implementations matter in this context,
we’ve only re-implemented the case where there are two
parameters. For the three parameter primitive, the VM falls
back to the Slang version.

3.2 Comparison
In this section we compare the four different implementa-
tions according to the following criteria:

3 The bytecode compiler moves the upper limit of the loop ahead of the
loop, so (length1 min: length2) is not compute at each iteration.

Recompilation required: Changing the implementation
requires only Smalltalk bytecode recompilation (No), re-
quires to recompile a plugin to a dynamic library if compiled
as external or the recompilation of the full VM if compiled
as internal (Plugin) or requires to recompile the full VM
(Yes).

Language familiar to developers: Smalltalk developers
are considered to be familiar with Smalltalk only, while
Cog VM developers are considered being familiar with
Smalltalk, Slang, C and Assembly code. Only Cog’s JIT
implementors are familiar with its RTL, which is a subset
of the VM developers. We use All if all communities are fa-
miliar with the language, VM if all VM developers are and
VM-JIT if only a subset of VM developers are.

Number of lines of code: We measured the number of
lines of code of each implementation.

Number of implementations to maintain: In each case,
the client language has to implement a fall-back code in
Smalltalk to be executed if the primitive fails. This code
is maintained by the client language implementors, and not
by the VM implementors. Hence we do not count the fall-
back code in the number of implementation to maintain,
nor the pure Smalltalk implementation. However, as a VM
implementor, we count all the Slang implementations as well
as the Cog’s RTL one.

Stack switch overhead: Yes if activating the primitive
from the native code generated by the JIT requires to switch
between the C and the client stack, inducing execution time
overhead.

Optimization potential: C cross-file inlining is not per-
formed by default for internal plugins. External plugins
don’t have access to the whole VM API and have to go
through an interface to do so, leading to an overhead, lim-
iting the performance unless the string size is really high.

Control over the generated code: The implementations
written in Slang are compiled by the C compilers into native
code. The generated code can therefore differ according the
compilers and the optimizations they performed. On the
contrary, the JIT generates the same native code whichever
C compiler is used.

Table 1 summarizes the main pros and cons related to
each implementation: the engineering time tends to increase
when more low-level languages are used. VM recompilation
slows slightly the development process, but the resulting
code is usually faster to run. Likewise, the use of plugins
brings modularity at the cost of some performance loss.

4. Evaluation
The Plugin, Slang and Slang+RTL implementations of this
string comparison primitive have been implemented in the
Cog VM. In this section, we compare execution speed of

Assessing primitives performance on multi-stage execution 5 2018/9/15

Software maintenance & evolution Primitive execution time
Recompilation Familiar to Lines Number of Stack switch Optimization Code generation

required developers of code implementations overhead potential control
Baseline No All 10 0 No - -
Plugin Plugin VM 35 1 Yes Limited Low
Slang Yes VM 35 1 Yes High Low

Slang+RTL Yes VM-JIT 85 2 No High High

Table 1: Comparison between implementations.

these primitives against the other existing implementations.
We measure their respective execution times for different
string sizes.

4.1 Set-up
To evaluate the performance, we had to compile a spe-
cial VM with all the different primitive implementations
included. The production VM normally only features one
string comparison primitive implementation, not three of
them. We compiled one VM for Linux with GCC, and one
for Mac with LLVM (exact version numbers below). We ran
all benchmarks on the same run of the same VM on both
platforms.

GCC-Linux. The GCC-Linux evaluation was performed
on an Asus Zenbook with Ubuntu 16.04.4 LTS, a 2.2 Ghz
processor Intel Core 5, 8 Gb 1600MHz DDR3 of RAM. The
Linux VM was compiled using GCC version 5.4.0.

LLVM-Mac. The LLVM-Mac evaluation was performed
on a MacBook pro with Mac OS 10.11.6, a 2.9 Ghz pro-
cessor Intel Core 5, 8 Gb 1867MHz DDR3 of RAM. The
Mac VM was compiled using Apple LLVM version 8.0.0
(clang-800.0.38).

The following evaluation was performed on 32 bits Intel
VMs (x86).

4.2 Methodology
We assessed the execution time of the different implementa-
tions by running the following benchmark:

#(0 1 5 100 1000) collect: [:size |
| iterations time overhead |
collection := ByteString new: size.
collection2 := ByteString new: size.
size < 100

ifTrue: [iterations := (100000000 // (size*10 max: 1) sqrt)
floor.]

ifFalse: [iterations := (10000000 // size sqrt) floor.].
overhead := [1 to: iterations do: [:i |]] timeToRun.
time := [1 to: iterations do: [:i |

collection primitiveStringCompare: collection2]] timeToRun.
stream nextPutAll: ((time − overhead) asString)].

Each benchmark was measured 30 times. Each time, we
run a string comparison in a loop and measure the total
execution time.

The number of iterations of the loop depends on the string
size: the comparison is repeated between 1414 and 10000

times for a short string (5 characters or less), and between
100 and 316 times for a long string (100 characters or more).
The warm-up time of the JIT is in this context not noticeable
on the performance results: the primitive is compiled to na-
tive code usually at the second call as explained in Section
2.2 and the VM sampling profiler (Kaleba et al. 2017) con-
firms no significant time is spent in the interpreter loop (Be-
tween 0 and 1 sample over dozens of thousands are shown
in the interpreter loop). The number of iterations allows the
benchmarks to run for at least 1 second in the slower imple-
mentations to avoid processor and OS noises.

The loop overhead is measured and removed from the
measurements (We made sure the JIT did not remove the
dead loop to measure it). The two compared strings are equal
as this situation corresponds to the worst scenario for most
implementations.

4.3 Results
We performed the benchmarks upon five different string
sizes: 0, 1, 5, 100 and 1000 characters. In the case of small
strings, most of the time is spent activating the primitive and
in the code before the main comparison loop, the primitive
is performed with a little overall number of native instruc-
tions. In the case of large strings, the time spent executing
the primitive is dominated by the main comparison loop.
Figure 3 and Table 2 show the results in terms of relative
speed-up towards the baseline implementation, respectively
for GCC-Linux and LLVM-Mac.

These results can be explained based on the last 3 criteria
detailed in Section 3.2.

Stack switch overhead. As mentioned in Section 2.2, all
implementations written in Slang come with an overhead
due to the switch between the C and Smalltalk stacks. This
overhead is clearly visible in the bench results in Figure 3 for
small strings (size 1 or less): the Plugin implementation is
between 58,7 (GCC-Linux) to 66,1% (LLVM-Mac) slower
than the baseline’s for empty strings.The problem is even
more important for the Plugin version, since the beginning of
its code, before the main comparison loop, is slower due to
the calls to the main VM code. As the string size goes larger,
the overhead is less significant because it is absorbed by
other performance gains. Regarding this criteria, Slang+RTL
version is always the fastest as it is not impacted by the
switch overhead.

Assessing primitives performance on multi-stage execution 6 2018/9/15

Size 0
B

as
el

in
e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

1

2

3

Size 1

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

1

2

3

4

5

Size 5

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

2

4

6

8

Size 100

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

5

10

15

Size 1000

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

5

10

15

20

25

GCC-Linux

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

1

2

3

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

1

2

3

4

5

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

2

4

6

8

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

5

10

15

B
as

el
in

e

Pl
ug

in

Sl
an

g

Sl
an

g+
R

T
L

0

5

10

15

20

25

LLVM-Mac

Figure 3: String comparison benchmarks for strings of different sizes on different architectures. Average relative speed-up
regarding baseline. The higher the better.

Optimization potential. When it comes to comparing large
strings (100 characters and more), the execution time is
mainly spent in the comparison loop (Figure 4). The stack
switch overhead is still noticeable in the Slang implemen-
tation when strings of 100 characters are compared: in
GCC-Linux, Slang is 17.2 times faster than Baseline while
Slang+RTL is 18,6 times faster than Baseline. Due to the be-
ginning of its code calling the VM code, the Plugin version is
still around 0.68 times slower than the Slang and Slang+RTL
version for a string of size 100 (Still in GCC-Linux). For
strings of size 1000, the performance of all primitives is
very similar, since they have almost the same comparison

loop, except for the Slang version on LLVM-Mac, as we are
about to discuss in the next paragraph.

Control over generated code. One can notice a rather
striking performance difference between the 2 set-ups we
have. In GCC-Linux, the performance between the Slang
and Slang+RTL implementations is really close for long
strings (1000 characters wide), with respectively 25.24 and
26.76 relative speed-up factors for a 1000-characters string.
Yet performance greatly differs when the LLVM-Mac set-up
is used, with respectively 12,94 and 24,88 relative speed-up
factors.

Assessing primitives performance on multi-stage execution 7 2018/9/15

0 1 5 100 1000

Plugin GCC-Linux 0.413 ± 0.0005 0.746 ± 0.0008 1.804 ± 0.0005 12.05 ± 0.0088 25.36 ± 0.1742
LLVM-Mac 0.339 ± 0.0007 0.624 ± 0.0012 1.581 ± 0.0092 11.41 ± 0.0474 23.21 ± 0.1789

Slang GCC-Linux 1.287 ± 0.0048 2.257 ± 0.0116 4.958 ± 0.0111 17.24 ± 0.0515 25.43 ± 0.1621
LLVM-Mac 0.932 ± 0.0015 1.690 ± 0.0030 3.241 ± 0.0067 10.15 ± 0.0321 12.94 ± 0.0177

Slang+RTL GCC-Linux 3.343 ± 0.0211 5.171 ± 0.0265 8.715 ± 0.0221 17.66 ± 0.0481 26.76 ± 0.1861
LLVM-Mac 3.255 ± 0.0079 5.216 ± 0.0153 8.971 ± 0.0359 17.64 ± 0.06 24.88 ± 0.1983

Table 2: Benchmark results with standard errors. Average relative speed-up regarding baseline.

This difference is mainly due to the optimizations per-
formed or not by the GCC and Clang compilers for the Slang
version. As depicted in Figure 4, GCC-Linux generates in-
structions that are very close to the ones generated by the JIT,
hence the execution time is similar. On the contrary, LLVM-
Mac generates more instructions: it fails at keeping all the
operands live across the comparison loops, leading to two
extra memory reads per iteration (bolded in Figure 4).

This is an example of one native function in the whole
VM and we do not conclude anything about the C compiler
capabilites from it. VMs compiled with LLVM and GCC
are around equally fast except in narrow cases like this one
and LLVM is able to optimize correctly the Plugin version.
LLVM likely fails at optimizing the Slang version due to the
old GNU C extensions we use in the interpreter code present
in the same file to force variables into specific registers,
which are better supported by GCC, the only compiler we
supported back in the days.

However, we can see that the Slang+RTL version has the
most reliable performance since it does not depend on what
optimization the C compiler is able to perform or not. This
is even more relevant in less common back-ends not shown
in this evaluation, such as the MIPSEL back-end we support.
On such uncommon processors, C compilers are usually less
clever at performing back-end specific optimizations since
less engineering time has been invested into it. Cog’s RTL
is closer to the native instructions and can therefore often
generate better code in this case.

Conclusion
In this section, we compared the performance of the differ-
ent implementations against a baseline (i.e., pure Smalltalk
code) implementation. The results showed the Slang+RTL
implementation was always the fastest. Otherwise, most of
the performance gaps between the primitive versions could
be explained by 3 criteria: stack switching, optimization for
large strings, and the control over generated code.

5. Discussion and related work
In some programming languages (Strongtalk, Self, RSque-
ak), the implementors tried to decrease the overall number
of optional primitives by improving the client language per-
formance, reducing the need for such primitives (Sun Mi-
crosystems 2006; Hölzle 1994; Felgentreff et al. 2015). In
other work (Ballard et al. 1986; Chari et al. 2013), optional
primitives can be written directly in a subset of the client
language and compiled at runtime to native code, hence they
can be modified in the client language without recompil-
ing the VM. Lastly, several VMs implemented their inter-
preter on top of an abstract assembly (Google 2008; Wingo
2012), allowing the interpreter to use the same register con-
ventions as the code generated by the JIT and avoiding the
stack switch cost.

5.1 Decreasing the number of primitives
The philosophy of Self and Strongtalk, both high perfor-
mance VMs, were to improve the performance of the client

move the string1 character (at index i)
to a register (either %ebp, %esi or
%edi)
move the string2 character (at index i)
to a register (either %ecx, %edi or
%ecx)

compare these 2 characters. If they
are different, jump after the loop

increment the index i

check if i is not off bounds. If it is still
in bounds, jump at the start of the loop

Meaning

cmpl %ebx, %edx

jl start of loop

movzbl (%esi,%eax), %edx

movzbl (%edi,%eax), %ecx

subl %ecx, %edx

jne after loop

incl %eax

cmpl %ebx, %eax

jl start of loop

LLVM-Mac - Plugin

movl -0x14(%ebp), %esi

movzbl 0x8(%edx,%esi), %esi

movl -0x18(%ebp), %edi

movzbl 0x8(%edx,%edi), %edi

subl %edi, %esi

jne after loop

incl %edx

LLVM-Mac - Slang

movzbl %ds:(%edx,%eax,1), %edi

movzbl %ds:(%esi,%eax,1), %ecx

subl %ecx, %edi

jnz after loop

addl $0x00000001, %eax

cmpl %eax, %ebx

jnz start of loop

Slang+RTL

movzbl 0x8(%eax,%edx,1),%ebp

movzbl 0x8(%eax,%ebx,1),%ecx

cmp %ecx,%ebp

jne after loop

add $0x1,%eax

cmp %eax,%edi

jne start of loop

GCC-Linux - Plugin and Slang

Figure 4: GCC-Linux and LLVM-Mac: different optimizations on the comparison loop.

Assessing primitives performance on multi-stage execution 8 2018/9/15

language with a mature optimizing JIT featuring advanced
optimizations such as speculative optimizations (Sun Mi-
crosystems 2006; Hölzle 1994). In this context, the need
of primitives is reduced, since the performance gain from
using a primitive over the client language is low or inex-
istant. More recently, Felgentreff et al. (Felgentreff et al.
2015) analysed the speed difference between primitives im-
plemented in C, RPython, and Smalltalk. They showed that
with the RPython toolchain framework, the speed differ-
ence between all three implementations is not that big, hence
they could choose to implement some optional primitives in
the client language over C or RPython without performance
drop to reduce the number of primitives to maintain.

These approaches have the advantage of decreasing the
primitive maintenance cost since fewer primitives have to be
maintained. The performance problem is however partially
solved: only the peak performance is similar with and with-
out the primitives. Since those systems rely on JITs, start-
up performance is worse than peak performance, increas-
ing the performance difference at start-up between the client
code and the primitive. In addition, the performance can be
unreliable with optimizing JITs. The implementors of Mor-
phic (Maloney and Smith 1995) on top of the Self VM were
complaining that changing a single line of code could lead
to important performance drop and they would not under-
stand why. Those performance drops were due to the op-
timizing JIT taking different optimization decisions. Aside
from the start-up performance and the performance unreli-
ability problems described, these approaches also require a
mature optimizing JIT, hard to implement and maintain.

5.2 Primitives written in the client language
In QuickTalk (Ballard et al. 1986) and Waterfall (Chari et al.
2013), the implementors are able to write the primitives in a
subset of the client language. The primitives are not part of
the VM anymore, but are instead generated as part of the
compiled code bytecode representation with a special en-
coding. They are executed by generating at runtime native
code for the special primitive encoding. They can be modi-
fied without recompiling the VM and can be performed by
the client language implementors instead of the VM imple-
mentors, lowering the maintenance cost for the VM imple-
mentor.

However, this design has some issues that can lead to
performance drops. Many VMs support multiple processor
back-ends and multiple memory representation of objects.
Primitives written in such DSL are required to be indepen-
dent from the processor used and the memory representa-
tion of objects. If they were written in the VM, a different
version could exist for each different processor and mem-
ory representation and a different version would be picked
at compile-time. Having different versions allows to refine
carefully the instructions generated for performance critical
primitives (Array accesses for example) and can lead to no-
ticeable speed-ups.

5.3 No stack switch overhead
To avoid paying the stack switch cost between the client
Stack and the C stack, some VMs include an interpreter writ-
ten on top of an abstract assembly. It allows the interpreter
to have the same register convention as the native code gen-
erated by the JIT, removing the stack switch overhead. For
example, the V8 team recently wrote an interpreter named
Ignition. This interpreter is compiled ahead of time through
their JIT back-end to native code. With their primitives and
their interpreter written in such way, the V8 runtime rarely
needs to switch between the client and the C stack (no need
to switch to interpret code, no need to switch for primitives).
In Javascript Core, a similar approach is taken with the inter-
preter named LLInt (Wingo 2012). LLInt is written in an ab-
stract assembly code compiled ahead of time to native code
compatible with the JIT’s calling conventions.

In our context, implementing a similar approach would
require us to compile Slang to native code through our JIT
compiler back-end or to rewrite the interpreter on top of Cog
JIT’s RTL. Slang has some abstractions over native code,
similarly to C. Compiling Slang ahead of time to native code
efficiently requires us to re-implement optimizations imple-
mented in C compilers and we don’t want that complexity.
Alternatively, we could try to lower the abstractions level of
Slang to express native code optimizations, but that would
increase the complexity of Slang, which we don’t want ei-
ther. Rewriting the interpreter on top of Cog JIT’s RTL is
possible but requires a significant amount of work. It would
be nice to do so as a future work.

6. Future work and conclusion
In this section we discuss two future work directions and
conclude.

Future work: back-end specific. All the primitive imple-
mentations we compared are written in a processor indepen-
dent way, due to the C compiler abstraction for the Slang
versions, the abstract assembly abstraction for Cog’s RTL
version or the VM abstraction for the baseline implemen-
tation in Smalltalk. We could rewrite the primitive differ-
ently for each back-end we currently support in produc-
tion (x86, x64, MIPSEL, ARMv6) and for the back-end
yet to support (ARMv8, ...). It could be relevant in some
cases performance-wise, for example, on Intel processors,
the JVM implements string comparison using the SSE4.2
string comparison instructions when available (Davis 2016).
We did not go in this direction because the maintenance cost
is too high since we would have to maintain a different im-
plementation per back-end.

Future work: adaptive optimizer integration. For the past
few years, an experimental adaptive optimizer (a JIT featur-
ing advanced optimizations such as speculative inlining) has
been developed on top of the Cog VM (Béra et al. 2017;
Bera 2017). The optimizer has specific rules to be able to in-

Assessing primitives performance on multi-stage execution 9 2018/9/15

line primitive operations without performance loss. We need
to carefully measure, in different benchmarks, the perfor-
mance of the inlined string comparison primitive. We also
need to discuss the maintenance cost, for example, do we
need a new representation of the primitive for the optimiz-
ing JIT to inline it? The micro-benchmarks used in the pa-
per were relevant to show the client stack to C stack switch
overhead as well as baseline performance. In the optimizing
JIT context, such micro-benchmarks are not really relevant
anymore since the optimizing JIT usually entirely optimizes
away such benchmarks and real-application performance de-
pends on how well the primitive is inlined and specialized
using information from the optimized method (typically, if
one operand of the string comparison is a constant string,
can the generated code benefit from this knowledge?).

Conclusion. In this paper we compared four different im-
plementations of the string comparison primitive on top of
the Cog VM. We showed the performance difference be-
tween each implementation for different string sizes. Choos-
ing the right implementation for one’s VM is a trade-off be-
tween maintenance cost and execution time, the quickest to
execute the primitive is, the harder it is to maintain.

Acknowledgments
We thank Levente Uzonyi for providing the benchmark tem-
plate used in this article and Eliot Miranda for his advice on
the implementation.

This work was supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Council,
CPER Nord-Pas de Calais/FEDER DATA Advanced data
science and technologies 2015-2020.

References
V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-

parent Dynamic Optimization System. In Programming Lan-
guage Design and Implementation, PLDI ’00, 2000. doi:
10.1145/1988042.1988044.

M. B. Ballard, D. Maier, and A. Wirfs-Brock. Quicktalk: A
Smalltalk-80 dialect for defining primitive methods. In Proceed-
ings OOPSLA ’86, volume 21, pages 140–150, Nov. 1986.

E. Barrett, C. F. Bolz, R. Killick, V. Knight, S. Mount, and L. Tratt.
Virtual machine warmup blows hot and cold. 08 2017.

C. Bera. Sista: a Metacircular Architecture for Runtime Optimi-
sation Persistence. PhD thesis, Université de Lille, 2017. URL
http://rmod.inria.fr/archives/phd/PhD-2017-Bera.pdf.

C. Béra, E. Miranda, T. Felgentreff, M. Denker, and S. Ducasse.
Sista: Saving optimized code in snapshots for fast start-up.
In Managed Languages and Runtimes, ManLang 2017, 2017.
ISBN 978-1-4503-5340-3. doi: 10.1145/3132190.3132201.

A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Squeak by Example. Square Bracket Associates,
2007. ISBN 978-3-9523341-0-2.

A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Pharo by Example. Square Bracket Associates,
Kehrsatz, Switzerland, 2009.

C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Trac-
ing the meta-level: PyPy’s tracing JIT compiler. In Imple-
mentation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, ICOOOLPS’09, 2009. doi:
10.1145/1565824.1565827.

G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Maddox,
and E. Miranda. Modules As Objects in Newspeak. In Euro-
pean Conference on Object-oriented Programming, ECOOP’10,
2010.

G. Chari, D. Garbervetsky, C. Bruni, M. Denker, and
S. Ducasse. Waterfall: Primitives generation on
the fly. Technical report, Inria, sep 2013. URL
http://rmod.inria.fr/archives/reports/Char13a-Waterfall.pdf.

J. Davis. How the jvm compares your strings using the cra-
ziest x86 instruction you’ve never heard of, 2016. Blog
post: http://jcdav.is/2016/09/01/How-the-JVM-compares-your-
strings/.

T. Felgentreff, T. Pape, L. Wassermann, R. Hirschfeld, and C. F.
Bolz. Towards reducing the need for algorithmic primitives
in dynamic language vms through a tracing jit. In Imple-
mentation, Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems, ICOOOLPS ’15, 2015. doi:
10.1145/2843915.2843924.

A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1983. ISBN 0-201-11371-6.

Google. V8 source code repository, 2008.
https://github.com/v8/v8.

M. Guzdial and K. Rose. Squeak — Open Personal Computing and
Multimedia. Prentice-Hall, 2001.

U. Hölzle. Adaptive optimization for Self: reconciling high perfor-
mance with exploratory programming. Ph.D. thesis, Stanford,
1994.

D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Object-oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA ’97, 1997. doi:
10.1145/263698.263754.

S. Kaleba, C. Béra, A. Bergel, and S. Ducasse. A detailed vm
profiler for the cog vm. In International Workshop on Smalltalk
Technologies, IWST’17, 2017. doi: 10.1145/3139903.3139911.

J. H. Maloney and R. B. Smith. Directness and liveness in
the morphic user interface construction environment. In User
Interface and Software Technology, UIST ’95, 1995. doi:
10.1145/215585.215636.

E. Miranda. The cog smalltalk virtual machine writing a jit in a
high-level dynamic language. In VMIL ’11, VMIL 2011, 2011.

A. Rigo and S. Pedroni. Pypy’s approach to virtual machine con-
struction. In Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, pages 944–953, New York, NY,
USA, 2006. ACM. doi: 10.1145/1176617.1176753.

Assessing primitives performance on multi-stage execution 10 2018/9/15

I. Sun Microsystems. Strongtalk official website, 2006.
http://www.strongtalk.org/.

A. Wingo. Inside Javascriptcore’s Low-Level Interpreter, 2012.
http://wingolog.org/archives/2012/06/27/inside-javascriptcores-
low-level-interpreter.

Assessing primitives performance on multi-stage execution 11 2018/9/15

