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Lower deviation and moderate deviation probabilities for
maximum of a branching random walk

Xinxin Chen and Hui He
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Abstract: Given a super-critical branching random walk on R started from the origin, let Mn be
the maximal position of individuals at the n-th generation. Under some mild conditions, it is
known from [2] that as n→ ∞, Mn − x∗n + 3

2θ∗ log n converges in law for some suitable constants
x∗ and θ∗. In this work, we investigate its moderate deviation, in other words, the convergence
rates of

P

(
Mn ≤ x∗n− 3

2θ∗
log n− `n

)
,

for any positive sequence (`n) such that `n = O(n) and `n ↑ ∞. As a by-product, we also obtain
lower deviation of Mn; i.e., the convergence rate of

P(Mn ≤ xn),

for x < x∗ in Böttcher case where the offspring number is at least two. Finally, we apply our
techniques to study the small ball probability of limit of derivative martingale.

Mathematics Subject Classifications (2010): 60J60; 60F10.

Key words and phrases: Branching random walk; maximal position; moderate deviation; lower
deviation; Schröder case; Böttcher case; small ball probability; derivative martingale.

1 Introduction

1.1 Branching random walk and its maximum

We consider a discrete-time branching random walk on the real line, which, as a generalized
branching process, has been always a very attractive objet in probability theory in recent years.
It is closely related to many other random models, for example, random walk in random envi-
ronment, random fractals and discrete Gaussian free field; see [26], [32], [35], [41] and references
therein. One can refer to [40] and [28] for the recent developments on branching random walk
and refer to [11], [3] for some applications on discrete Gaussian free field.

Generally, to construct a branching random walk, we take a random point measure as the
reproduction law which describes both the number of children and their displacements. Each in-
dividual produces independently its children according to the law of this random point measure.
In this way, one develops a branching structure with motions.

In this work, we study a relatively simpler model which is constructed as follows. We take
a Galton-Watson tree T , rooted at ρ, with offspring distribution given by {pk; k ≥ 0}. For any
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u, v ∈ T , we write u � v if u is an ancestor of v or u = v. Moreover, to each node v ∈ T \ {ρ},
we attach a real-valued random variable Xv to represent its displacement. So the position of v is
defined by

Sv := ∑
ρ≺u�v

Xu.

Let Sρ := 0 for convenience. Suppose that given the tree T , {Xv; v ∈ T \ {ρ}} are i.i.d. copies of
some random variable X (which is called displacement or step size). Note here that the reproduc-
tion law is given by ∑|u|=1 δXu . Thus, {Su; u ∈ T } is a branching random walk with independence
between offsprings and motions. This independence will be very necessary for our arguments.

For any n ∈N, let Mn be the maximal position at the n-th generation, in other words,

Mn := sup
|v|=n

Sv,

where |v| denotes the generation of node v, i.e., the graph distance between v and ρ. The asymp-
totics of Mn have been studied by many authors, both in the subcritical/critical case and in su-
percritical case. One can refer to [31], [38] and [40] for more details.

We are interested in the supercritical case where ∑k≥0 kpk > 1 and the system survives with
positive probability. Let (Sn) be a random walk started from 0 with i.i.d. increments distributed
as X. Observe that for any individual |u| = n of the n-th generation, Su is distributed as Sn. If
E[|X|] < ∞, classical law of large number tells us that Sn ∼ E[X]n almost surely. However, as
there are too many individuals in this supercritical system, the asymptotical behavior of Mn is
not as that of Sn.

Conditionally on survival, under some mild conditions, it is known from [24, 30, 6] that

Mn

n
→ x∗ > E[X], a.s.,

where x∗ is a constant depending on both offspring law and displacement. Later, the logarithmic
order of Mn − x∗n is given by [1], [27] in different ways. Aı̈dékon in [2] showed that Mn − x∗n +

3
2θ∗ log n converges in law for some suitable θ∗ ∈ R∗+, which is an analogue of Bramson’s result
for branching Brownian motion in [10]; see also [12]. More details on these results will be given
in Section 2.

For maximum of branching Brownian motion, Chauvin and Rouault [13] first studied the large
deviation probability. Recently, Derrida and Shi [16, 17, 18] considered both the large deviation
and lower deviation. They established precise estimations. On the other hand, for branching
random walk, Hu in [25] studied the moderate deviation for Mn − x∗n + 3

2θ∗ log n; i.e.; P(Mn ≤
x∗n− 3

2θ∗ log n− `n) with `n = o(log n). Later, Gantert and Höfelsauer [23] and Bhattacharya [5]
investigated large deviation probability P(Mn ≥ xn) for x > x∗. In the same paper [23], Gantert
and Höfelsauer also studied the lower deviation probability P(Mn ≤ xn) for x < x∗ mainly in
Schröder case when p0 + p1 > 0. In fact, branching random walk in Schröder case can be viewed
as a generalized version of branching Brownian motion.

Motivated by [25], [23] and [17], the goal of this article is to study moderate deviation P(Mn ≤
x∗n− 3

2θ∗ log n− `n) with `n = O(n). As we already mentioned, [25] first considered this prob-
lem with `n = o(log n); see Remarks 1.2 and 1.5 below for more details. In particular, in Böttcher
case, it was assumed in [25] that the step size is bounded. As a by-product of our main results, in
Böttcher case when p0 = p1 = 0, we also obtain the lower deviation of Mn, i.e., P(Mn ≤ xn) for
x < x∗, which completes the work [23]. We shall see that the lower deviation of Mn in Böttcher
case turns to be very different from that in Schröder case. In fact, Gantert and Höfelsauer [23]
proved that in Schröder case P(Mn ≤ xn) decays exponentially. On contrast, in Böttcher case, we
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shall show that P(Mn ≤ xn) may decay double-exponentially or super-exponentially depending
on the tail behaviors of step size X. We will consider three typical left tail distributions of the
step size X and obtain the corresponding decay rates and rate functions. Finally, we also apply
our techniques to study the small ball probability for the limit of derivative martingale. The cor-
responding problem was also considered in [25] for a class of Mandelbrot’s cascades in Böttcher
case with bounded step size and in Schröder case; see also [33] and [34] for more backgrounds.
Let us state the theorems in the following subsection.

As usual, fn = O(gn) or fn = O(1)gn means that fn ≤ Cgn for all n ≥ 1. fn = Θ(1)gn means
that fn is bounded above and below by gn asymptotically. fn = o(gn) or fn = on(1)gn means
limn→∞

fn
gn

= 0.

1.2 Main results

Suppose that we are in the supercritical case where the tree T survives with positive probability.
Formally, we assume that for the offspring law {pk}k≥0:

m := ∑
k≥0

kpk > 1 and ∑
k≥0

k1+ξ pk < ∞, for some ξ > 0. (1.1)

At the same time, suppose that for the step size X,

E[X] = 0, and ψ(t) := E[etX] < ∞, ∀t ∈ (−K, K), (1.2)

for some K ∈ (0, ∞]. We define the rate function of large deviation for the corresponding random
walk {Sn} with i.i.d. step sizes X by

I(x) := sup
t∈R

{tx− log ψ(t)}, ∀x ∈ R.

Then it is known from Theorem 3.1 in [8] that

Mn

n
→ x∗, P− a.s.,

where x∗ = sup{x ≥ 0 : I(x) ≤ log m} ∈ (0, ∞). Note that if x∗ < ess supX ∈ (0, ∞], then
I(x∗) = log m since I is continuous in (0, ess supX). And also,

∃ θ∗ ∈ (0, ∞) such that I(x∗) = θ∗x∗ − log ψ(θ∗) = log m. (1.3)

According to Theorem 4.1 in [8], it further follows that P-a.s.,

Mn − nx → −∞,

which fails if we assume x∗ = ess supX ∈ (0, ∞) and mP(X = x∗) > 1. Moreover suppose that

ψ(t) < ∞, ∀t ∈ (−K, θ∗ + δ) for some δ > 0. (1.4)

Then [27] showed that Mn = mn + oP(log n) where

mn := x∗n− 3
2θ∗

log n, ∀n ≥ 1. (1.5)

Define the so-called derivative martingale by

Dn := ∑
|u|=n

θ∗(nx∗ − Su)eθ∗(Su−nx∗), n ≥ 1.
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It is known from [9] and [2] that under assumptions (1.1), (1.2), (1.3) and (1.4), there exists a
non-negative random variable D∞ such that

Dn
P−a.s.−→ D∞, as n→ ∞,

where {D∞ > 0} = {T = ∞} a.s. Next, given (1.1), (1.2), (1.3) and (1.4), Aı̈dékon [2] proved the
convergence in law of Mn −mn as follows. For any x ∈ R,

lim
n→∞

P(Mn ≤ mn + x) = E[e−Ce−x D∞ ], (1.6)

where C > 0 is a constant. We are going to study the asymptotic of P(Mn ≤ mn − `n) for
1� `n = O(n), as well as that of P(0 < D∞ < ε) which is closely related with P(Mn ≤ mn − `n)
by (1.6). Let us introduce the minimal offspring for T :

b := min{k ≥ 1 : pk > 0}.

We first present the main results in Böttcher case where b ≥ 2 and T = ∞.

Theorem 1.1 (Böttcher case, bounded step size). Assume (1.1), (1.2) and b ≥ 2. Suppose that
ess inf X = −L for some 0 < L < ∞, then for x ∈ (−L, x∗),

lim
n→∞

1
n

log [− log P (Mn ≤ xn)] =
x∗ − x
x∗ + L

log b. (1.7)

If P(X = −L) > 0, then (1.7) holds also for x = −L.

Remark 1.1. Note that the assumptions (1.1) and (1.2) do not imply the second logarithmic order of Mn.

Theorem 1.2 (Bounded step size: moderate deviation). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2.
Suppose that ess inf X = −L for some 0 < L < ∞. Then for any positive increasing sequence `n such that
`n ↑ ∞ and lim supn→∞

`n
n < x∗ + L,

P

(
Mn ≤ x∗n− 3

2θ∗
log n− `n

)
= e−e`n β(1+on(1)) . (1.8)

where β := log b
x∗+L ∈ (0, θ∗) because of (1.3).

Remark 1.2. Hu [25] obtained this moderate deviation (1.8) for `n = o(log n) in a more general setting
with bounded step size and without assuming independence between offsprings and motions. One could
check that β = sup{a > 0 : P(∑|u|=1 e−a(x∗−Xu) ≥ 1) = 1} = log b

x∗+L is coherent with that defined in
(1.10) of [25].

Proposition 1.3 (Bounded step size, Theorem 1.3 of [25]). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2.
Suppose that ess inf X = −L for some 0 < L < ∞. Then

P(D∞ < ε) = e−ε
− β

θ∗−β
+o(1)

.

Theorem 1.4 (Böttcher case, Weibull left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose
P(X ≤ −z) = Θ(1)e−λzα

as z → +∞ for some constant α ≥ 1 and λ > 0. Then for any positive
increasing sequence `n such that `n ↑ ∞ and `n = O(n),

lim
n→∞

1
`α

n
log P (Mn ≤ mn − `n) = −λ

(
b

1
α−1 − 1

)α−1
. (1.9)

where for convenience,
(

b
1

α−1 − 1
)α−1

:= b for α = 1. In particular, for any x < x∗,

lim
n→∞

1
nα

log P (Mn ≤ xn) = −λ
(

b
1

α−1 − 1
)α−1

(x∗ − x)α. (1.10)
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Remark 1.3. Note that if α < 1, the assumption (1.2) can not be satisfied and we are in another regime
where Mn grows faster than linear in time; see [22].

The weak convergence (1.6) shows that P(Mn ≤ mn − `n) and P(D < ε) are closely related. So
inspired by the previous theorem, one obtains the following result.

Proposition 1.5 (Böttcher case, Weibull left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose
P(X ≤ −z) = Θ(1)e−λzα

as z→ +∞ for some constant α ≥ 1 and λ > 0. Then

lim
ε→0+

1
(− log ε)α

log P(D∞ < ε) = − λ

(θ∗)α

(
b

1
α−1 − 1

)α−1
. (1.11)

Theorem 1.6 (Böttcher case, Gumbel left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose
P(X ≤ −z) = Θ(1) exp(−ezα

) as z → +∞ for some constant α > 0. Then for any positive increasing
sequence `n such that `n ↑ ∞ and `n = O(n),

lim
n→∞

`
− α

α+1
n log [− log P (Mn ≤ mn − `n)] =

(
1 + α

α
log b

) α
α+1

. (1.12)

In particular, for any x < x∗,

lim
n→∞

n−
α

α+1 log [− log P (Mn ≤ xn)] =
(

1 + α

α
log b

) α
α+1

(x∗ − x)
α

α+1 . (1.13)

Again, inspired by Theorem 1.6 and the weak convergence (1.6), we have the following result.

Proposition 1.7 (Böttcher case, Gumbel left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose
P(X ≤ −z) = Θ(1) exp(−ezα

) as z→ +∞ for some constant α > 0. Then

lim
ε→0+

1
(− log ε)

α
α+1

log [− log P(D∞ < ε)] =

(
1 + α

θ∗α
log b

) α
α+1

. (1.14)

Next theorem concerns the Schröder case where p0 + p1 > 0. Let q := P(T < ∞) ∈ [0, 1) be
the extinction probability and f (s) := ∑k≥0 pksk, s ∈ [0, 1] be the generating function of offspring.
Let Ps(·) := P(·|T = ∞). Denote max{a, 0} by a+ for any real number a ∈ R.

Theorem 1.8 (Schröder case). Assume (1.1), (1.2), (1.3), (1.4) and p0 + p1 > 0, Then for any positive
sequence (`n) such that `n ↑ ∞ and that `∗ := limn→∞

`n
n exists with `∗ ∈ [0, ∞), we have

lim
n→∞

1
`n

log Ps (Mn ≤ mn − `n) = H(x∗, γ), (1.15)

where γ = log f ′(q) and

H(x∗, γ) = sup
y≥(x∗−`∗)+

γ− I(x∗ − `∗ − y)
`∗ + y

= sup
a≥`∗

γ− I(x∗ − a)
a

. (1.16)

In particular, we have for any x < x∗,

lim
n→∞

1
n

log Ps (Mn ≤ xn) = (x∗ − x) sup
a≤x

−I(a) + γ

x∗ − a
. (1.17)
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Remark 1.4. (1.17) was obtained first by Gantert and Höfelsauer in [23]. In fact, it is shown in [23] that
for any x < x∗,

lim
n→∞

1
n

log Ps (Mn ≤ xn) = − inf
t∈(0,1]

{−tγ + tI((x− (1− t)x∗)/t)}.

Then one can check that

− inf
t∈(0,1]

{−tγ + tI((x− (1− t)x∗)/t)} = (x∗ − x) sup
a≤x

−I(a) + γ

x∗ − a
.

Remark 1.5. When `n = o(log n), (1.15) was obtained by Hu in [25] in a more general framework. In
fact, if restricted to our setting, then conditions (1.5) and (1.6) in [25] is equivalent to say that there exists
a constant t∗ > 0 such that

log f ′(q) + t∗x∗ + log ψ(−t∗) = 0, and ψ(−t) < ∞ for some t > t∗.

Since `n = o(log n), then `∗ = 0. So conditions (1.5) and (1.6) in [25] make sure that a∗ := x∗ −
(log ψ(t))′ |t=−t∗ is exactly the arg max of a 7→ γ−I(x∗−a)

a on [0, ∞); i.e.;

γ− I(x∗ − a∗)
a∗

= sup
a≥0

γ− I(x∗ − a)
a

= t∗.

General strategy: Let us explain our main ideas here, especially for P(Mn ≤ mn − `n) in
Böttcher case. Intuitively, to get an unusually lower maximum, we need to control both the size
of the genealogical tree and the displacements of individuals. More precisely, we need that at
the very beginning, the size of the genealogical tree is small with all individuals moving to some
atypically lower place. So, we take some intermediate time tn and suppose that the genealogical
tree is b-regular up to time tn and that all individuals at time tn are located below certain “criti-
cal” position−cn. Then the system continues with btn i.i.d. branching random walks started from
places below −cn. By choosing tn and cn = Θ(`n) in an appropriate way, we can expect that the
maximum at time n stays below mn − `n with high probability.

Note that, the time tn varies in different cases. If the step size is bounded from below, tn =
Θ(`n). If the step size has Weibull tail or Gumbel tail, tn = o(`n).

Our arguments and technics are also inspired by [14] where we studied the large deviation of
empirical distribution of branching random walk. All these ideas work also for the small ball
probability of D∞.

The rest of this paper is organised as follows. We treat the cases with bounded step size in
Section 2. Then, Section 3 proves Theorems 1.4 and 1.6, concerning the cases with unbounded
step size. In Section 4, we study P(0 < D∞ < ε) and prove Propositions 1.5 and 1.7. Finally, we
prove Theorems 1.8 for Schöder case in Section 5.

Let C1, C2, · · · and c1, c2, · · · denote positive constants whose values may change from line to
line.

2 Böttcher case with step size bounded on the left side: Proofs of The-
orems 1.1, 1.3:

In this section, we always suppose that b ≥ 2 and ess inf X = −L with L ∈ (0, ∞). Assumption
(1.2) yields that Mn = x∗n + o(n) with x∗ ∈ (0, ∞). We are going to prove that for any −L < x <
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x∗,
P(Mn ≤ xn) = e−e(1+o(1))β(x∗−x)n

, as n→ ∞, (2.1)

with β = log b
x∗+L . Next, for the second order of Mn, there are several regimes. We assume (1.3) and

(1.4) to get the classical one: Mn = mn + oP(log n) with mn = x∗n− 3
2θ∗ log n. In this regime, we

are going to prove that for any positive sequence `n ↑ ∞ such that lim supn→∞
`n
n < x∗ + L,

P(Mn ≤ mn − `n) = e−e(1+o(1))β`n , as n→ ∞. (2.2)

The proofs of (2.1) and (2.2) basically follow the same ideas. But (2.1) need to be treated in a more
general regime, without second order estimates.

For later use, let us introduce the counting measures as follows: for any B ⊂ R,

Zn(B) := ∑
|u|=n

1Su∈B, ∀n ≥ 0.

For simplicity, we write Zn for Zn(R) to represent the total population of the n-th generation. It
is clear that Zn ≥ bn. For any u ∈ T , let

Mu
n := max

|z|=n+|u|,z≥u
{Sz − Su}, ∀n ≥ 0.

be the maximal relative position of descendants of u. Clearly, (Mu
n)n≥0 is distributed as (Mn)n≥0.

2.1 Proof of Theorem 1.1

In this section, we show that for any x ∈ (−L, x∗), (2.1) holds. We use t−n to denote the intermedi-
ate time chosen for the lower bounds and t+n for upper bounds.

2.1.1 Lower bound of Theorem 1.1

As x > −L, let L′ := L− η with any sufficiently small η > 0 such that x > −L + η. Notice that
ess inf X = −L implies that P(X ≤ −L′) > 0 for any η > 0. Observe that for some interme-
diate time t−n , whose value will be determined later, if we let every individual before the t−n -th
generation make a displacement less than −L′, then

P(Mn ≤ xn) ≥P(Zt−n = bt−n ; ∀|u| = t−n , Su ≤ −L′t−n ; Mn ≤ xn)

≥P(Zt−n = bt−n ; ∀|u| = t−n , Su ≤ −L′t−n ; max
|u|=t−n

Mu
n−t−n

≤ xn + L′t−n ),

where {Mu
n−t−n
} are i.i.d. copies of Mn−t−n . By Markov property at time t−n , one gets that

P(Mn ≤ xn) ≥P(Zt−n = bt−n ; ∀|u| = t−n , Su ≤ −L′t−n )P(Mn−t−n ≤ xn + L′t−n )
bt−n

≥P(Zt−n = bt−n ; ∀1 ≤ |u| ≤ t−n , Xu ≤ −L′)P(Mn−t−n ≤ xn + Lt−n )
bt−n

=p∑
t−n −1
k=0 bk

b P(X ≤ −L′)∑
t−n
k=1 bk

P(Mn−t−n ≤ xn + L′t−n )
bt−n . (2.3)

Next, we shall estimate P(Mn−t−n ≤ xn + L′t−n )bt−n . The sequel of this proof will be divided into
two subparts depending on whether x∗ = R := ess sup X or not, respectively.
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Subpart 1: the case x∗ = R. Apparently, we have R < ∞ now. Take t−n = d (R−x)n
R+L′ e so that

xn + L′t−n ≥ R(n− t−n ). Thus,

P(Mn−t−n ≤ xn + L′t−n )
bt−n = 1.

Going back to (2.3), one sees that for some C ∈ R∗+,

P(Mn ≤ xn) ≥ p
bt−n −1

b−1
b

(
P(X ≤ −L′)

) bt−n +1−b
b−1 ≥ e−Cbt−n . (2.4)

It follows readily that for any x ∈ (−L, x∗),

lim sup
n→∞

1
n

log[− log P(Mn ≤ xn)] ≤ x∗ − x
x∗ + L− η

log b. (2.5)

Letting η ↓ 0 yields what we need.

Subpart 2: the case x∗ < R ∈ (0, ∞]. Now we have I(x∗) = log m because I is finite and
continuous in (0, R). Moreover, I(x) < ∞ for some x > x∗. For any sufficiently small a > 0, one
has

log m < I(x∗ + a) < ∞, and lim
a↓0

I(x∗ + a) = I(x∗) = log m.

Recall that −x < L′. Let t = x∗+a−x
x∗+L′+a and t−n = dtne so that xn + L′t−n > (x∗ + a)(n− t−n ) � 1 for

all large enough n. Therefore,

P(Mn−t−n ≤ xn + L′t−n )
bt−n ≥

(
1−P(Mn−t−n > (x∗ + a)(n− t−n ))

)bt−n
.

Here we apply the large deviation result obtained in [23]. More precisely, as the maximum of
independent random walks dominates stochastically Mn, one has

P(Mn−t−n > (x∗ + a)(n− t−n )) ≤ E[Zn−t−n ]P(Sn−t−n ≥ (x∗ + a)(n− t−n )) ≤ e−(I(x∗+a)−log m)(n−t−n )

which yields that

P(Mn−t−n ≤ xn + L′t−n )
bt−n ≥

(
1− e−(I(x∗+a)−log m)(n−t−n )

)bt−n
.

Note that log(1 − x) ≥ −2x for any x ∈ [0, 1/2]. Let δ(a) := I(x∗ + a) − log m. Then for all
sufficiently large n ≥ 1,

P(Mn−t−n ≤ xn + L′t−n )
bt−n ≥ e−2e−δ(a)(n−t−n )bt−n .

Plugging this in (2.3) implies that

P(Mn ≤ xn) ≥ e−Cbt−n e−2e−δ(a)(n−t−n )bt−n . (2.6)

Thus this choice of t, we have

lim sup
n→∞

1
n

log[− log P(Mn ≤ xn)] ≤ t log b. (2.7)

Since I(x∗) = log m, letting a ↓ 0 (hence t ↓ x∗−x
x∗+L′ and δ(a) ↓ 0) gives

lim sup
n→∞

1
n

log [− log P (Mn ≤ xn)] ≤ x∗ − x
x∗ + L− η

log b,

which implies the desired lower bound because η is arbitrary small. �
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2.1.2 Upper bound of Theorem 1.1

In this section, we show that

P(Mn ≤ xn) ≤ e−b
(x∗−x)n

x∗+L +o(n)

.

Note that for any 1 ≤ t+n ≤ n, Zt+n (·) is supported by [−Lt+n , ∞) a.s. Moreover, Zt+n ≥ bt+n . Observe
that

P(Mn ≤ xn) ≤P
(

Zt+n ([−Lt+n , ∞)) ≥ bt+n ; Mn ≤ xn
)

≤P

(
Zt+n ([−Lt+n , ∞)) ≥ bt+n ; max

|u|=t+n ;Su≥−Lt+n
(Su + Mu

n−t+n
) ≤ xn

)

≤P
(

Mn−t+n ≤ xn + Lt+n
)bt+n

. (2.8)

It remains to estimate P(Mn−t+n ≤ xn + Lt+n )bt+n . Again, the proof will be divided into two
subparts.

Subpart 1: the case x∗ = R. By taking t+n = b (R−x)n
R+L c − 1 so that xn + Lt+n < R(n− t+n ), one has

P(Mn−t+n ≤ xn + Lt+n )
bt+n ≤P(Mn−t+n < R(n− t+n ))

bt+n

=
(

1−P(Mn−t+n ≥ R(n− t+n ))
)bt+n

≤
(

1− c
n− t+n

)bt+n

≤ e
−c bt+n

(n−t+n ) , (2.9)

where we use the fact that P(MN ≥ RN) ≥ c/N for some c ∈ (0, 1) and all N ≥ 1. In fact,
we could construct a Galton-Watson tree with offspring ∑|u|=1 1Xu=R. Here E[∑|u|=1 1Xu=R] =
mP(X = R) ≥ 1 since x∗ = R. Its survival probability is positive if E[∑|u|=1 1Xu=R] > 1. Even
when E[∑|u|=1 1Xu=R] = 1, it is critical and the survival probability up to generation N is larger
than c/N for some c > 0 and for all N ≥ 1. In fact, its survival up to generation N implies that
some individual at time N has position RN. So, P(MN ≥ RN) ≥ c/N. We hence conclude from
(2.8) and (2.9) that

lim inf
n→∞

1
n

log[− log P(Mn ≤ xn)] ≥ (R− x) log b
R + L

.

Subpart 2: the case x∗ < R. First recall a result from [23]( see Theorem 3.2) which says that

lim
n→∞

1
n

log P(Mn > xn) = log m− I(x), for x > x∗. (2.10)

So for any sufficiently small a > 0 such that δ(a) = I(x∗ + a)− log m ∈ (0, ∞), for any x > −L,
let t = x∗+a−x

L+x∗+a ∈ (0, 1) and t+n = btnc so that x∗ < xn+Lt+n
n−t+n

≤ x∗ + a. Then for all n large enough,

P(Mn−t+n ≤ xn + Lt+n )
bt+n =

(
1−P

(
Mn−t+n >

xn + Lt+n
n− t+n

(n− t+n )
))bt+n

≤
(

1−P
(

Mn−t+n > (x∗ + a)(n− t+n )
))bt+n

≤
(
1− exp

{
− (I (x∗ + a)− log m + δ(a)) (n− t+n )

})bt+n

≤ e−e−2δ(a)(n−t+n )bt+n , (2.11)



10

where the second inequality follows from (2.10). Plugging (2.11) into (2.8) yields that

lim inf
n→∞

1
n

log[− log P(Mn ≤ xn)] ≥ −2δ(a)(1− t) + t log b.

Again letting a ↓ 0 (hence δ(a) ↓ 0 and t ↓ x∗−x
x∗+L ) gives the desired upper bound.

If P(X = −L) > 0, then the arguments for lower bound work well for x = −L and L′ = L.
For the upper bound, it is easy to see that all displacements are −L up to the n-th generation. We
thus could also obtain (1.7) for x = −L. �

2.2 Proof of Theorem 1.3

From now on, we assume (1.3) and (1.4) so that Mn = mn + oP(log n). Moreover, it is known in
[2] that Mn −mn converges in law to some random variable on the survival of T . In fact, (1.4) is
slightly stronger than the conditions given in [2]. Because of this convergence in law in Böttcher
case, we can find some y ∈ R+ so that

P(Mn ≤ mn − y) ≤ 1/2 ≤ P(Mn ≤ mn + y). (2.12)

Now we are ready to prove that for any increasing sequence `n = O(n) such that `n ↑ ∞ and
lim supn→∞

`n
n < x∗ + L,

P (Mn ≤ mn − `n) = e−e`n β(1+on(1)) , (2.13)

where β = log b
x∗+L and mn = x∗n− 3

2θ∗ log n.

2.2.1 Lower bound of Theorem 1.3

Similarly to the previous section on large deviation, let us again take some intermediate time
t−n ∈ [1, n− 1] and L′ = L− η with η > 0,

P(Mn ≤ mn − `n) ≥P
(

Zt−n = bt−n ; ∀|u| ≤ t−n , Xu ≤ −L′; Mn ≤ mn − `n

)
≥P

(
Zt−n = bt−n ; ∀|u| ≤ t−n , Xu ≤ −L′; max

|v|=t−n
Mv

n−t−n
≤ mn − `n + L′t−n

)
,

where by branching property is larger than

P
(

Zt−n = bt−n ; ∀|u| ≤ t−n , Xu ≤ −L′
)

P(Mn−t−n ≤ mn − `n + L′t−n )
bt−n .

Here we choose t−n = `n+K0
L′+x∗ with K0 ≥ 1 a fixed large constant so that mn− `n + L′t−n ≥ mn−t−n + y.

Consequently,

P(Mn ≤ mn − `n) ≥P
(

Zt−n = bt−n ; ∀|u| ≤ t−n , Xu ≤ −L′
)

P(Mn−t−n ≤ mn−t−n + y)bt−n

≥p∑
t−n −1
k=0 bk

b P(X ≤ −L′)∑
t−n
k=1 bk

P(Mn−t−n ≤ mn−t−n + y)bt−n ,

where the last inequality holds because of the independence between offsprings and motions.
Now note that −L = ess inf X means that qL := P(X ≤ −L′) ∈ (0, 1). By (2.12),

P(Mn ≤ mn − `n) ≥p∑
t−n −1
k=0 bk

b q∑
t−n
k=1 bk

L (1/2)bt−n = e−Θ(bt−n ),

with t−n = `n+K0
L+x∗−η . Letting n→ ∞ then η → 0 gives that

lim sup
n→∞

1
`n

log[− log P(Mn ≤ mn − `n)] ≤
log b

L + x∗
.
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2.2.2 Upper bound of Theorem 1.3

Let Bn = [−Lt+n , ∞) with some intermediate time t+n to be determined later. Observe that

P(Mn ≤ mn − `n) =P
(

Zt+n (Bn) ≥ bt+n ; Mn ≤ mn − `n

)
=P

(
Zt+n (Bn) ≥ bt+n ; max

|u|=t+n ,Su∈Bn

(Su + Mu
n−t+n

) ≤ mn − `n

)

≤P

(
Zt+n (Bn) ≥ bt+n ; max

|u|=t+n ,Su∈Bn

Mu
n−t+n

≤ mn − `n + Lt+n

)

Let t+n := `n−y
L+x∗ so that mn − `n + Lt+n ≤ mn−t+n − y. Then by (2.12),

P

(
Zt+n (Bn) ≥ bt+n ; max

|u|=t+n ,Su∈Bn

Mu
n−t+n

≤ mn − `n + Lt+n

)
≤P(Mn−t+n ≤ mn−t+n − y)bt+n

≤(1/2)bt+n . (2.14)

We hence obtain that
P(Mn ≤ mn − `n) ≤ e−cbt+n

with bt+n = Θ(eβ`n). This suffices to conclude Theorem 1.3.

3 Böttcher case with step size of (super)-exponential left tail

3.1 Proof of Theorem 1.4: step size of Weibull tail

Given Weibull tail distribution for the step size X, we are going to prove that, for any increasing
sequence (`n) such that `n ≤ O(n) and `n ↑ ∞, one has

lim
n→∞

1
`α

n
log P

(
Mn ≤ x∗n− 3

2θ∗
log n− `n

)
= −λ

(
b

1
α−1 − 1

)α−1
, (3.1)

where
(

b
1

α−1 − 1
)α−1

= b for α = 1.

3.1.1 Lower bound of Theorem 1.4

The case α = 1 In this case, we could show that

P(Mn ≤ mn − `n) ≥ e−λ`nb.

In fact, at the first generation, we suppose that there are exactly b individuals and that all of them
are located below −(`n + x∗ + y). So, as mn − `n + (`n + x∗ + y) ≥ mn−1 + y,

P(Mn ≤ mn − `n) ≥P(Z1 = b; ∀|u| = 1, Xu ≤ −(`n + x∗ + y); Mn ≤ mn − `n)

=P(Z1 = b; ∀|u| = 1, Xu ≤ −(`n + x∗ + y); max
|u|=1

(Xu + Mu
n−1) ≤ mn − `n)

≥P

(
Z1 = b; ∀|u| = 1, Xu ≤ −(`n + x∗ + y); max

|u|=1
(Mu

n−1) ≤ mn−1 + y
)

.
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By Markov property, this implies that

P(Mn ≤ mn − `n) ≥P (Z1 = b; ∀|u| = 1, Xu ≤ −(`n + x∗ + y))P (Mn−1 ≤ mn−1 + y)b

=pbP(X ≤ −(`n + x∗ + y))bP (Mn−1 ≤ mn−1 + y)b ,

where P(X ≤ −(`n + x∗ + y)) = Θ(1)e−λ`n and P (Mn−1 ≤ mn + y) ≥ 1/2. Consequently,

P(Mn ≤ mn − `n) ≥ Θ(1)e−λ`nb.

The case α > 1 We prove here that

lim inf
n→∞

1
`α

n
log P (Mn ≤ mn − `n) ≥ −λ

(
b

1
α−1 − 1

)α−1
,

By the assumption of Theorem 1.4, there exist two constants 0 < c < 1 and 0 < C < ∞ such
that for any x > 0,

ce−λxα ≤ P(X ≤ −x) ≤ Ce−λxα
. (3.2)

Following the strategy presented above, we choose t−n = o(`n) such that t−n ↑ ∞ and suppose
that up to the t−n -th generation, the genealogical tree is b-ary regular tree. For any |u| = k with
1 ≤ k ≤ t−n , we suppose that its displacement Xu < −ak with some ak > 0. We will precise the
sequence (ak)k≥1 later. Therefore,

P(Mn ≤ mn − `n) ≥ P
(

Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak; Mn ≤ mn − `n

)
≥P

(
Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak; max

|z|=t−n
(Sz + Mz

n−t−n
) ≤ mn − `n

)

≥P

(
Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak; max

|z|=t−n
(Mz

n−t−n
) ≤ mn − `n +

t−n

∑
k=1

ak

)
.

Once again by Markov property, one has

P(Mn ≤ mn − `n)

≥ P
(

Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak

)
P

(
Mn−t−n ≤ mn − `n +

t−n

∑
k=1

ak

)bt−n

. (3.3)

For the first term on the right hand side, by independence of branching structure and displace-
ments,

P
(

Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak

)
=p∑

t−n −1
k=0 bk

b

t−n

∏
k=1

P(X < −ak)
bk

.

By (3.2),

P
(

Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak

)
≥p

bt−n −1
b−1

b

t−n

∏
k=1

cbk
e−λ(ak)

αbk

=p
bt−n −1

b−1
b c

bt−n +1−b
b−1 exp{−λ

t−n

∑
k=1

aα
k bk}. (3.4)
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Now, we take the values of ak. Let bα := b
1

α−1 and ak =
(bα−1)

bk
α

`n. Note that ∑t−n
k=1 ak = (1− b−t−n

α )`n.

Take t−n = (α− 1) log `n
log b so that for n large enough,

mn − `n +
t−n

∑
k=1

ak = mn − `n + (1− b−t−n
α )`n ≥ mn−t−n + y. (3.5)

Meanwhile, one obtains that

bt−n = `α−1
n , and

t−n

∑
k=1

aα
k bk = `α

n(bα − 1)α−1(1− b−t−n
α ).

Plugging them into (3.4) yields that

P
(

Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu < −ak

)
≥ exp{−λ`α

n(bα − 1)α−1 −Θ(`α−1
n )}. (3.6)

Applying it and (3.5) to (3.3) yields that

P(Mn ≤ mn − `n) ≥ exp{−λ`α
n(bα − 1)α−1 −Θ(`α−1

n )}P
(

Mn−t−n ≤ mn−t−n + y
)bt−n

≥ exp{−λ`α
n(bα − 1)α−1 −Θ(`α−1

n )}(1/2)`
α−1
n .

As a result,
P(Mn ≤ mn − `n) ≥ exp{−λ`α

n(bα − 1)α−1 −Θ(`α−1
n )}. (3.7)

3.1.2 Upper bound of Theorem 1.4

In this section, we consider the upper bound of P(Mn ≤ mn − `n). First we state the following
lemma which gives a rough upper bound.

Lemma 3.1. Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. For any θ > 0 such that E[e−θX] < ∞ and for n
sufficiently large, we have

P(Mn ≤ mn − `n) ≤ e−θ`n/2. (3.8)

Proof. Take some intermediate time tn = t(log `n) = o(n) where t > 0 will be chosen later and let
Bn := [−(1− ε)`n, ∞) with any small ε ∈ (0, 1). Observe that as Ztn ≥ btn ,

P(Mn ≤ mn − `n) ≤P(Ztn(Bn) ≥ btn ; Mn ≤ mn − `n) + P(Ztn(Bn) < btn)

≤P(Ztn(Bn) ≥ btn ; Mn ≤ mn − `n) + P(Ztn(Bc
n) ≥ 1). (3.9)

On the one hand, one sees that for n large enough so that mn − ε`n ≤ mn−tn − y,

P(Ztn(Bn) ≥ btn ; Mn ≤ mn − `n) ≤P

(
Ztn(Bn) ≥ btn ; max

|u|=tn,Su∈Bn

(Su + Mu
n−tn

) ≤ mn − `n

)
≤P

(
Ztn(Bn) ≥ btn ; max

|u|=tn,Su∈Bn

(Mu
n−tn

) ≤ mn − ε`n

)
≤P

(
Ztn(Bn) ≥ btn ; max

|u|=tn,Su∈Bn

(Mu
n−tn

) ≤ mn−tn − y
)

.

By Markov property at time tn, all Mu
n−tn

are i.i.d. copies of Mn−tn for |u| = tn, and independent
of (Su, |u| = tn). This yields that

P(Ztn(Bn) ≥ btn ; Mn ≤ mn − `n) ≤ P (Mn−tn ≤ mn−tn − y)btn ≤ (1/2)btn . (3.10)
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On the other hand, by Markov property,

P(Ztn(Bc
n) ≥ 1) ≤E[Ztn(Bc

n)] = E

[
∑
|u|=tn

1{Su<−(1−ε)`n}

]
=mtn P(Stn < −(1− ε)`n)

=mtn P(e−θStn > eθ(1−ε)`n),

where θ > 0 such that E[e−θX] < ∞. Again by Markov property, one gets that

P(Ztn(Bc
n) ≥ 1) ≤mtn e−θ(1−ε)`n E[e−θStn ]

=mtn e−θ(1−ε)`n E[e−θX]tn ≤ e−θ(1−ε)`n+Θ(tn). (3.11)

Going back to (3.9), by (3.10) and (3.11), one concludes that

P(Mn ≤ mn − `n) ≤ e−cbtn
+ e−θ(1−ε)`n+ctn .

Here we choose t = 2/ log b so that btn = `2
n � θ`n � tn. Consequently, for arbitrary small ε > 0,

and for sufficiently large n,
P(Mn ≤ mn − `n) ≤ e−θ(1−ε)`n .

�

The case α = 1 This case is relatively simple. Take some intermediate time tn = t log `n where
t > 0 will be chosen later. Recall that Bn = [−(1− ε)`n, ∞) with arbitrary small ε ∈ (0, 1). Observe
that for any δ ∈ (0, 1/b),

P(Mn ≤ mn − `n) ≤ P(Ztn(Bn) ≥ δbtn ; Mn ≤ mn − `n) + P(Ztn(Bn) < δbtn)

≤P

(
Ztn(Bn) ≥ δbtn ; max

|u|=tn,Su∈Bn

(Su + Mu
n−tn

) ≤ mn − `n

)
+ P(Ztn(Bn) < δbtn). (3.12)

On the one hand, one sees that for n large enough so that mn − `n + (1− ε)`n ≤ mn−tn − ε`n/2,

P

(
Ztn(Bn) ≥ δbtn ; max

|u|=tn,Su∈Bn

(Su + Mu
n−tn

) ≤ mn − `n

)
≤ P

(
Ztn(Bn) ≥ δbtn ; max

|u|=tn,Su∈Bn

(Mu
n−tn

) ≤ mn−tn − ε`n/2
)

.

By Markov property at time tn, all Mu
n−tn

, |u| = tn are i.i.d. copies of Mn−tn , and independent of
Ztn(·). This yields that

P

(
Ztn(Bn) ≥ δbtn ; max

|u|=tn,Su∈Bn

(Mu
n−tn

) ≤ mn−tn − ε`n/2
)
≤P(Mn−tn ≤ mn−tn − ε`n/2)δbtn

≤e−λε`n/8×δbtn , (3.13)

where the last inequality follows from (3.8).

On the other hand, since δ < 1/b, the event Ztn(Bn) < δbtn implies that for any |v| = 1,
{|u| = tn : u > v} 6⊂ {|u| = tn, Su ∈ Bn}. This means that

P(Ztn(Bn) < δbtn) ≤P
(
∩|v|=1 ∪|u|=tn,u>v {Su ∈ Bc

n}
)

≤E
[
P
(
∪|u|=tn,u>v{Su ∈ Bc

n}
)Z1
]

≤E

(E

(
∑

|u|=tn,u>v
1{Su∈Bc

n}

∣∣∣|v| = 1

))b
 ,
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where the last inequality follows from the fact that Z1 ≥ b and Markov inequality. By indepen-
dence between offsprings and motions, this leads to

P(Ztn(Bn) < δbtn) ≤ (E [Ztn−1]P{Stn ∈ Bc
n})

b

≤
(

mtn−1P{Stn ≤ −(1− ε)`n}
)b

≤mb(tn−1)
(

e−θ(1−ε)`n E[e−θStn ]
)b

,

where the last inequality holds by Markov inequality for any θ ∈ (0, λ). We hence end up with

P(Ztn(Bn) < δbtn) ≤ mb(tn−1)e−θb(1−ε)`n E[e−θX]btn = e−θb(1−ε)`n+Θ(tn), (3.14)

for any θ ∈ (0, λ). In view of (3.12), (3.13) and (3.14), one obtains that for any ε ∈ (0, 1),

P(Mn ≤ mn − `n) ≤ e−λε`n/8×δbtn
+ e−λ(1−ε)b`n+Θ(tn).

For any choice of tn = Θ(log `n) so that btn � 1, we could conclude that for arbitrary small ε > 0,

lim sup
n→∞

1
`n

log P(Mn ≤ mn − `n) ≤ −λ(1− ε)b.

The case α > 1 We are going to use Lemma (3.1). Note that E[e−θX] < ∞ for any θ > 0 because
α > 1. It brings out that for all n large enough,

P(Mn ≤ mn − `n) ≤ e−2`n . (3.15)

We still use some intermediate time t+n = t+ log `n which will be determined later. The rouge
idea is similar to what we used above. Recall that Bn = [−(1− ε)`n, ∞) with ε ∈ (0, 1). Observe
that for δn := δ log `n with some δ ∈ (0, t+),

P(Mn ≤ mn − `n) ≤ P(Zt+n (Bn) ≥ bt+n −δn ; Mn ≤ mn − `n) + P(Zt+n (Bn) < bt+n −δn). (3.16)

Similarly to (3.10), by Markov property at time t+n , one has

P(Zt+n (Bn) ≥ bt+n −δn ; Mn ≤ mn − `n) ≤P
(

Mn−t+n ≤ mn − ε`n

)bt+n −δn

≤P
(

Mn−t+n ≤ mn−t+n − ε`n/2
)bt+n −δn

.

By use of the rough upper bound (3.15), we get that

P(Zt+n (Bn) ≥ bt+n −δn ; Mn ≤ mn − `n) ≤ e−ε`nbt+n −δn . (3.17)

It remains to bound P(Zt+n (Bn) < bt+n −δn). Let t denote a fixed tree of t+n generations and Pt(·)
denote the conditional probability P(·|Tt+n = t) where Tt+n denotes the genealogical tree T up to
the t+n -th generation. Observe that

P(Zt+n (Bn) < bt+n −δn) = ∑
t

P(Tt+n = t)Pt(Zt+n (Bn) ≤ bt+n −δn). (3.18)

Here for convenience, we replace each displacement Xu by X+
u := (−Xu)∨M for some large and

fixed constant M ≥ 1. Now denote the new positions achieved by these new displacements by

S+
u := ∑

ρ≺v�u
X+

v , ∀|u| ≤ t+n .
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Apparently, S+
u ≥ ∑ρ≺v�u(−Xv) = −Su. So, if Zt+n (Bn) ≤ bt+n −δn ,

∑
|u|=t+n

1{S+
u ≤(1−ε)`n} ≤ ∑

|u|=t+n

1{Su∈Bn} = Zt+n (Bn) ≤ bt+n −δn .

Therefore, for ε ∈ (0, 1/2) and for n sufficiently large so that t+n = t+ log `n ≤ ε`n,

Pt(Zt+n (Bn) ≤ bt+n −δn) ≤Pt

 ∑
|u|=t+n

1{S+
u ≤(1−ε)`n} ≤ bt+n −δn


≤ ∑

xu∈N∩[M,∞);u∈t
∏
u∈t

P(X+
u ∈ [xu, xu + 1))1{∑|u|=t+n

1{su≤(1−2ε)`n}≤bt+n −δn},

where su := ∑ρ≺v�u xv. We regard {xu, u ∈ t} as a marked tree. Here by manipulating the order
of u ∈ t, we could construct a new marked tree {xu, u ∈ t∗}, where the lexicographical orders
of individuals are totally rearranged so that the most recent common ancestor u∗ of individuals
located below (1− 2ε)`n at the t+n -th generation is of the generation sn with t+n ≥ sn ≥ δn. How-
ever, t∗ and t, viewed as sets of individuals, contain exactly the same individuals. The detailed
construction will be explained later.

Now we cut this u∗ and remove all its descendants from t∗ to get a pruned tree t\u
∗

∗ . Note that
all individuals of this tree t\u

∗
∗ up to the generation t+n − 1 have at least b children, except the

parent of u∗ . And the parent of u∗ has at least b − 1 children. So we can extract from t\u
∗

∗ an
”almost” b-ary regular tree t\u

∗

b so that its all descendants are located above (1− 2ε)`n. Here in

t\u
∗

b , the parent of u∗ has b− 1 children, and all others except the leaves have exactly b children.

This operation leads to the following estimation, for any fixed tree t such that P(Tt+n = t) > 0,

Pt(Zt+n (Bn) ≤ bt+n −δn) ≤ ∑
xu∈N∩[M,∞);u∈t∗

∏
u/∈t\u

∗
b

P(X+
u ∈ [xu, xu + 1))

× ∏
u∈t\u

∗
b

P(X+
u ∈ [xu, xu + 1))1{su≥(1−2ε)`n;∀u∈t\u

∗
b s.t.|u|=t+n }

≤ ∑
xu∈N∩[M,∞);u∈t\u

∗
b

∏
u∈t\u

∗
b

P(X+
u ∈ [xu, xu + 1))1{su≥(1−2ε)`n;∀u∈t\u

∗
b s.t.|u|=t+n }

≤Σ
t\u
∗

b ,A
+ Pt\u

∗
b (∃u ∈ t\u

∗

b such that X+
u ≥ A`n), (3.19)

where

Σ
t\u
∗

b ,A
:= ∑

xu∈N∩[M,A`n);u∈t\u
∗

b

∏
u∈t\u

∗
b

P(X+
u ∈ [xu, xu + 1))1{su≥(1−2ε)`n;∀u∈t\u

∗
b s.t.|u|=t+n }

.

As the total progeny of t\u
∗

b less than ∑t+n
k=1 bk,

Pt\u
∗

b (∃u ∈ t\u
∗

b such that X+
u ≥ A`n) ≤

(
t+n

∑
k=1

bk

)
P(X+ ≥ A`n)

≤Cbt+n +1e−λ(A`n)α
, (3.20)

where the last inequality follows from (3.2). On the other hand, observe that

Σ
t\u
∗

b ,A

≤ (CA`n)
bt+n +1

max
∀u∈t\u

∗
b ;xu∈N∩[M,A`n);

exp

−λ ∑
u∈t\u

∗
b

xα
u

 1{su≥(1−2ε)`n;∀u∈t\u
∗

b s.t.|u|=t+n }
.
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Here we claim that

max
xu∈N∩[M,A`n);∀u∈t\u

∗
b

exp

−λ ∑
u∈t\u

∗
b

xα
u

 1{su≥(1−2ε)`n;∀u∈t\u
∗

b s.t.|u|=t+n }

≤ exp
{
−λ(bα − 1)α−1(1− b−sn)α+1(1− 2ε)α`α

n

}
, (3.21)

with bα = b
1

α−1 . The proof of (3.21) will be postponed to the end of this section. Let us admit it
now so that

Σ
t\u
∗

b ,A
≤ (CA`n)

bt+n +1
exp

{
−λ(bα − 1)α−1(1− b−sn)α+1(1− 2ε)α`α

n

}
. (3.22)

Plugging (3.20) and (3.22) into (3.19) yields that

Pt(Zt+n (Bn) ≤ bt+n −δn)

≤ Cbt+n +1e−λ(A`n)α
+ (CA`n)

bt+n +1
exp

{
−λ(bα − 1)α−1(1− b−sn)α+1(1− 2ε)α`α

n

}
.

Plugging it into (3.18) brings out that

P(Zt+n (Bn) ≤ bt+n −δn)

≤ Cbt+n +1e−λ(A`n)α
+ (CA`n)

bt+n +1
exp

{
−λ(bα − 1)α−1(1− b−sn)α+1(1− 2ε)α`α

n

}
. (3.23)

(3.23), combined with (3.16) and (3.17), implies that

P(Mn ≤ mn − `n)

≤ e−ε`nbt+n −δn
+ Ce−λ(A`n)α+Θ(log `n) + e−λ(bα−1)α−1(1−b−sn )α+1(1−2ε)α`α

n+Θ(bt+n log(A`n)),

with t+n = t+ log `n, δn = δ log `n and sn ≥ δn. We choose here a large and fixed A ≥ 1, t+ = 3α−1
3 log b

and δ = 1
3 log b so that

`nbt+n −δn = `α+1/3
n , Aα ≥ 2(bα − 1)α−1 and bt+n log(A`n) = o(`α

n).

Consequently, letting n ↑ ∞ and then ε ↓ ∞ shows that

lim sup
n→∞

1
`α

n
log P(Mn ≤ mn − `n) ≤ −λ(bα − 1)α−1,

which is what we need.

To complete our proof, let us explain the construction of t\u
∗

b here.

Construction of t\u
∗

b . For a deterministic sample of the branching random walk up to the gen-

eration t+n , saying {su : u ∈ t}, we construct t∗ and t\u
∗

b in the following way. Let ` := (1− 2ε)`n
and colour the individuals in the backward sense.

At the t+n -th generation, there are at most bt+n −δn individuals positioned below `, which are all
coloured blue. The other individuals above ` are coloured red.

At the (t+n − 1)-th generation, the individuals are called u(1), u(2), · · · , u(|t|t+n −1)
according to

their positions such that su(1) > su(2) > · · · > su(|t|
t+n −1

)
, where |t|t+n −1 = #{u ∈ t : |u| = t+n − 1}. Let
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Figure 1: We first exchange u1’s blue child with u2’s red child; then we exchange u2’s blue children
with two of u3’s red children. So we color u1 and u2 red and color u3 and u4 blue (Notice that one
of u3’s children is red.) Next, we exchange u2 and its subtree with u4 and its subtree. Then w is
colored red and v is colored blue.

us start with u(1) and its children. If all children of u(1) are red, then we jump to u(2). Otherwise,
we keep its red children and replace its blue children by the red children of other individuals of
the (t+n − 1)-th generation. More precisely, saying that there are b1 blue children of u(1), we collect
the red children of u(2) and then the red children of u(3), · · · , until we find exactly b1 red ones to
be exchanged with the original b1 blue children of u(1).

When we exchange two individuals w and v, we exchange two subtrees rooted at w and v, as
well as their displacements. Therefore, the positions of red individuals get higher, and obviously
stay above `.

Note that in this way the number of children u(1) is unchanged and that all of them are posi-
tioned above ` and red. Now, we put u(1) aside and restart from u(2) by doing the same exchanges
with u(3), u(4), · · · . We would stop at some u(k) such that there is no red child left for u(k+1), · · · .
At this stage, there are at most 3 types of individuals at the (t+n − 1)-th generation: the ones with
only red children; the ones with only blue children and the one with red children and blue chil-
dren (Note that there is at most one individual who has both red and blue children). Then the
individuals with only red children are all coloured red. The others of the (t+n − 1)-th generation
are coloured blue. Notice that the number of blue individuals of the (t+n − 1)-th generation are at
most bt+n −δn−1.

By iteration, we exchange individuals and colour the tree from one generation to the previous
generation. Finally, we stop at some generation sn where only one individual is coloured blue
for the first time. We hence obtain the new tree t∗ and find that the ancestor u∗ of blue ones is of
generation sn ≥ δn. Observe that, for all red individuals, their descendants at t+n -th generation
are positioned above `.

Proof of (3.21). We shall find a suitable lower bound for ∑u∈t\u
∗

b
xα

u given that (xu; u ∈ t\u
∗

b ) ∈

{su ≥ (1− 2ε)`n; ∀u ∈ t\u
∗

b s.t.|u| = t+n } ∩ {xu ∈ N ∩ [M, A`n); ∀u ∈ t\u
∗

b }. Let us first consider
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Figure 2: Both u1 and u2 have two offsprings. After exchanging subtrees rooted at w and v, u1 is
colored red and u2 is colored blue.

the restrictions for xu. Note that if (xu; u ∈ t\u
∗

b ) ∈ {su ≥ (1− 2ε)`n; ∀u ∈ t\u
∗

b s.t.|u| = t+n }, then

∑
|u|=t+n ,u∈t\u

∗
b

su ≥ |t\u
∗

b |t+n (1− 2ε)`n, (3.24)

where |t\u
∗

b |k := ∑|u|=t+n 1{u∈t\u
∗

b } denotes the population of the k-th generation of t\u
∗

b . We further

observe that

∑
|u|=t+n ,u∈t\u

∗
b

su = ∑
|u|=t+n

∑
ρ≺v�u

xv =
t+n

∑
k=1

∑
|v|=k

xv ∑
|u|=t+n

1{v�u}


where ∑|u|=t+n 1{v�u} ≤ bt+n −|v| as t\u

∗

b is a pruned b-ary tree. Therefore, (3.24) implies

t+n

∑
k=1

∑
|v|=k

xvbt+n −k ≥ |t\u
∗

b |t+n (1− 2ε)`n. (3.25)

Recall that the generation of u∗ is sn. So,

|t\u
∗

b |k = bk, ∀1 ≤ k ≤ sn − 1; and |t\u
∗

b |k = bk − bk−sn , ∀sn ≤ k ≤ t+n . (3.26)

Let xk :=
∑
|v|=k,v∈t\u

∗
b

xv

|t\u
∗

b |k
be the averaged displacement at the k-th generation. Then,

t+n

∑
k=1

∑
|v|=k

xvbt+n −k = bt+n

(
sn−1

∑
k=1

xk +
bk − bk−sn

bk

t+n

∑
k=sn

xk

)
≤ bt+n

t+n

∑
k=1

xk.

Thus, if (3.25) holds, one has

t+n

∑
k=1

xk ≥
|t\u

∗

b |t+n
bt+n

(1− 2ε)`n = (1− b−sn)(1− 2ε)`n. (3.27)

Hence, (3.24) implies (3.27). This means that

{su ≥ (1− 2ε)`n; ∀u ∈ t\u
∗

b s.t.|u| = t+n } ⊂
{

t+n

∑
k=1

xk ≥ (1− b−sn)(1− 2ε)`n

}
. (3.28)
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So it suffices to find a suitable lower bound of ∑u∈t\u
∗

b
xα

u under the condition that

{
t+n

∑
k=1

xk ≥ (1− b−sn)(1− 2ε)`n

}
. (3.29)

In fact, by convexity on R+ of x 7→ xα for α > 1,

∑
u∈t\u

∗
b

xα
u =

t+n

∑
k=1

∑
|u|=t+n ,u∈t\u

∗
b

xα
u ≥

t+n

∑
k=1
|t\u

∗

b |k(xk)
α.

Immediately it follows from (3.26) that

∑
u∈t\u

∗
b

xα
u ≥ (1− b−sn)

t+n

∑
k=1

bk(xk)
α. (3.30)

Let us take a positive sequence (µk)k≥1, which will be determined later, with µα := ∑t+n
k=1 µα

k and
write

t+n

∑
k=1

bk(xk)
α = µα

t+n

∑
k=1

µα
k

µα
(µ−1

k bk/αxk)
α

which again by convexity implies that

t+n

∑
k=1

bk(xk)
α ≥ µα

(
t+n

∑
k=1

µα
k

µα
µ−1

k bk/αxk

)α

= µ1−α
α

(
t+n

∑
k=1

µα−1
k bk/αxk

)α

.

We choose µk = b−
k

α(α−1) so that µα−1
k bk/αxk = xk for any k ≥ 1. Thus,

µα =
t+n

∑
k=1

b−
k

α−1 ≤ 1

b
1

α−1 − 1

and

t+n

∑
k=1

bk(xk)
α ≥

(
1

b
1

α−1 − 1

)1−α
(

t+n

∑
k=1

xk

)α

≥ (bα − 1)α−1(1− b−sn)α(1− 2ε)α`α
n, (3.31)

where the last inequality follows from (3.29). Plugging (3.31) into (3.30) shows that

∑
u∈t\u

∗
b

xα
u ≥ (1− b−sn)(bα − 1)α−1(1− b−sn)α(1− 2ε)α`α

n.

This suffices to conclude (3.21).

3.2 Proof of Theorem 1.6: step size of Gumbel tail

The arguments for Gumbel tail are similar to that for Weibull tail.
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3.2.1 Lower bound of Theorem 1.6

We are going to demonstrate that

P(Mn ≤ mn − `n) ≥ exp{−eβ(α,b)`
α

α+1
n +o(`

α
α+1
n )},

where β(α, b) :=
( 1+α

α log b
) α

α+1 .

By the assumption of Theorem 1.6, there exist two constants 0 < c < C < ∞ such that for any
x ≥ 0,

ce−exα

≤ P(X < −x) ≤ Ce−exα

. (3.32)

Note that here α > 0. Using the similar arguments as in Section 3.1.1, we take some intermediate
time t−n = o(`n) and a positive sequence (ak)1≤k≤t−n . Then, observe that

P(M ≤ mn − `n) ≥ P
(

Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu ≤ −ak; Mn ≤ mn − `n

)
≥P

(
Zt−n = bt−n ; ∀|u| = k ∈ {1, · · · , t−n }, Xu ≤ −ak

)
P

(
Mn−t−n ≤ mn − `n +

t−n

∑
k=1

ak

)bt−n

=p∑
t−n −1
k=0 bk

b

t−n

∏
k=1

P(X < −ak)
bk

P

(
Mn−t−n ≤ mn − `n +

t−n

∑
k=1

ak

)bt−n

.

By (3.32), one has

P(M ≤ mn − `n) ≥ p
bt−n −1

b−1
b c

bt−n +1−b
b−1 exp

{
−

t−n

∑
k=1

eaα
k bk

}
P

(
Mn−t−n ≤ mn − `n +

t−n

∑
k=1

ak

)bt−n

. (3.33)

Here we take t−n := t−`
α

α+1
n and ak := (log b)1/α(t−n + 1− k)1/α with t− :=

( 1+α
α a
) α

α+1 (log b)−
1

α+1 .
Now observe that for arbitrary small ε > 0 and n large enough,

t−n

∑
k=1

ak =(log b)1/α
t−n

∑
k=1

(t−n + 1− k)1/α ≥ (log b)1/α
∫ t−n

1
(t−n + 1− s)1/αds

=`n −Θ(1) ≥ `n − (mn −mn−t−n − y).

This leads to the fact that

P

(
Mn−t−n ≤ mn − `n +

t−n

∑
k=1

ak

)bt−n

≥P
(

Mn−t−n ≤ mn−t−n + y
)bt−n

≥e−Θ(bt−n ).

On the other hand, note that

t−n

∑
k=1

eaα
k bk =

t−n

∑
k=1

bt−n +1 = bt−n e(t log b)`
α

α+1
n .

Going back to (3.33), as bt−n � t−n e(t log b)`
α

α+1
n and t−n = eo(`

α
α+1
n ) one concludes that

P(M ≤ mn − `n) ≥ exp
{
−t−n e(t log b)`

α
α+1
n −Θ(bt−n )

}
= exp{−eβ(α,b)`

α
α+1
n +o(`

α
α+1
n )},

where β(α, b) = t log b =
( 1+α

α log b
) α

α+1 .
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3.2.2 Upper bound of Theorem 1.6

We first prove a rough upper bound.

Lemma 3.2. Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. If P(X < −x) = Θ(1)e−exα

as x → ∞, then
there exists η0 > 0 such that for all n large enough,

P(Mn ≤ mn − `n) ≤ exp(−eη0`
α

α+1
n ). (3.34)

Proof. Let tn := t`
α

α+1
n with some 0 < t < ∞. Again, we use Bn = [−(1− ε)`n, ∞) with ε ∈ (0, 1)

and observe that by Markov property at time tn,

P(Mn ≤ mn − `n) ≤ P(Ztn(Bn) ≥ btn ; Mn ≤ mn − `n) + P(Ztn(Bc
n) ≥ 1)

≤P

(
Ztn(Bn) ≥ btn ; max

|u|=tn,Su∈Bn

(Mu
n−tn

) ≤ mn − ε`n

)
+ P(Ztn(Bc

n) ≥ 1)

≤P (Mn−tn ≤ mn−tn − y)btn
+ P(Ztn(Bc

n) ≥ 1),

for all sufficiently large n. Again, using P (Mn−tn ≤ mn−tn − y) ≤ 1/2 and Markov inequality,
one has

P(Mn ≤ mn − `n) ≤e−cbtn
+ P(Ztn(Bc

n) ≥ 1)

≤e−cbtn
+ E

[
∑
|u|=tn

1Su<−(1−ε)`n

]
=e−cbtn

+ mtn P(Stn < −(1− ε)`n).

Observe that {Stn < −(1− ε)`n} implies that at least one increment is less than −(1− ε)`n/tn.
Therefore,

P(Mn ≤ mn − `n) ≤e−cbtn
+ mtn tnP(X ≤ −(1− ε)`n/tn)

≤ exp(−cet log b`
α

α+1
n ) + Ctn exp(−e(

1−ε
t )α`

α
α+1
n + tn log m),

where we choose a small positive t such that tn exp(−e(
1−ε

t )α`
α

α+1
n + tn log m) � exp(−et log b`

α
α+1
n ).

As a result, there exists η0 > 0 such that for all n large enough,

P(Mn ≤ mn − `n) ≤ exp(−eη0`
α

α+1
n ).

�

Now we are ready to prove the upper bound. Let t+n := t+`
α

α+1
n = o(`n) and δn := δ`

α
α+1
n with

some 0 < δ < t+ < ∞. Using the similar arguments as in the Subsection 3.1.2, in view of (3.16)
and to (3.17), one sees that for any ε ∈ (0, 1/2),

P(Mn ≤ mn − `n) ≤P(Zt+n (Bn) ≥ bt+n −δn ; Mn ≤ mn − `n) + P(Zt+n (Bn) < bt+n −δn)

≤P(Mn−t+n ≤ mn−t+n − ε`n/2)bt+n −δn
+ P(Zt+n (Bn) < bt+n −δn),

which by (3.34) is bounded by

exp
(
−eη0(ε`n/2)

α
α+1 bt+n −δn

)
+ P(Zt+n (Bn) < bt+n −δn).
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Similarly to (3.19), one also sees that

P(Mn ≤ mn − `n) ≤ exp
(
−eη0(ε`n/2)

α
α+1 bt+n −δn

)
+ P(Zt+n (Bn) < bt+n −δn)

≤ exp
(
−eη0(n−t+n )

αβ
α+1 bt+n −δn

)
+ Σ

t\u
∗

b ,A
+ Pt\u

∗
b (∃|u| ≤ t+n , Xu ≥ A`n), (3.35)

where t\u
∗

b is a b-ary regular tree pruned at some u∗ of generation sn ≥ δn and

Σ
t\u
∗

b ,A
:= ∑

xu∈N∩[M,A`n);u∈t\u
∗

b

∏
u∈t\u

∗
b

P(X+
u ∈ [xu, xu + 1))1{su≥(1−2ε)`n;∀u∈t\u

∗
b s.t.|u|=t+n }

.

On the one hand, by Markov inequality like (3.20), for A ≥ 1 and n sufficiently large,

Pt\u
∗

b (∃|u| ≤ t+n , Xu ≥ A`n) ≤
t+n

∑
k=1

P(X ≥ A`n)

≤Cbt+n e−e(A`n)α

= on(1)P(Mn ≤ mn − `n), (3.36)

according to the lower bound obtained above. It remains to bound Σ
t\u
∗

b ,A
. In fact,

Σ
t\u
∗

b ,A
≤ (CA`n)

bt+n +1
max

xu∈N∩[M,A`n);∀u∈t\u
∗

b

exp

− ∑
u∈t\u

∗
b

exα
u

 1{su≥(1−2ε)`n;∀u∈t\u
∗

b s.t.|u|=t+n }

where we need to bound from below

min

 ∑
u∈t\u

∗
b

exα
u

∣∣∣xu ∈N∩ [M, A`n); ∀u ∈ t\u
∗

b ; su ≥ (1− 2ε)`n; ∀u ∈ t\u
∗

b s.t.|u| = t+n

 . (3.37)

Note that for any α > 0, there exists M ≥ 1 such that x 7→ exα
is convex on [M, ∞). Let us take

such M and observe that

∑
u∈t\u

∗
b

exα
u =

t+n

∑
k=1
|t\u

∗

b |k ∑
|u|=k

1

|t\u
∗

b |k
exα

u ≥
t+n

∑
k=1
|t\u

∗

b |kexα
k ,

where xk denotes the averaged displacements of the k-th generation. As |t\u
∗

b |k ≥ (1− b−sn)bk for
any 1 ≤ k ≤ t+n , one gets that

∑
u∈t\u

∗
b

exα
u ≥ (1− b−sn)

t+n

∑
k=1

bkexα
k ≥ (1− b−sn)eΞt+n , (3.38)

where
Ξt+n := max

1≤k≤t+n
{xα

k + k log b}.

Recall (3.28), one only need to bound Ξt+n under the condition that
{

∑t+n
k=1 xk ≥ (1− b−sn)(1− 2ε)`n

}
.

By the definition of Ξt+n , one sees that

xk ≤
(

Ξt+n − k log b
)1/α

, ∀k ∈ {1, · · · , t+n }.
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So,
{

∑t+n
k=1 xk ≥ (1− b−sn)(1− 2ε)`n

}
yields that

t+n

∑
k=1

(
Ξt+n − k log b

)1/α
≥ (1− b−sn)(1− 2ε)`n.

Apparently Ξt+n ≥ t+n log b. By monotonicity of x 7→ (Ξt+n − x log b)1/α on [0,
Ξt+n
log b ], one has

t+n

∑
k=1

(
Ξt+n − k log b

)1/α
≤
∫ t+n

0

(
Ξt+n − x log b

)1/α
dx ≤ α

(1 + α) log b
Ξ1+ 1

α

t+n
.

We then deduce that

Ξt+n ≥
(
(α + 1) log b

α
(1− b−sn)(1− 2ε)`n

) α
(α+1)

.

Going back to (3.38), one sees that

min

 ∑
u∈t\u

∗
b

exα
u

∣∣∣xu ∈N∩ [M, A`n); ∀u ∈ t\u
∗

b ; su ≥ (1− 2ε)`n; ∀u ∈ t\u
∗

b s.t.|u| = t+n


≥ (1− b−sn)eΞt+n ≥ (1− b−sn)e(

α+1
α (1−b−sn )(1−2ε) log b)

α
α+1 `

α
α+1
n . (3.39)

Using it to bound Σ
t\u
∗

b ,A
tells us that

Σ
t\u
∗

b ,A
≤ (CA`n)

bt+n +1 exp{−(1− b−sn)e(
α+1

α (1−b−sn )(1−2ε) log b)
α

α+1 `
α

α+1
n }.

Plugging it and (3.36) into (3.35) implies that

P(Mn ≤ mn − `n) ≤ exp
(
−eη0(ε`n/2)

α
α+1 bt+n −δn

)
+ on(1)P(Mn ≤ mn − `n)

+ (CA`n)
bt+n +1 exp{−(1 + on(1))e(

α+1
α (1−2ε) log b)

α
α+1 `

α
α+1
n }. (3.40)

Here we choose t+ = [
(

α+1
α (1− 2ε) log b

) α
α+1 − ηε/6]/ log b and δ = ηε

6 log b where ηε = η0(
ε
2 )

α
α+1 so

that

eη0(ε`n/2)
α

α+1 bt+n −δn � e(
α+1

α (1−2ε) log b)
α

α+1 `
α

α+1
n � bt+n log(CA`n).

This suffices to conclude that

lim inf
n→∞

1

`
α

α+1
n

log[− log P(Mn ≤ mn − `n)] ≥
(

α + 1
α

(1− 2ε) log b
) α

α+1

for arbitrary small ε > 0. This is exactly what we need.

4 Small ball probability of D∞ in Böttcher case

This section is devoted to proving Propositions 1.5 and 1.7. In fact, we only prove Proposition 1.5
when P(X < −x) ∼ e−λxα

. And we feel free to omit the proof of Proposition 1.7 as it follows from
the similar ideas.
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Write D for D∞ for simplicity. It is easy to see that for any time n ≥ 1,

D a.s.
= ∑
|u|=n

eθ∗(Su−nx∗)D(u), (4.1)

where given (Su : |u| = n),
(

D(u)
)
{|u|=n}

are i.i.d. copies of D. It is known from [37] that there

exists a constant CD > 0 such that as x → +∞,

P(D > x) ∼ CD

x
. (4.2)

We only present the proof for (1.11). (1.14) can be obtained by similar arguments as the proof of
Theorem 1.6.

4.1 Lower bound

First observe from (4.1) that for any n ≥ 1 and δ > 0,

P(D < ε) =P

(
∑
|u|=n

eθ∗(Su−nx∗)D(u) < ε

)

≥P

(
∀|u| = n, eθ∗(Su−nx∗) ≤ ε1+δ; ∑

|u|=n
D(u) < ε−δ

)

where ∑|u|=n D(u) = ΘP(Zn log Zn) because of (4.2). Therefore, by independence,

P(D < ε) ≥P

(
∀|u| = n, eθ∗(Su−nx∗) ≤ ε1+δ; Zn = bn; ∑

|u|=n
D(u) < ε−δ

)

=P

(
∀|u| = n, Su ≤ (1 + δ)

log ε

θ∗
+ nx∗; Zn = bn

)
P

(
bn

∑
k=1

Dk < ε−δ

)

where Dk; k ≥ 1 are i.i.d. copies of D. By weak law for triangular arrays in [19], ∑bn

k=1 Dk = (CD +

oP(1))bn log(bn). As long as we take n = tε � −δ log ε
log b so that nbn � ε−δ, P

(
∑bn

k=1 Dk < ε−δ
)
=

1 + o(1). So for ε > 0 small enough,

P(D < ε) ≥1
2

P

(
∀|u| = tε, Su ≤ (1 + δ)

log ε

θ∗
+ tεx∗; Ztε = btε

)
The sequel of this proof will be divided into two parts. Write aε := − log ε for convenience.
Subpart 1: the case α > 1. Choose tε = (α− 1) log((1+δ)aε)

log b and ak =
(bα−1)(1+2δ)aε

θ∗bk
α

. Then aε
θ∗ � tεx∗

and ∑tε

k=1(−ak) = (1− b−tε
α )−(1+2δ)aε

θ∗ ≤ (1 + 2δ) log ε
θ∗ + tεx∗. As a consequence,

P(D < ε) ≥1
2

P

(
∀|u| = tε, Su ≤ (1 + δ)

log ε

θ∗
+ tεx∗; Ztε = btε

)
≥1

2
P
(
Ztε = btε ; ∀|u| = k ∈ {1, · · · , tε}, Xu < −ak

)
≥ exp

{
−λ

(
(1 + 2δ)aε

θ∗

)α

(bα − 1)α−1 −Θ

((
(1 + δ)aε

θ∗

)α−1
)}

, (4.3)
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where the inequality follows from the same reasonings as (3.6). Letting ε ↓ 0 then δ ↓ 0 implies
that

lim inf
ε→0+

1
(− log ε)α

log P(D∞ < ε) ≥ − λ

(θ∗)α

(
b

1
α−1 − 1

)α−1
.

Subpart 2: the case α = 1. Choose tε = 1. Then it follows that

P(D < ε) ≥1
2

P

(
∀|u| = tε, Su ≤ (1 + δ)

log ε

θ∗
+ tεx∗; Ztε = btε

)
=P

(
Z1 = b; Xu ≤ (1 + δ)

log ε

θ∗
+ x∗, for all |u| = 1

)
≥pbcbeλb((1+δ)

log ε
θ∗ +x∗), (4.4)

which implies

lim inf
ε→0+

1
(− log ε)α

log P(D∞ < ε) ≥ −λ(1 + δ)

θ∗
b.

Then we obtain the lower bound by letting δ→ 0.

4.2 Upper bound

Subpart 1: the case α > 1. Define

U0(t, `) := {u ∈ T : |u| = t and θ∗(Su − tx∗) ≥ `}.

We first consider the case α > 1. Observe that

P (D < ε) = P

(
∑
|u|=t

eθ∗(Su−tx∗)D(u) < ε

)
≤ P

(
eθ∗(Su−tx∗)D(u) < ε, ∀|u| = t

)
(4.5)

We first obtain a rough bound, in fact,

P (D < ε) ≤ P
(

D(u) < 1, ∀u ∈ U0(t, log ε); #U0(t, log ε) ≥ bt
)
+ P

(
#U0(t, log ε) < bt)

≤ P(D < 1)bt
+ P

(
Zt

([
log ε

θ∗
+ tx∗, ∞

))
< bt

)
≤ e−cbt

+ P

(
∑
|u|=t

1{Su≤ log ε
θ∗ +tx∗} ≥ 1

)
, (4.6)

because P(D < 1) < 1 and Zt ≥ bt. Similar to (3.11), by Markov inequality,

P

(
∑
|u|=t

1{Su≤ log ε
θ∗ +tx∗} ≥ 1

)
≤ e−θ aε

θ∗+Θ(t)

for any θ > 0 such that E[e−θX] < ∞. We take t = 2 log aε/ log b so that bt � aε and t� aε. Then,
if α > 1, for ε > 0 small enough,

P (D < ε) ≤ e−2aε , (4.7)

where aε = − log ε.
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Now again by (4.5), for any δ ∈ (0, 1), tε ∈N+ and δε ∈ (0, tε) ∩N,

P(D < ε)

≤P

(
sup

u∈U0(tε,(1−δ) log ε)

D(u) < εδ, #U0(tε, (1− δ) log ε) ≥ btε−δε

)
+ P

(
#U0(tε, (1− δ) log ε) < btε−δε

)
≤P(D < εδ)btε−δε

+ P
(

#U0(tε, (1− δ) log ε) < btε−δε

)
. (4.8)

By (4.7), one sees that
P(D < εδ)btε−δε ≤ e2δbtε−δε log ε.

On the other hand, for the second term on the r.h.s. of (4.8), by taking tε = Θ(log aε)� aε,

P
(

#U0(tε, (1− δ) log ε) < btε−δε

)
≤P

(
∑
|u|=tε

1Su≥tεx∗+(1−δ)
log ε
θ∗

< btε−δε

)

≤P

(
∑
|u|=tε

1Su≥−(1−2δ) aε
θ∗

< btε−δε

)
.

which by the same arguments for deducing (3.23), is less than

Cbtε+1e−λ(Aaε)α
+ (CAaε)

btε+1
exp{−λ(bα − 1)α−1(

aε

θ∗
)α(1− 4δ)α(1 + oε(1))}.

Consequently, (4.8) becomes that

P(D < ε) ≤ e−2δbtε−δε aε +Cbtε+1e−λ(Aaε)α
+(CAaε)

btε+1
exp{−λ(bα− 1)α−1(

aε

θ∗
)α(1− 4δ)α(1+ oε(1))}.

Let tε =
α−1/3
log b log aε, δε =

1/3
log b log aε and A ≥ 1 be a large constant so that

btε−δε aε � aα
ε � btε log(CAaε), Aα ≥ 2

θ∗
(bα − 1)α−1.

This implies that for any δ ∈ (0, 1/4),

lim sup
ε↓0

1
(− log ε)α

log P (D < ε) ≤ − λ

(θ∗)α
(bα − 1)α−1(1− 4δ)α,

which gives the upper bound for the case α > 1.

Subpart 2: the case α = 1. For δ ∈ (0, 1/b), similar to (4.6), we have, for any tε ∈ (0, aε) ∩N,

P(D < ε) ≤P
(

D(u) < 1, ∀u ∈ U0(tε, log ε); #U0(tε, log ε) ≥ δbtε

)
+ P

(
#U0(tε, log ε) < δbtε

)
≤P(D < 1)δbtε

+ P
(
#U0(tε, log ε) < δbtε

)
≤e−cδbtε

+ P

(
∑
|u|=tε

1Su≥tεx∗− aε
θ∗

< δbtε

)
. (4.9)

Note that for tε = Θ(log aε) ≤ δ′aε with some δ′ ∈ (0, 1),

P

(
∑
|u|=tε

1Su≥tεx∗− aε
θ∗

< δbtε

)
=P

(
Ztε [tεx∗ − aε

θ∗
, ∞) < δbtε

)
≤P

(
Ztε [−(1− δ′)

aε

θ∗
, ∞) < δbtε

)
,
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which by the same reasonings as (3.14), yields that

P
(

Ztε [−(1− δ′)
aε

θ∗
, ∞) < δbtε

)
≤ e−θb(1−δ′) aε

θ∗+Θ(tε),

for any θ ∈ (0, λ). Going back to (4.9), one sees that

P(D < ε) ≤ e−cδbtε
+ e−θb(1−δ′) aε

θ∗+Θ(tε).

By taking tε =
2

log b log aε and θ = λ(1− δ′), one obtains that for any δ′ ∈ (0, 1),

lim sup
ε↓0

1
− log ε

log P(D < ε) ≤ −λb
θ∗

(1− δ′)2.

The the desired upper bound for the case α = 1 follows obviously.

5 Moderate deviation in Schröder case: proof of Theorem 1.8

Recall that Mn := max|u|=n{Su}. In Schröder case, let max ∅ := −∞ for convenience. Then
Aı̈dékon in [2] proved that for any x ∈ R,

lim
n→∞

P(Mn ≤ mn + x) = E[e−Ce−x D∞ ], (5.1)

where C > 0 is some constant and D∞ is the a.s. limit of derivative martingale which is a.s. 0 on
the extinction set {T < ∞}. Therefore,

lim
n→∞

Ps(Mn ≤ mn + x) = Es[e−Ce−x D∞ ],

which means that Mn −mn converges in law to some real-valued random variable under Ps.

The idea to obtain Theorem 1.8 is borrowed from [23]. We first recall some results in the lit-
eratures, which will be used later. The idea to this proof is borrowed from [23]. We first recall
some results from existed literatures. The following result is the well-known Cramér theorem;
see Theorem 3.7.4 in [15].

Lemma 5.1. Under the assumption (1.2), we have for any a > 0, as n→ ∞,

lim
n→∞

1
n

log P(Sn ≤ −an) = −I(−a). (5.2)

The next two statements characterize asymptotic behaviors of lower deviation probability for
Galton-Watson process; see Corollary 5 in [20] or Proposition 3 in [21]. Recall b := min{k ≥ 1 :
pk > 0} and γ = log f ′(q).

Lemma 5.2. Assume (1.1) and p0 + p1 > 0. Then for the minimal positive offspring number b,

lim
n→∞

1
n

log Ps(Zn = b) = lim
n→∞

1
n

log P(Zn = b) = γ, (5.3)

and for every subexponential sequence an with an → ∞,

lim
n→∞

1
n

log Ps(Zn ≤ an) = γ. (5.4)

We also have the following fact whose proof can e.g. be found in Lemma 1.2.15 in [15]. For
i ≥ 1, let (ai

n)n≥1 be a sequence of positive numbers and ai = lim supn→∞
1
n log ai

n. Then, for all
k ≥ 2 it holds that

lim sup
n→∞

1
n

k

∑
i=1

log ai
n = max

i∈{1,··· ,k}
ai. (5.5)
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5.1 Lower bound

For the lower bound, we consider the case that there are only b particles at some generation tn,
and the random walk of one of those b-particles moves to the level −atn. Furthermore, families
induced by other b − 1 particles at tn-th generation die out before time n. For any ε > 0 and
y ≥ (x∗ − `∗) ∨ 0 such that a = `∗ − x∗ + 2ε + y > 0, let tn = d `n

`∗+y+εe. Note that tn < n for n
large enough. By using Markov property at time tn, we have for n large enough,

Ps(Mn ≤ mn − `n)

≥ Ps(max
|u|=tn

Mu
n−tn
≤ mn + atn − `n|Ztn = b)P(Stn ≤ −atn)P

s(Ztn = b)

≥ P(Zn−tn = 0|Z0 = b− 1)Ps(Mn−tn ≤ mn + atn − `n)P(Stn ≤ −atn)P
s(Ztn = b)

≥ (q/2)b−1Ps(Mn−tn ≤ mn + atn − `n)P(Stn ≤ −atn)P
s(Ztn = b), (5.6)

where in the last inequality we use the fact that limn→∞ P(Zn−tn = 0|Z0 = b− 1) = qb−1. Recall
that mn = x∗n− 3

2θ∗ log n. Then one can check for n large enough,

mn + atn − `n −mn−tn = (`∗ + 2ε + y)tn +
3

2θ∗
log
(

n− tn

n

)
≥ 0.

Thus
lim inf

n→∞
Ps(Mn−tn ≤ mn + atn − `n) > 0

and then for n large enough,

Ps(Mn ≤ mn − `n) ≥ C1P(Stn ≤ −atn)P
s(Ztn = b). (5.7)

This, with (5.2) and (5.3) yields

lim inf
n→∞

1
`n

log Ps(Mn ≤ mn − `n) ≥
−I(−a)− γ

`∗ + y + ε
.

Letting ε ↓ 0, together with the fact that r.h.s. is independent of y, gives

lim inf
n→∞

1
`n

log Ps(Mn ≤ mn − `n) ≥ sup
y≥(x∗−`∗)∨0

−I(x∗ − `∗ − y) + γ

`∗ + y
.

�

5.2 Upper bound

Let
Tn = inf{t ≥ 0 : Zt`n ≥ `3

n}
and for δ > 0 and ε > 0 small enough set

F(δ) =
{

δ, 2δ, · · · , d 1
δ(`∗ ∨ x∗)(1 + 2ε)

eδ
}

.

Then

Ps(Mn ≤ mn − `n)

≤ Ps
(

Z `n
(`∗∨x∗)(1+2ε)

≤ `3
n

)
+ ∑

t∈F(δ)
Ps (Mn ≤ mn − `n; Tn ∈ (t− δ, t]) . (5.8)
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Note that by (5.4),

lim
n→∞

1
`n

log Ps
(

Z `n
(`∗∨x∗)(1+2ε)

≤ `3
n

)
=

γ

(`∗ ∨ x∗)(1 + 2ε)
(5.9)

and

lim sup
n→∞

1
`n

log Ps (Tn ∈ (t− δ, t]) ≤ lim
n→∞

1
`n

log Ps
(

Z(t−δ)`n ≤ `3
n

)
= γ(t− δ). (5.10)

Meanwhile,

Ps(Mn ≤ mn − `n|Tn ∈ (t− δ, t])
= Ps( max

|u|=t`n

Su + Mu
n−t`n

≤ mn − `n|Tn ∈ (t− δ, t])

≤ Ps( max
|u|=t`n

St`n + Mu
n−t`n

≤ mn − `n|Tn ∈ (t− δ, t])

≤ P(St`n ≤ mn − (1− ε)`n −mn−t`n) + Ps( max
|u|=t`n

Mu
n−t`n

≤ mn−t`n − ε`n|Tn ∈ (t− δ, t])

=: I1 + I2,

where in the first inequality, we use Lemma 5.1 [23] and the fact that (Su) and (Mu
n−t`n

) are inde-
pendent. We first estimate I1. For any t ∈ F(δ), one can check that tx∗ − 1 + ε < 0 and

mn − (1− ε)`n −mn−t`n =
3

2θ∗
log
(

n− t`n

n

)
+ (tx∗ − 1 + ε)`n

≤ (tx∗ − 1 + ε)`n.

Thus

lim sup
n→∞

1
`n

log P(St`n ≤ mn − (1− ε)`n −mn−t`n) ≤ −tI
(

tx∗ − 1 + ε

t

)
.

Next, we turn to I2.

I2 = Es[Ps(Mn−t`n ≤ mn−t`n − ε`n)
Zt`n |Tn ∈ (t− δ, t]]

≤ Ps(Mn−t`n ≤ mn−t`n − ε`n)
`2

n + Ps(Zt`n ≤ `2
n|Tn ∈ (t− δ, t]).

Notice that as Ps(Tn ∈ (t− δ, t]) ≥ 1−qn3

1−q P(Tn ∈ (t− δ, t]),

Ps(Ztn ≤ `2
n|Tn ∈ (t− δ, t]) ≤ (1− q + o(1))P(∃k ≤ δn, Zk ≤ `2

n|Z0 = `3
n) ≤ C`2

n
`3

n
q`

3
n−`2

n

and by Theorem 1.1 in [2], we have there exists c∗ ∈ (0, ∞] such that

lim
n→∞

Ps(Mn−t`n ≤ mn−t`n − ε`n) = e−c∗ < 1.

Thus I2 ≤ e−c1`
2
n and hence

lim sup
n→∞

1
`n

log Ps(Mn ≤ mn − `n|Tn ∈ (t− δ, t]) ≤ −tI
(

tx∗ − 1 + ε

t

)
. (5.11)

Going back to (5.8), together with (5.9), (5.10) and (5.5), one has

lim sup
n→∞

1
`n

log Ps(Mn ≤ mn − `n)

≤ γ

(`∗ ∨ x∗)(1 + 2ε)
∨ sup

t∈F(δ)

(
(t− δ)γ− tI

(
tx∗ − 1 + ε

t

))
,
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which by letting ε ↓ 0 and δ ↓ 0 implies

lim sup
n→∞

1
`n

log Ps(Mn ≤ mn − `n)

≤ sup
t∈(0, 1

`∗∨x∗ )

(
tγ− tI

(
tx∗ − 1

t

))

= sup
y≥(x∗−`∗)+

−I(x∗ − `∗ − y) + γ

`∗ + y
. (5.12)

We have completed the proof. �
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