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Given a super-critical branching random walk on R started from the origin, let M n be the maximal position of individuals at the n-th generation. Under some mild conditions, it is known from [2] that as n → ∞, M nx * n + 3 2θ * log n converges in law for some suitable constants x * and θ * . In this work, we investigate its moderate deviation, in other words, the convergence rates of

for any positive sequence ( n ) such that n = O(n) and n ↑ ∞. As a by-product, we also obtain lower deviation of M n ; i.e., the convergence rate of

for x < x * in B öttcher case where the offspring number is at least two. Finally, we apply our techniques to study the small ball probability of limit of derivative martingale.

Lower deviation and moderate deviation probabilities for maximum of a branching random walk 1 Introduction

Branching random walk and its maximum

We consider a discrete-time branching random walk on the real line, which, as a generalized branching process, has been always a very attractive objet in probability theory in recent years.

It is closely related to many other random models, for example, random walk in random environment, random fractals and discrete Gaussian free field; see [START_REF] Hu | A subdiffusive behaviour of recurrent random walk in random environment on a regular tree[END_REF], [START_REF] Liu | Fixed points of a generalised smoothing transformation and applications to branching processes[END_REF], [START_REF] Liu | On generalised cascades[END_REF], [START_REF] Zeitouni | Branching random walks and Gaussian fields. Probability and statistical physics in St. Petersburg[END_REF] and references therein. One can refer to [START_REF] Shi | Branching random walks. École d' Été[END_REF] and [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] for the recent developments on branching random walk and refer to [START_REF] Bramson | Convergence in law of the maximum of the two-dimensional discrete Gaussian free field[END_REF], [START_REF] Aïdékon | Large deviations for level sets of branching Brownian motion and Gaussian free fields[END_REF] for some applications on discrete Gaussian free field.

Generally, to construct a branching random walk, we take a random point measure as the reproduction law which describes both the number of children and their displacements. Each individual produces independently its children according to the law of this random point measure. In this way, one develops a branching structure with motions.

In this work, we study a relatively simpler model which is constructed as follows. We take a Galton-Watson tree T , rooted at ρ, with offspring distribution given by {p k ; k ≥ 0}. For any u, v ∈ T , we write u v if u is an ancestor of v or u = v. Moreover, to each node v ∈ T \ {ρ}, we attach a real-valued random variable X v to represent its displacement. So the position of v is defined by

S v := ∑ ρ≺u v X u .
Let S ρ := 0 for convenience. Suppose that given the tree T , {X v ; v ∈ T \ {ρ}} are i.i.d. copies of some random variable X (which is called displacement or step size). Note here that the reproduction law is given by ∑ |u|=1 δ X u . Thus, {S u ; u ∈ T } is a branching random walk with independence between offsprings and motions. This independence will be very necessary for our arguments.

For any n ∈ N, let M n be the maximal position at the n-th generation, in other words,

M n := sup |v|=n S v ,
where |v| denotes the generation of node v, i.e., the graph distance between v and ρ. The asymptotics of M n have been studied by many authors, both in the subcritical/critical case and in supercritical case. One can refer to [START_REF] Lalley | On the maximal displacement of a critical branching random walk[END_REF], [START_REF] Neuman | On the maximal displacement of subcritical branching random walks[END_REF] and [START_REF] Shi | Branching random walks. École d' Été[END_REF] for more details.

We are interested in the supercritical case where ∑ k≥0 kp k > 1 and the system survives with positive probability. Let (S n ) be a random walk started from 0 with i.i.d. increments distributed as X. Observe that for any individual |u| = n of the n-th generation, S u is distributed as S n . If E[|X|] < ∞, classical law of large number tells us that S n ∼ E[X]n almost surely. However, as there are too many individuals in this supercritical system, the asymptotical behavior of M n is not as that of S n .

Conditionally on survival, under some mild conditions, it is known from [START_REF] Hammersley | Postulates for subadditive processes[END_REF][START_REF] Kingman | The first birth problem for an age-dependent branching process[END_REF][START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF] that

M n n → x * > E[X], a.s.,
where x * is a constant depending on both offspring law and displacement. Later, the logarithmic order of M nx * n is given by [START_REF] Addario-Berry | Minima in branching random walks[END_REF], [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] in different ways. Aïdékon in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] showed that M nx * n + 3 2θ * log n converges in law for some suitable θ * ∈ R * + , which is an analogue of Bramson's result for branching Brownian motion in [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]; see also [START_REF] Bramson | Convergence in law of the maximum of nonlattice branching random walk[END_REF]. More details on these results will be given in Section 2.

For maximum of branching Brownian motion, Chauvin and Rouault [START_REF] Chauvin | KPP equation and supercritical branching Brownian motion in the subcritical speed area: application to spatial trees[END_REF] first studied the large deviation probability. Recently, Derrida and Shi [START_REF] Derrida | Large deviations for the branching Brownian motion in presence of selection or coalescence[END_REF][START_REF] Derrida | Large deviations for the rightmost position in a branching Brownian motion[END_REF][START_REF] Derrida | Slower deviations of the branching Brownian motion and of branching random walks[END_REF] considered both the large deviation and lower deviation. They established precise estimations. On the other hand, for branching random walk, Hu in [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] studied the moderate deviation for M nx * n + 3 2θ * log n; i.e.; P(M n ≤ x * n -3 2θ * log nn ) with n = o(log n). Later, Gantert and H öfelsauer [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF] and Bhattacharya [START_REF] Bhattacharya | Large deviation for extremes in branching random walk with regularly varying displacements[END_REF] investigated large deviation probability P(M n ≥ xn) for x > x * . In the same paper [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF], Gantert and H öfelsauer also studied the lower deviation probability P(M n ≤ xn) for x < x * mainly in Schr öder case when p 0 + p 1 > 0. In fact, branching random walk in Schr öder case can be viewed as a generalized version of branching Brownian motion.

Motivated by [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF], [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF] and [START_REF] Derrida | Large deviations for the rightmost position in a branching Brownian motion[END_REF], the goal of this article is to study moderate deviation P(M n ≤ x * n -3 2θ * log nn ) with n = O(n). As we already mentioned, [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] first considered this problem with n = o(log n); see Remarks 1.2 and 1.5 below for more details. In particular, in B öttcher case, it was assumed in [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] that the step size is bounded. As a by-product of our main results, in B öttcher case when p 0 = p 1 = 0, we also obtain the lower deviation of M n , i.e., P(M n ≤ xn) for x < x * , which completes the work [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF]. We shall see that the lower deviation of M n in B öttcher case turns to be very different from that in Schr öder case. In fact, Gantert and H öfelsauer [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF] proved that in Schr öder case P(M n ≤ xn) decays exponentially. On contrast, in B öttcher case, we shall show that P(M n ≤ xn) may decay double-exponentially or super-exponentially depending on the tail behaviors of step size X. We will consider three typical left tail distributions of the step size X and obtain the corresponding decay rates and rate functions. Finally, we also apply our techniques to study the small ball probability for the limit of derivative martingale. The corresponding problem was also considered in [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] for a class of Mandelbrot's cascades in B öttcher case with bounded step size and in Schr öder case; see also [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous random walks[END_REF] and [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF] for more backgrounds. Let us state the theorems in the following subsection.

As usual, f n = O(g n ) or f n = O(1)g n means that f n ≤ Cg n for all n ≥ 1. f n = Θ(1)g n means that f n is bounded above and below by g n asymptotically.

f n = o(g n ) or f n = o n (1)g n means lim n→∞ f n g n = 0.

Main results

Suppose that we are in the supercritical case where the tree T survives with positive probability. Formally, we assume that for the offspring law {p k } k≥0 :

m := ∑ k≥0 kp k > 1 and ∑ k≥0 k 1+ξ p k < ∞, for some ξ > 0. (1.1)
At the same time, suppose that for the step size X,

E[X] = 0, and ψ(t) := E[e tX ] < ∞, ∀t ∈ (-K, K), (1.2) 
for some K ∈ (0, ∞]. We define the rate function of large deviation for the corresponding random walk {S n } with i.i.d. step sizes X by

I(x) := sup t∈R {tx -log ψ(t)}, ∀x ∈ R.
Then it is known from Theorem 3.1 in [START_REF] Biggins | Branching out[END_REF] that

M n n → x * , P -a.s.,
where x * = sup{x ≥ 0 : I(x) ≤ log m} ∈ (0, ∞). Note that if x * < ess supX ∈ (0, ∞], then I(x * ) = log m since I is continuous in (0, ess supX). And also,

∃ θ * ∈ (0, ∞) such that I(x * ) = θ * x * -log ψ(θ * ) = log m. (1.3) 
According to Theorem 4.1 in [START_REF] Biggins | Branching out[END_REF], it further follows that P-a.s.,

M n -nx → -∞,
which fails if we assume x * = ess supX ∈ (0, ∞) and mP(X = x * ) > 1. Moreover suppose that

ψ(t) < ∞, ∀t ∈ (-K, θ * + δ) for some δ > 0. (1.4)
Then [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] showed that M n = m n + o P (log n) where

m n := x * n - 3 2θ * log n, ∀n ≥ 1. (1.5)
Define the so-called derivative martingale by

D n := ∑ |u|=n θ * (nx * -S u )e θ * (S u -nx * ) , n ≥ 1.
It is known from [START_REF] Biggins | Measure change in multitype branching[END_REF] and [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] that under assumptions (1.1), (1.2), (1.3) and (1.4), there exists a non-negative random variable D ∞ such that

D n P-a.s. -→ D ∞ , as n → ∞,
where {D ∞ > 0} = {T = ∞} a.s. Next, given (1.1), (1.2), (1.3) and (1.4), Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] proved the convergence in law of M nm n as follows. For any x ∈ R,

lim n→∞ P(M n ≤ m n + x) = E[e -Ce -x D ∞ ], (1.6) 
where C > 0 is a constant. We are going to study the asymptotic of P(M n ≤ m nn ) for 1 n = O(n), as well as that of P(0 < D ∞ < ε) which is closely related with P(M n ≤ m nn ) by (1.6). Let us introduce the minimal offspring for T :

b := min{k ≥ 1 : p k > 0}.
We first present the main results in B öttcher case where b ≥ 2 and T = ∞. Theorem 1.1 (B öttcher case, bounded step size). Assume (1.1), (1.2) and b ≥ 2. Suppose that ess inf X = -L for some 0 < L < ∞, then for x ∈ (-L, x * ),

lim n→∞ 1 n log [-log P (M n ≤ xn)] = x * -x x * + L log b. (1.7)
If P(X = -L) > 0, then (1.7) holds also for x = -L. Suppose that ess inf X = -L for some 0 < L < ∞. Then for any positive increasing sequence n such that n ↑ ∞ and lim sup n→∞ )) .

n n < x * + L, P M n ≤ x * n - 3 2θ * log n -n = e -e n β(1+on ( 1 
(1.8)

where β := log b

x * +L ∈ (0, θ * ) because of (1.3). Remark 1.2. Hu [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] obtained this moderate deviation (1.8) for n = o(log n) in a more general setting with bounded step size and without assuming independence between offsprings and motions. One could check that β = sup{a > 0 :

P(∑ |u|=1 e -a(x * -X u ) ≥ 1) = 1} = log b
x * +L is coherent with that defined in (1.10) of [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF]. Proposition 1.3 (Bounded step size, Theorem 1.3 of [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF]). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose that ess inf X = -L for some 0 < L < ∞. Then

P(D ∞ < ε) = e -ε - β θ * -β +o (1) 
.

Theorem 1.4 (B öttcher case, Weibull left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose P(X ≤ -z) = Θ(1)e -λz α as z → +∞ for some constant α ≥ 1 and λ > 0. Then for any positive increasing sequence n such that n ↑ ∞ and n = O(n),

lim n→∞ 1 α n log P (M n ≤ m n -n ) = -λ b 1 α-1 -1 α-1
.

(1.9)

where for convenience, b

1 α-1 -1 α-1 := b for α = 1.
In particular, for any x < x * ,

lim n→∞ 1 n α log P (M n ≤ xn) = -λ b 1 α-1 -1 α-1 (x * -x) α . (1.10) Remark 1.3. Note that if α < 1, the assumption (1.
2) can not be satisfied and we are in another regime where M n grows faster than linear in time; see [START_REF] Gantert | The maximum of a branching random walk with semiexponential increments[END_REF].

The weak convergence (1.6) shows that P(M n ≤ m nn ) and P(D < ε) are closely related. So inspired by the previous theorem, one obtains the following result. Proposition 1.5 (B öttcher case, Weibull left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose P(X ≤ -z) = Θ(1)e -λz α as z → +∞ for some constant α ≥ 1 and λ > 0. Then

lim ε→0+ 1 (-log ε) α log P(D ∞ < ε) = - λ (θ * ) α b 1 α-1 -1 α-1
.

(1.11)

Theorem 1.6 (B öttcher case, Gumbel left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose P(X ≤ -z) = Θ(1) exp(-e z α ) as z → +∞ for some constant α > 0. Then for any positive increasing sequence n such that n ↑ ∞ and n = O(n),

lim n→∞ -α α+1 n log [-log P (M n ≤ m n -n )] = 1 + α α log b α α+1
.

(1.12)

In particular, for any x < x * ,

lim n→∞ n -α α+1 log [-log P (M n ≤ xn)] = 1 + α α log b α α+1 (x * -x) α α+1 .
(1.13)

Again, inspired by Theorem 1.6 and the weak convergence (1.6), we have the following result.

Proposition 1.7 (B öttcher case, Gumbel left tail). Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. Suppose P(X ≤ -z) = Θ(1) exp(-e z α ) as z → +∞ for some constant α > 0. Then

lim ε→0+ 1 (-log ε) α α+1 log [-log P(D ∞ < ε)] = 1 + α θ * α log b α α+1
.

(1.14)

Next theorem concerns the Schr öder case where p 0 + p 1 > 0. Let q := P(T < ∞) ∈ [0, 1) be the extinction probability and f (s) := ∑ k≥0 p k s k , s ∈ [0, 1] be the generating function of offspring. Let P s (•) := P(•|T = ∞). Denote max{a, 0} by a + for any real number a ∈ R. Theorem 1.8 (Schr öder case). Assume (1.1), (1.2), (1.3), (1.4) and p 0 + p 1 > 0, Then for any positive sequence ( n ) such that n ↑ ∞ and that * := lim n→∞ n n exists with * ∈ [0, ∞), we have

lim n→∞ 1 n log P s (M n ≤ m n -n ) = H(x * , γ), ( 1.15) 
where γ = log f (q) and

H(x * , γ) = sup y≥(x * - * ) + γ -I(x * - * -y) * + y = sup a≥ * γ -I(x * -a) a . (1.16)
In particular, we have for any x < x * ,

lim n→∞ 1 n log P s (M n ≤ xn) = (x * -x) sup a≤x -I(a) + γ x * -a .
(1.17)

Remark 1.4. (1.17) was obtained first by Gantert and Höfelsauer in [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF]. In fact, it is shown in [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF] that for any x < x * ,

lim n→∞ 1 n log P s (M n ≤ xn) = -inf t∈(0,1] {-tγ + tI((x -(1 -t)x * )/t)}.
Then one can check that

-inf t∈(0,1] {-tγ + tI((x -(1 -t)x * )/t)} = (x * -x) sup a≤x -I(a) + γ x * -a .
Remark 1.5. When n = o(log n), (1.15) was obtained by Hu in [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] in a more general framework. In fact, if restricted to our setting, then conditions (1.5) and (1.6) in [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] is equivalent to say that there exists a constant t * > 0 such that log f (q) + t * x * + log ψ(-t * ) = 0, and ψ(-t) < ∞ for some t > t * .

Since n = o(log n), then * = 0. So conditions (1.5) and (1.6) in [START_REF] Hu | How big is the minimum of a branching random walk?[END_REF] make sure that a * := x * -

(log ψ(t)) | t=-t * is exactly the arg max of a → γ-I(x * -a) a on [0, ∞); i.e.; γ -I(x * -a * ) a * = sup a≥0 γ -I(x * -a) a = t * .
General strategy: Let us explain our main ideas here, especially for P(M n ≤ m nn ) in B öttcher case. Intuitively, to get an unusually lower maximum, we need to control both the size of the genealogical tree and the displacements of individuals. More precisely, we need that at the very beginning, the size of the genealogical tree is small with all individuals moving to some atypically lower place. So, we take some intermediate time t n and suppose that the genealogical tree is b-regular up to time t n and that all individuals at time t n are located below certain "critical" position -c n . Then the system continues with b t n i.i.d. branching random walks started from places below -c n . By choosing t n and c n = Θ( n ) in an appropriate way, we can expect that the maximum at time n stays below m nn with high probability.

Note that, the time t n varies in different cases. If the step size is bounded from below, t n = Θ( n ). If the step size has Weibull tail or Gumbel tail, t n = o( n ).

Our arguments and technics are also inspired by [START_REF] Chen | On large deviation probabilities for empirical distribution of branching random walks: Schr öder case and B öttcher case[END_REF] where we studied the large deviation of empirical distribution of branching random walk. All these ideas work also for the small ball probability of D ∞ .

The rest of this paper is organised as follows. We treat the cases with bounded step size in Section 2. Then, Section 3 proves Theorems 1.4 and 1.6, concerning the cases with unbounded step size. In Section 4, we study P(0 < D ∞ < ε) and prove Propositions 1.5 and 1.7. Finally, we prove Theorems 1.8 for Sch öder case in Section 5. In this section, we always suppose that b ≥ 2 and ess inf X = -L with L ∈ (0, ∞). Assumption (1.2) yields that M n = x * n + o(n) with x * ∈ (0, ∞). We are going to prove that for any -L < x <

x * , P(M n ≤ xn) = e -e (1+o(1))β(x * -x)n , as n → ∞, (

with β = log b x * +L . Next, for the second order of M n , there are several regimes. We assume (1.3) and (1.4) to get the classical one:

M n = m n + o P (log n) with m n = x * n -3 2θ * log n.
In this regime, we are going to prove that for any positive sequence n ↑ ∞ such that lim sup n→∞ n n < x * + L,

P(M n ≤ m n -n ) = e -e (1+o(1))β n , as n → ∞.
(2.

2)

The proofs of (2.1) and (2.2) basically follow the same ideas. But (2.1) need to be treated in a more general regime, without second order estimates.

For later use, let us introduce the counting measures as follows: for any B ⊂ R,

Z n (B) := ∑ |u|=n 1 S u ∈B , ∀n ≥ 0.
For simplicity, we write Z n for Z n (R) to represent the total population of the n-th generation. It is clear that Z n ≥ b n . For any u ∈ T , let

M u n := max |z|=n+|u|,z≥u {S z -S u }, ∀n ≥ 0.
be the maximal relative position of descendants of u. Clearly,

(M u n ) n≥0 is distributed as (M n ) n≥0 .

Proof of Theorem 1.1

In this section, we show that for any x ∈ (-L, x * ), (2.1) holds. We use t - n to denote the intermediate time chosen for the lower bounds and t + n for upper bounds.

Lower bound of Theorem 1.1

As x > -L, let L := Lη with any sufficiently small η > 0 such that x > -L + η. Notice that ess inf X = -L implies that P(X ≤ -L ) > 0 for any η > 0. Observe that for some intermediate time t - n , whose value will be determined later, if we let every individual before the t - n -th generation make a displacement less than -L , then

P(M n ≤ xn) ≥P(Z t - n = b t - n ; ∀|u| = t - n , S u ≤ -L t - n ; M n ≤ xn) ≥P(Z t - n = b t - n ; ∀|u| = t - n , S u ≤ -L t - n ; max |u|=t - n M u n-t - n ≤ xn + L t - n ), where {M u n-t - n } are i.i.d. copies of M n-t - n .
By Markov property at time t - n , one gets that

P(M n ≤ xn) ≥P(Z t - n = b t - n ; ∀|u| = t - n , S u ≤ -L t - n )P(M n-t - n ≤ xn + L t - n ) b t - n ≥P(Z t - n = b t - n ; ∀1 ≤ |u| ≤ t - n , X u ≤ -L )P(M n-t - n ≤ xn + Lt - n ) b t - n =p ∑ t - n -1 k=0 b k b P(X ≤ -L ) ∑ t - n k=1 b k P(M n-t - n ≤ xn + L t - n ) b t - n . (2.3) Next, we shall estimate P(M n-t - n ≤ xn + L t - n ) b t - n .
The sequel of this proof will be divided into two subparts depending on whether x * = R := ess sup X or not, respectively.

Subpart 1: the case x * = R. Apparently, we have R < ∞ now. Take t - n = (R-x)n R+L so that xn + L t - n ≥ R(n -t - n ). Thus, P(M n-t - n ≤ xn + L t - n ) b t - n = 1.
Going back to (2.3), one sees that for some C ∈ R * + ,

P(M n ≤ xn) ≥ p b t - n -1 b-1 b P(X ≤ -L ) b t - n +1 -b b-1 ≥ e -Cb t - n . (2.4)
It follows readily that for any x ∈ (-L, x * ),

lim sup n→∞ 1 n log[-log P(M n ≤ xn)] ≤ x * -x x * + L -η log b. (2.5)
Letting η ↓ 0 yields what we need.

Subpart 2: the case x * < R ∈ (0, ∞]. Now we have I(x * ) = log m because I is finite and continuous in (0, R). Moreover, I(x) < ∞ for some x > x * . For any sufficiently small a > 0, one has log m < I(x * + a) < ∞, and lim

a↓0 I(x * + a) = I(x * ) = log m. Recall that -x < L . Let t = x * +a-x x * +L +a and t - n = tn so that xn + L t - n > (x * + a)(n -t - n )
1 for all large enough n. Therefore,

P(M n-t - n ≤ xn + L t - n ) b t - n ≥ 1 -P(M n-t - n > (x * + a)(n -t - n )) b t - n .
Here we apply the large deviation result obtained in [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF]. More precisely, as the maximum of independent random walks dominates stochastically M n , one has

P(M n-t - n > (x * + a)(n -t - n )) ≤ E[Z n-t - n ]P(S n-t - n ≥ (x * + a)(n -t - n )) ≤ e -(I(x * +a)-log m)(n-t - n )
which yields that

P(M n-t - n ≤ xn + L t - n ) b t - n ≥ 1 -e -(I(x * +a)-log m)(n-t - n ) b t - n . Note that log(1 -x) ≥ -2x for any x ∈ [0, 1/2]. Let δ(a) := I(x * + a) -log m.
Then for all sufficiently large n ≥ 1,

P(M n-t - n ≤ xn + L t - n ) b t - n ≥ e -2e -δ(a)(n-t - n ) b t - n .
Plugging this in (2.3) implies that

P(M n ≤ xn) ≥ e -Cb t - n e -2e -δ(a)(n-t - n ) b t - n . (2.6)
Thus this choice of t, we have lim sup

n→∞ 1 n log[-log P(M n ≤ xn)] ≤ t log b. (2.7) Since I(x * ) = log m, letting a ↓ 0 (hence t ↓ x * -x x * +L and δ(a) ↓ 0) gives lim sup n→∞ 1 n log [-log P (M n ≤ xn)] ≤ x * -x x * + L -η log b,
which implies the desired lower bound because η is arbitrary small.

Upper bound of Theorem 1.1

In this section, we show that

P(M n ≤ xn) ≤ e -b (x * -x)n x * +L +o(n)
.

Note that for any 1

≤ t + n ≤ n, Z t + n (•) is supported by [-Lt + n , ∞) a.s. Moreover, Z t + n ≥ b t + n . Observe that P(M n ≤ xn) ≤P Z t + n ([-Lt + n , ∞)) ≥ b t + n ; M n ≤ xn ≤P Z t + n ([-Lt + n , ∞)) ≥ b t + n ; max |u|=t + n ;S u ≥-Lt + n (S u + M u n-t + n ) ≤ xn ≤P M n-t + n ≤ xn + Lt + n b t + n . (2.8) It remains to estimate P(M n-t + n ≤ xn + Lt + n ) b t + n .
Again, the proof will be divided into two subparts.

Subpart 1: the case x * = R. By taking t + n = (R-x)n R+L -1 so that xn + Lt + n < R(n -t + n ), one has P(M n-t + n ≤ xn + Lt + n ) b t + n ≤P(M n-t + n < R(n -t + n )) b t + n = 1 -P(M n-t + n ≥ R(n -t + n )) b t + n ≤ 1 - c n -t + n b t + n ≤ e -c b t + n (n-t + n ) , (2.9) 
where we use the fact that P(M N ≥ RN) ≥ c/N for some c ∈ (0, 1) and all N ≥ 1. In fact, we could construct a Galton-Watson tree with offspring

∑ |u|=1 1 X u =R . Here E[∑ |u|=1 1 X u =R ] = mP(X = R) ≥ 1 since x * = R. Its survival probability is positive if E[∑ |u|=1 1 X u =R ] > 1. Even when E[∑ |u|=1 1 X u =R ] = 1,
it is critical and the survival probability up to generation N is larger than c/N for some c > 0 and for all N ≥ 1. In fact, its survival up to generation N implies that some individual at time N has position RN. So, P(M N ≥ RN) ≥ c/N. We hence conclude from (2.8) and (2.9) that lim inf

n→∞ 1 n log[-log P(M n ≤ xn)] ≥ (R -x) log b R + L .
Subpart 2: the case x * < R. First recall a result from [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF]( see Theorem 3.2) which says that lim

n→∞ 1 n log P(M n > xn) = log m -I(x), for x > x * . (2.10)
So for any sufficiently small a > 0 such that δ(a

) = I(x * + a) -log m ∈ (0, ∞), for any x > -L, let t = x * +a-x L+x * +a ∈ (0, 1) and t + n = tn so that x * < xn+Lt + n n-t + n ≤ x * + a.
Then for all n large enough,

P(M n-t + n ≤ xn + Lt + n ) b t + n = 1 -P M n-t + n > xn + Lt + n n -t + n (n -t + n ) b t + n ≤ 1 -P M n-t + n > (x * + a)(n -t + n ) b t + n ≤ 1 -exp -(I (x * + a) -log m + δ(a)) (n -t + n ) b t + n ≤ e -e -2δ(a)(n-t + n ) b t + n , (2.11) 
where the second inequality follows from (2.10). Plugging (2.11) into (2.8) yields that lim inf

n→∞ 1 n log[-log P(M n ≤ xn)] ≥ -2δ(a)(1 -t) + t log b.
Again letting a ↓ 0 (hence δ(a) ↓ 0 and t ↓ x * -x x * +L ) gives the desired upper bound. If P(X = -L) > 0, then the arguments for lower bound work well for x = -L and L = L. For the upper bound, it is easy to see that all displacements are -L up to the n-th generation. We thus could also obtain (1.7) for x = -L.

Proof of Theorem 1.3

From now on, we assume (1.3) and (1.4) so that M n = m n + o P (log n). Moreover, it is known in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] that M nm n converges in law to some random variable on the survival of T . In fact, (1.4) is slightly stronger than the conditions given in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]. Because of this convergence in law in B öttcher case, we can find some y ∈ R + so that

P(M n ≤ m n -y) ≤ 1/2 ≤ P(M n ≤ m n + y).
(2.12)

Now we are ready to prove that for any increasing sequence

n = O(n) such that n ↑ ∞ and lim sup n→∞ n n < x * + L, P (M n ≤ m n -n ) = e -e n β(1+on (1)) , (2.13) 
where β = log b x * +L and m n = x * n -3 2θ * log n.

Lower bound of Theorem 1.3

Similarly to the previous section on large deviation, let us again take some intermediate time

t - n ∈ [1, n -1] and L = L -η with η > 0, P(M n ≤ m n -n ) ≥P Z t - n = b t - n ; ∀|u| ≤ t - n , X u ≤ -L ; M n ≤ m n -n ≥P Z t - n = b t - n ; ∀|u| ≤ t - n , X u ≤ -L ; max |v|=t - n M v n-t - n ≤ m n -n + L t - n ,
where by branching property is larger than

P Z t - n = b t - n ; ∀|u| ≤ t - n , X u ≤ -L P(M n-t - n ≤ m n -n + L t - n ) b t - n .
Here we choose t

- n = n +K 0 L +x * with K 0 ≥ 1 a fixed large constant so that m n -n + L t - n ≥ m n-t - n + y. Consequently, P(M n ≤ m n -n ) ≥P Z t - n = b t - n ; ∀|u| ≤ t - n , X u ≤ -L P(M n-t - n ≤ m n-t - n + y) b t - n ≥p ∑ t - n -1 k=0 b k b P(X ≤ -L ) ∑ t - n k=1 b k P(M n-t - n ≤ m n-t - n + y) b t - n ,
where the last inequality holds because of the independence between offsprings and motions. Now note that -L = ess inf X means that q L := P(X ≤ -L ) ∈ (0, 1). By (2.12),

P(M n ≤ m n -n ) ≥p ∑ t - n -1 k=0 b k b q ∑ t - n k=1 b k L (1/2) b t - n = e -Θ(b t - n ) , with t - n = n +K 0 L+x * -η . Letting n → ∞ then η → 0 gives that lim sup n→∞ 1 n log[-log P(M n ≤ m n -n )] ≤ log b L + x * .

Upper bound of Theorem 1.3

Let B n = [-Lt + n , ∞) with some intermediate time t + n to be determined later. Observe that

P(M n ≤ m n -n ) =P Z t + n (B n ) ≥ b t + n ; M n ≤ m n -n =P Z t + n (B n ) ≥ b t + n ; max |u|=t + n ,S u ∈B n (S u + M u n-t + n ) ≤ m n -n ≤P Z t + n (B n ) ≥ b t + n ; max |u|=t + n ,S u ∈B n M u n-t + n ≤ m n -n + Lt + n Let t + n := n -y L+x * so that m n -n + Lt + n ≤ m n-t + n -y.
Then by (2.12),

P Z t + n (B n ) ≥ b t + n ; max |u|=t + n ,S u ∈B n M u n-t + n ≤ m n -n + Lt + n ≤P(M n-t + n ≤ m n-t + n -y) b t + n ≤(1/2) b t + n . (2.14)
We hence obtain that

P(M n ≤ m n -n ) ≤ e -cb t + n with b t + n = Θ(e β n )
. This suffices to conclude Theorem 1.3.

B öttcher case with step size of (super)-exponential left tail 3.1 Proof of Theorem 1.4: step size of Weibull tail

Given Weibull tail distribution for the step size X, we are going to prove that, for any increasing sequence

( n ) such that n ≤ O(n) and n ↑ ∞, one has lim n→∞ 1 α n log P M n ≤ x * n - 3 2θ * log n -n = -λ b 1 α-1 -1 α-1 , (3.1) 
where b

1 α-1 -1 α-1 = b for α = 1.

Lower bound of Theorem 1.4

The case α = 1 In this case, we could show that

P(M n ≤ m n -n ) ≥ e -λ n b .
In fact, at the first generation, we suppose that there are exactly b individuals and that all of them are located below -

( n + x * + y). So, as m n -n + ( n + x * + y) ≥ m n-1 + y, P(M n ≤ m n -n ) ≥P(Z 1 = b; ∀|u| = 1, X u ≤ -( n + x * + y); M n ≤ m n -n ) =P(Z 1 = b; ∀|u| = 1, X u ≤ -( n + x * + y); max |u|=1 (X u + M u n-1 ) ≤ m n -n ) ≥P Z 1 = b; ∀|u| = 1, X u ≤ -( n + x * + y); max |u|=1 (M u n-1 ) ≤ m n-1 + y .
By Markov property, this implies that

P(M n ≤ m n -n ) ≥P (Z 1 = b; ∀|u| = 1, X u ≤ -( n + x * + y)) P (M n-1 ≤ m n-1 + y) b =p b P(X ≤ -( n + x * + y)) b P (M n-1 ≤ m n-1 + y) b ,
where P(X ≤ -( n + x * + y)) = Θ(1)e -λ n and P (M n-1 ≤ m n + y) ≥ 1/2. Consequently,

P(M n ≤ m n -n ) ≥ Θ(1)e -λ n b .
The case α > 1 We prove here that lim inf

n→∞ 1 α n log P (M n ≤ m n -n ) ≥ -λ b 1 α-1 -1 α-1
, By the assumption of Theorem 1.4, there exist two constants 0 < c < 1 and 0 < C < ∞ such that for any x > 0, ce

-λx α ≤ P(X ≤ -x) ≤ Ce -λx α . (3.2)
Following the strategy presented above, we choose t - n = o( n ) such that t - n ↑ ∞ and suppose that up to the t - n -th generation, the genealogical tree is b-ary regular tree. For any |u| = k with 1 ≤ k ≤ t - n , we suppose that its displacement X u < -a k with some a k > 0. We will precise the sequence (a k ) k≥1 later. Therefore,

P(M n ≤ m n -n ) ≥ P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k ; M n ≤ m n -n ≥P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k ; max |z|=t - n (S z + M z n-t - n ) ≤ m n -n ≥P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k ; max |z|=t - n (M z n-t - n ) ≤ m n -n + t - n ∑ k=1 a k .
Once again by Markov property, one has

P(M n ≤ m n -n ) ≥ P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k P M n-t - n ≤ m n -n + t - n ∑ k=1 a k b t - n . (3.3) 
For the first term on the right hand side, by independence of branching structure and displacements,

P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k =p ∑ t - n -1 k=0 b k b t - n ∏ k=1 P(X < -a k ) b k . By (3.2), P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k ≥p b t - n -1 b-1 b t - n ∏ k=1 c b k e -λ(a k ) α b k =p b t - n -1 b-1 b c b t - n +1 -b b-1 exp{-λ t - n ∑ k=1 a α k b k }. (3.4)
Now, we take the values of a k . Let b α := b

1 α-1 and a k = (b α -1) b k α n . Note that ∑ t - n k=1 a k = (1 -b -t - n α ) n . Take t - n = (α -1) log n log b so that for n large enough, m n -n + t - n ∑ k=1 a k = m n -n + (1 -b -t - n α ) n ≥ m n-t - n + y. (3.5)
Meanwhile, one obtains that b t - n = α-1 n , and

t - n ∑ k=1 a α k b k = α n (b α -1) α-1 (1 -b -t - n α ).
Plugging them into (3.4) yields that

P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u < -a k ≥ exp{-λ α n (b α -1) α-1 -Θ( α-1 n )}. (3.6)
Applying it and (3.5) to (3.3) yields that

P(M n ≤ m n -n ) ≥ exp{-λ α n (b α -1) α-1 -Θ( α-1 n )}P M n-t - n ≤ m n-t - n + y b t - n ≥ exp{-λ α n (b α -1) α-1 -Θ( α-1 n )}(1/2) α-1 n .
As a result,

P(M n ≤ m n -n ) ≥ exp{-λ α n (b α -1) α-1 -Θ( α-1 n )}. (3.7) 

Upper bound of Theorem 1.4

In this section, we consider the upper bound of P(M n ≤ m nn ). First we state the following lemma which gives a rough upper bound. Proof. Take some intermediate time t n = t(log n ) = o(n) where t > 0 will be chosen later and let

B n := [-(1 -ε) n , ∞)
with any small ε ∈ (0, 1). Observe that as Z t n ≥ b t n ,

P(M n ≤ m n -n ) ≤P(Z t n (B n ) ≥ b t n ; M n ≤ m n -n ) + P(Z t n (B n ) < b t n ) ≤P(Z t n (B n ) ≥ b t n ; M n ≤ m n -n ) + P(Z t n (B c n ) ≥ 1). ( 3.9) 
On the one hand, one sees that for n large enough so that m nε n ≤ m n-t ny,

P(Z t n (B n ) ≥ b t n ; M n ≤ m n -n ) ≤P Z t n (B n ) ≥ b t n ; max |u|=t n ,S u ∈B n (S u + M u n-t n ) ≤ m n -n ≤P Z t n (B n ) ≥ b t n ; max |u|=t n ,S u ∈B n (M u n-t n ) ≤ m n -ε n ≤P Z t n (B n ) ≥ b t n ; max |u|=t n ,S u ∈B n (M u n-t n ) ≤ m n-t n -y .
By Markov property at time t n , all M u n-t n are i.i.d. copies of M n-t n for |u| = t n , and independent of (S u , |u| = t n ). This yields that

P(Z t n (B n ) ≥ b t n ; M n ≤ m n -n ) ≤ P (M n-t n ≤ m n-t n -y) b tn ≤ (1/2) b tn . (3.10)
On the other hand, by Markov property,

P(Z t n (B c n ) ≥ 1) ≤E[Z t n (B c n )] = E ∑ |u|=t n 1 {S u <-(1-ε) n } =m t n P(S t n < -(1 -ε) n ) =m t n P(e -θS tn > e θ(1-ε) n ),
where θ > 0 such that E[e -θX ] < ∞. Again by Markov property, one gets that

P(Z t n (B c n ) ≥ 1) ≤m t n e -θ(1-ε) n E[e -θS tn ] =m t n e -θ(1-ε) n E[e -θX ] t n ≤ e -θ(1-ε) n +Θ(t n ) . (3.11)
Going back to (3.9), by (3.10) and (3.11), one concludes that

P(M n ≤ m n -n ) ≤ e -cb tn + e -θ(1-ε) n +ct n .
Here we choose t = 2/ log b so that b t n = 2 n θ n t n . Consequently, for arbitrary small ε > 0, and for sufficiently large n,

P(M n ≤ m n -n ) ≤ e -θ(1-ε) n .
The case α = 1 This case is relatively simple. Take some intermediate time t n = t log n where t > 0 will be chosen later. Recall that

B n = [-(1 -ε) n , ∞)
with arbitrary small ε ∈ (0, 1). Observe that for any δ ∈ (0, 1/b),

P(M n ≤ m n -n ) ≤ P(Z t n (B n ) ≥ δb t n ; M n ≤ m n -n ) + P(Z t n (B n ) < δb t n ) ≤P Z t n (B n ) ≥ δb t n ; max |u|=t n ,S u ∈B n (S u + M u n-t n ) ≤ m n -n + P(Z t n (B n ) < δb t n ). (3.12) 
On the one hand, one sees that for n large enough so that

m n -n + (1 -ε) n ≤ m n-t n -ε n /2, P Z t n (B n ) ≥ δb t n ; max |u|=t n ,S u ∈B n (S u + M u n-t n ) ≤ m n -n ≤ P Z t n (B n ) ≥ δb t n ; max |u|=t n ,S u ∈B n (M u n-t n ) ≤ m n-t n -ε n /2 .
By Markov property at time t n , all M u n-t n , |u| = t n are i.i.d. copies of M n-t n , and independent of Z t n (•). This yields that

P Z t n (B n ) ≥ δb t n ; max |u|=t n ,S u ∈B n (M u n-t n ) ≤ m n-t n -ε n /2 ≤P(M n-t n ≤ m n-t n -ε n /2) δb tn ≤e -λε n /8×δb tn , (3.13) 
where the last inequality follows from (3.8).

On the other hand, since δ < 1/b, the event Z t n (B n ) < δb t n implies that for any |v| = 1, {|u| = t n : u > v} ⊂ {|u| = t n , S u ∈ B n }. This means that

P(Z t n (B n ) < δb t n ) ≤P ∩ |v|=1 ∪ |u|=t n ,u>v {S u ∈ B c n } ≤E P ∪ |u|=t n ,u>v {S u ∈ B c n } Z 1 ≤E   E ∑ |u|=t n ,u>v 1 {S u ∈B c n } |v| = 1 b   ,
where the last inequality follows from the fact that Z 1 ≥ b and Markov inequality. By independence between offsprings and motions, this leads to

P(Z t n (B n ) < δb t n ) ≤ (E [Z t n -1 ] P{S t n ∈ B c n }) b ≤ m t n -1 P{S t n ≤ -(1 -ε) n } b ≤m b(t n -1) e -θ(1-ε) n E[e -θS tn ] b ,
where the last inequality holds by Markov inequality for any θ ∈ (0, λ). We hence end up with

P(Z t n (B n ) < δb t n ) ≤ m b(t n -1) e -θb(1-ε) n E[e -θX ] bt n = e -θb(1-ε) n +Θ(t n ) , (3.14) 
for any θ ∈ (0, λ). In view of (3.12), (3.13) and (3.14), one obtains that for any ε ∈ (0, 1),

P(M n ≤ m n -n ) ≤ e -λε n /8×δb tn + e -λ(1-ε)b n +Θ(t n ) .
For any choice of t n = Θ(log n ) so that b t n 1, we could conclude that for arbitrary small ε > 0, lim sup

n→∞ 1 n log P(M n ≤ m n -n ) ≤ -λ(1 -ε)b.
The case α > 1 We are going to use Lemma (3.1). Note that E[e -θX ] < ∞ for any θ > 0 because α > 1. It brings out that for all n large enough,

P(M n ≤ m n -n ) ≤ e -2 n . ( 3.15) 
We still use some intermediate time t + n = t + log n which will be determined later. The rouge idea is similar to what we used above. Recall that B n = [-(1ε) n , ∞) with ε ∈ (0, 1). Observe that for δ n := δ log n with some δ ∈ (0, t + ),

P(M n ≤ m n -n ) ≤ P(Z t + n (B n ) ≥ b t + n -δ n ; M n ≤ m n -n ) + P(Z t + n (B n ) < b t + n -δ n ). (3.16) 
Similarly to (3.10), by Markov property at time t + n , one has

P(Z t + n (B n ) ≥ b t + n -δ n ; M n ≤ m n -n ) ≤P M n-t + n ≤ m n -ε n b t + n -δn ≤P M n-t + n ≤ m n-t + n -ε n /2 b t + n -δn
.

By use of the rough upper bound (3.15), we get that 

P(Z t + n (B n ) ≥ b t + n -δ n ; M n ≤ m n -n ) ≤ e -ε n b t + n -δn . ( 3 
P(Z t + n (B n ) < b t + n -δ n ) = ∑ t P(T t + n = t)P t (Z t + n (B n ) ≤ b t + n -δ n ). (3.18)
Here for convenience, we replace each displacement X u by X + u := (-X u ) ∨ M for some large and fixed constant M ≥ 1. Now denote the new positions achieved by these new displacements by

S + u := ∑ ρ≺v u X + v , ∀|u| ≤ t + n . Apparently, S + u ≥ ∑ ρ≺v u (-X v ) = -S u . So, if Z t + n (B n ) ≤ b t + n -δ n , ∑ |u|=t + n 1 {S + u ≤(1-ε) n } ≤ ∑ |u|=t + n 1 {S u ∈B n } = Z t + n (B n ) ≤ b t + n -δ n .
Therefore, for ε ∈ (0, 1/2) and for n sufficiently large so that t

+ n = t + log n ≤ ε n , P t (Z t + n (B n ) ≤ b t + n -δ n ) ≤P t   ∑ |u|=t + n 1 {S + u ≤(1-ε) n } ≤ b t + n -δ n   ≤ ∑ x u ∈N∩[M,∞);u∈t ∏ u∈t P(X + u ∈ [x u , x u + 1))1 {∑ |u|=t + n 1 {su ≤(1-2ε) n } ≤b t + n -δn } ,
where s u := ∑ ρ≺v u x v . We regard {x u , u ∈ t} as a marked tree. Here by manipulating the order of u ∈ t, we could construct a new marked tree {x u , u ∈ t * }, where the lexicographical orders of individuals are totally rearranged so that the most recent common ancestor u * of individuals located below (1 -2ε) n at the t + n -th generation is of the generation s n with t + n ≥ s n ≥ δ n . However, t * and t, viewed as sets of individuals, contain exactly the same individuals. The detailed construction will be explained later. Now we cut this u * and remove all its descendants from t * to get a pruned tree t \u * * . Note that all individuals of this tree t This operation leads to the following estimation, for any fixed tree t such that P(T t

+ n = t) > 0, P t (Z t + n (B n ) ≤ b t + n -δ n ) ≤ ∑ x u ∈N∩[M,∞);u∈t * ∏ u/ ∈t \u * b P(X + u ∈ [x u , x u + 1)) × ∏ u∈t \u * b P(X + u ∈ [x u , x u + 1))1 {s u ≥(1-2ε) n ;∀u∈t \u * b s.t.|u|=t + n } ≤ ∑ x u ∈N∩[M,∞);u∈t \u * b ∏ u∈t \u * b P(X + u ∈ [x u , x u + 1))1 {s u ≥(1-2ε) n ;∀u∈t \u * b s.t.|u|=t + n } ≤Σ t \u * b ,A + P t \u * b (∃u ∈ t \u * b such that X + u ≥ A n ), (3.19) 
where

Σ t \u * b ,A := ∑ x u ∈N∩[M,A n );u∈t \u * b ∏ u∈t \u * b P(X + u ∈ [x u , x u + 1))1 {s u ≥(1-2ε) n ;∀u∈t \u * b s.t.|u|=t + n } .
As the total progeny of t

\u * b less than ∑ t + n k=1 b k , P t \u * b (∃u ∈ t \u * b such that X + u ≥ A n ) ≤ t + n ∑ k=1 b k P(X + ≥ A n ) ≤Cb t + n +1 e -λ(A n ) α , (3.20)
where the last inequality follows from (3.2). On the other hand, observe that

Σ t \u * b ,A ≤ (CA n ) b t + n +1 max ∀u∈t \u * b ;x u ∈N∩[M,A n ); exp    -λ ∑ u∈t \u * b x α u    1 {s u ≥(1-2ε) n ;∀u∈t \u * b s.t.|u|=t + n } .
Here we claim that max

x u ∈N∩[M,A n );∀u∈t \u * b exp    -λ ∑ u∈t \u * b x α u    1 {s u ≥(1-2ε) n ;∀u∈t \u * b s.t.|u|=t + n } ≤ exp -λ(b α -1) α-1 (1 -b -s n ) α+1 (1 -2ε) α α n , (3.21) with b α = b 1 α-1
. The proof of (3.21) will be postponed to the end of this section. Let us admit it now so that 

Σ t \u * b ,A ≤ (CA n ) b t + n +1 exp -λ(b α -1) α-1 (1 -b -s n ) α+1 (1 -2ε) α α n . ( 3 
P t (Z t + n (B n ) ≤ b t + n -δ n ) ≤ Cb t + n +1 e -λ(A n ) α + (CA n ) b t + n +1 exp -λ(b α -1) α-1 (1 -b -s n ) α+1 (1 -2ε) α α n .
Plugging it into (3.18) brings out that

P(Z t + n (B n ) ≤ b t + n -δ n ) ≤ Cb t + n +1 e -λ(A n ) α + (CA n ) b t + n +1 exp -λ(b α -1) α-1 (1 -b -s n ) α+1 (1 -2ε) α α n . (3.23)
(3.23), combined with (3.16) and (3.17), implies that

P(M n ≤ m n -n ) ≤ e -ε n b t + n -δn + Ce -λ(A n ) α +Θ(log n ) + e -λ(b α -1) α-1 (1-b -sn ) α+1 (1-2ε) α α n +Θ(b t + n log(A n )) ,
with t + n = t + log n , δ n = δ log n and s n ≥ δ n . We choose here a large and fixed A ≥ 1, t + = 3α-1

3 log b and δ = 1 3 log b so that

n b t + n -δ n = α+1/3 n , A α ≥ 2(b α -1) α-1 and b t + n log(A n ) = o( α n ).
Consequently, letting n ↑ ∞ and then ε ↓ ∞ shows that lim sup

n→∞ 1 α n log P(M n ≤ m n -n ) ≤ -λ(b α -1) α-1 ,
which is what we need.

To complete our proof, let us explain the construction of t \u * b here. When we exchange two individuals w and v, we exchange two subtrees rooted at w and v, as well as their displacements. Therefore, the positions of red individuals get higher, and obviously stay above .

Construction of t

> s u (2) > • • • > s u (|t| t + n -1 ) , where |t| t + n -1 = #{u ∈ t : |u| = t + n -1}. Let
Note that in this way the number of children u (1) is unchanged and that all of them are positioned above and red. Now, we put u (1) aside and restart from u (2) by doing the same exchanges with u (3) , u (4) , • • • . We would stop at some u (k) such that there is no red child left for u (k+1) , • • • . At this stage, there are at most 3 types of individuals at the (t + n -1)-th generation: the ones with only red children; the ones with only blue children and the one with red children and blue children (Note that there is at most one individual who has both red and blue children). Then the individuals with only red children are all coloured red. The others of the (t + n -1)-th generation are coloured blue. Notice that the number of blue individuals of the (t + n -1)-th generation are at most b t + n -δ n -1 . By iteration, we exchange individuals and colour the tree from one generation to the previous generation. Finally, we stop at some generation s n where only one individual is coloured blue for the first time. We hence obtain the new tree t * and find that the ancestor u * of blue ones is of generation s n ≥ δ n . Observe that, for all red individuals, their descendants at t + n -th generation are positioned above .

Proof of (3.21). We shall find a suitable lower bound for the restrictions for x u . Note that if

∑ u∈t \u * b x α u given that (x u ; u ∈ t \u * b ) ∈ {s u ≥ (1 -2ε) n ; ∀u ∈ t \u * b s.t.|u| = t + n } ∩ {x u ∈ N ∩ [M, A n ); ∀u ∈ t \u * b }. Let us first consider
(x u ; u ∈ t \u * b ) ∈ {s u ≥ (1 -2ε) n ; ∀u ∈ t \u * b s.t.|u| = t + n }, then ∑ |u|=t + n ,u∈t \u * b s u ≥ |t \u * b | t + n (1 -2ε) n , (3.24) 
where

|t \u * b | k := ∑ |u|=t + n 1 {u∈t \u * b } denotes the population of the k-th generation of t \u *
b . We further observe that

∑ |u|=t + n ,u∈t \u * b s u = ∑ |u|=t + n ∑ ρ≺v u x v = t + n ∑ k=1 ∑ |v|=k   x v ∑ |u|=t + n 1 {v u}   where ∑ |u|=t + n 1 {v u} ≤ b t + n -|v| as t \u * b
is a pruned b-ary tree. Therefore, (3.24) implies

t + n ∑ k=1 ∑ |v|=k x v b t + n -k ≥ |t \u * b | t + n (1 -2ε) n . (3.25) 
Recall that the generation of u * is s n . So,

|t \u * b | k = b k , ∀1 ≤ k ≤ s n -1; and |t \u * b | k = b k -b k-s n , ∀s n ≤ k ≤ t + n . (3.26) Let x k := ∑ |v|=k,v∈t \u * b x v |t \u * b | k
be the averaged displacement at the k-th generation. Then,

t + n ∑ k=1 ∑ |v|=k x v b t + n -k = b t + n s n -1 ∑ k=1 x k + b k -b k-s n b k t + n ∑ k=s n x k ≤ b t + n t + n ∑ k=1 x k .
Thus, if (3.25) holds, one has

t + n ∑ k=1 x k ≥ |t \u * b | t + n b t + n (1 -2ε) n = (1 -b -s n )(1 -2ε) n . (3.27) 
Hence, (3.24) implies (3.27). This means that

{s u ≥ (1 -2ε) n ; ∀u ∈ t \u * b s.t.|u| = t + n } ⊂ t + n ∑ k=1 x k ≥ (1 -b -s n )(1 -2ε) n . (3.28) 
So it suffices to find a suitable lower bound of ∑ u∈t \u * b x α u under the condition that

t + n ∑ k=1 x k ≥ (1 -b -s n )(1 -2ε) n . (3.29) 
In fact, by convexity on

R + of x → x α for α > 1, ∑ u∈t \u * b x α u = t + n ∑ k=1 ∑ |u|=t + n ,u∈t \u * b x α u ≥ t + n ∑ k=1 |t \u * b | k (x k ) α .
Immediately it follows from (3.26) that

∑ u∈t \u * b x α u ≥ (1 -b -s n ) t + n ∑ k=1 b k (x k ) α . ( 3.30) 
Let us take a positive sequence (µ k ) k≥1 , which will be determined later, with µ α := ∑

t + n k=1 µ α k and write t + n ∑ k=1 b k (x k ) α = µ α t + n ∑ k=1 µ α k µ α (µ -1 k b k/α x k ) α
which again by convexity implies that

t + n ∑ k=1 b k (x k ) α ≥ µ α t + n ∑ k=1 µ α k µ α µ -1 k b k/α x k α = µ 1-α α t + n ∑ k=1 µ α-1 k b k/α x k α . We choose µ k = b -k α(α-1) so that µ α-1 k b k/α x k = x k for any k ≥ 1. Thus, µ α = t + n ∑ k=1 b -k α-1 ≤ 1 b 1 α-1 -1 and t + n ∑ k=1 b k (x k ) α ≥ 1 b 1 α-1 -1 1-α t + n ∑ k=1 x k α ≥ (b α -1) α-1 (1 -b -s n ) α (1 -2ε) α α n , (3.31) 
where the last inequality follows from (3.29). Plugging (3.31) into (3.30) shows that

∑ u∈t \u * b x α u ≥ (1 -b -s n )(b α -1) α-1 (1 -b -s n ) α (1 -2ε) α α n .
This suffices to conclude (3.21).

Proof of Theorem 1.6: step size of Gumbel tail

The arguments for Gumbel tail are similar to that for Weibull tail.

Lower bound of Theorem 1.6

We are going to demonstrate that

P(M n ≤ m n -n ) ≥ exp{-e β(α,b) α α+1 n +o( α α+1 n ) }, where β(α, b) := 1+α α log b α α+1
.

By the assumption of Theorem 1.6, there exist two constants 0 < c < C < ∞ such that for any

x ≥ 0, ce -e x α ≤ P(X < -x) ≤ Ce -e x α . (3.32) 
Note that here α > 0. Using the similar arguments as in Section 3.1.1, we take some intermediate time

t - n = o( n ) and a positive sequence (a k ) 1≤k≤t - n .
Then, observe that

P(M ≤ m n -n ) ≥ P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u ≤ -a k ; M n ≤ m n -n ≥P Z t - n = b t - n ; ∀|u| = k ∈ {1, • • • , t - n }, X u ≤ -a k P M n-t - n ≤ m n -n + t - n ∑ k=1 a k b t - n =p ∑ t - n -1 k=0 b k b t - n ∏ k=1 P(X < -a k ) b k P M n-t - n ≤ m n -n + t - n ∑ k=1 a k b t - n .
By (3.32), one has

P(M ≤ m n -n ) ≥ p b t - n -1 b-1 b c b t - n +1 -b b-1 exp - t - n ∑ k=1 e a α k b k P M n-t - n ≤ m n -n + t - n ∑ k=1 a k b t - n . (3.33) 
Here we take t -

n := t - α α+1 n and a k := (log b) 1/α (t - n + 1 -k) 1/α with t -:= 1+α α a α α+1 (log b) -1 α+1
. Now observe that for arbitrary small ε > 0 and n large enough,

t - n ∑ k=1 a k =(log b) 1/α t - n ∑ k=1 (t - n + 1 -k) 1/α ≥ (log b) 1/α t - n 1 (t - n + 1 -s) 1/α ds = n -Θ(1) ≥ n -(m n -m n-t - n -y)
. This leads to the fact that

P M n-t - n ≤ m n -n + t - n ∑ k=1 a k b t - n ≥P M n-t - n ≤ m n-t - n + y b t - n ≥e -Θ(b t - n ) .
On the other hand, note that 

t - n ∑ k=1 e a α k b k = t - n ∑ k=1 b t - n +1 = bt - n e (t log b) α α+1 n . Going back to (3.33), as b t - n t - n e (t log b) α α+1 n and t - n = e o( α α+1 n ) one concludes that P(M ≤ m n -n ) ≥ exp -t - n e (t log b) α α+1 n -Θ(b t - n ) = exp{-e β(α,b) α α+1 n +o( α α+1 n ) },

Upper bound of Theorem 1.6

We first prove a rough upper bound.

Lemma 3.2. Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. If P(X < -x) = Θ(1)e -e x α as x → ∞, then there exists η 0 > 0 such that for all n large enough,

P(M n ≤ m n -n ) ≤ exp(-e η 0 α α+1 n
).

(3.34)

Proof. Let t n := t α α+1 n with some 0 < t < ∞. Again, we use

B n = [-(1 -ε) n , ∞) with ε ∈ (0, 1)
and observe that by Markov property at time t n ,

P(M n ≤ m n -n ) ≤ P(Z t n (B n ) ≥ b t n ; M n ≤ m n -n ) + P(Z t n (B c n ) ≥ 1) ≤P Z t n (B n ) ≥ b t n ; max |u|=t n ,S u ∈B n (M u n-t n ) ≤ m n -ε n + P(Z t n (B c n ) ≥ 1) ≤P (M n-t n ≤ m n-t n -y) b tn + P(Z t n (B c n ) ≥ 1),
for all sufficiently large n. Again, using P (M n-t n ≤ m n-t ny) ≤ 1/2 and Markov inequality, one has

P(M n ≤ m n -n ) ≤e -cb tn + P(Z t n (B c n ) ≥ 1) ≤e -cb tn + E ∑ |u|=t n 1 S u <-(1-ε) n =e -cb tn + m t n P(S t n < -(1 -ε) n ).
Observe that {S t n < -(1ε) n } implies that at least one increment is less than -(1ε) n /t n . Therefore,

P(M n ≤ m n -n ) ≤e -cb tn + m t n t n P(X ≤ -(1 -ε) n /t n ) ≤ exp(-ce t log b α α+1 n ) + Ct n exp(-e ( 1-ε t ) α α α+1 n + t n log m),
where we choose a small positive t such that t n exp(-e ( ). As a result, there exists η 0 > 0 such that for all n large enough,

P(M n ≤ m n -n ) ≤ exp(-e η 0 α α+1 n
). n with some 0 < δ < t + < ∞. Using the similar arguments as in the Subsection 3.1.2, in view of (3.16) and to (3.17), one sees that for any ε ∈ (0, 1/2),

P(M n ≤ m n -n ) ≤P(Z t + n (B n ) ≥ b t + n -δ n ; M n ≤ m n -n ) + P(Z t + n (B n ) < b t + n -δ n ) ≤P(M n-t + n ≤ m n-t + n -ε n /2) b t + n -δn + P(Z t + n (B n ) < b t + n -δ n ),
which by (3.34) is bounded by exp -e η 0 (ε n /2)

α α+1 b t + n -δ n + P(Z t + n (B n ) < b t + n -δ n ).
Similarly to (3.19), one also sees that

P(M n ≤ m n -n ) ≤ exp -e η 0 (ε n /2) α α+1 b t + n -δ n + P(Z t + n (B n ) < b t + n -δ n ) ≤ exp -e η 0 (n-t + n ) αβ α+1 b t + n -δ n + Σ t \u * b ,A + P t \u * b (∃|u| ≤ t + n , X u ≥ A n ), (3.35)
where t \u * b is a b-ary regular tree pruned at some u * of generation s n ≥ δ n and

Σ t \u * b ,A := ∑ x u ∈N∩[M,A n );u∈t \u * b ∏ u∈t \u * b P(X + u ∈ [x u , x u + 1))1 {s u ≥(1-2ε) n ;∀u∈t \u * b s.t.|u|=t + n } .
On the one hand, by Markov inequality like (3.20), for A ≥ 1 and n sufficiently large,

P t \u * b (∃|u| ≤ t + n , X u ≥ A n ) ≤ t + n ∑ k=1 P(X ≥ A n ) ≤Cb t + n e -e (A n ) α = o n (1)P(M n ≤ m n -n ), (3.36) 
according to the lower bound obtained above. It remains to bound Σ t \u * b ,A . In fact, 

Σ t \u * b ,A ≤ (CA n ) b t + n +1 max x u ∈N∩[M,A n );∀u∈t \u * b exp    -∑ u∈t \u * b e x α u    1 {s u ≥(1-
| k ≥ (1 -b -s n )b k for any 1 ≤ k ≤ t + n , one gets that ∑ u∈t \u * b e x α u ≥ (1 -b -s n ) t + n ∑ k=1 b k e x α k ≥ (1 -b -s n )e Ξ t + n , (3.38) 
where

Ξ t + n := max 1≤k≤t + n {x α k + k log b}.
Recall (3.28), one only need to bound Ξ t + n under the condition that ∑

t + n k=1 x k ≥ (1 -b -s n )(1 -2ε) n .
By the definition of Ξ t + n , one sees that

x k ≤ Ξ t + n -k log b 1/α , ∀k ∈ {1, • • • , t + n }. So, ∑ t + n k=1 x k ≥ (1 -b -s n )(1 -2ε) n yields that t + n ∑ k=1 Ξ t + n -k log b 1/α ≥ (1 -b -s n )(1 -2ε) n . Apparently Ξ t + n ≥ t + n log b. By monotonicity of x → (Ξ t + n -x log b) 1/α on [0, Ξ t + n log b ], one has t + n ∑ k=1 Ξ t + n -k log b 1/α ≤ t + n 0 Ξ t + n -x log b 1/α dx ≤ α (1 + α) log b Ξ 1+ 1 α t + n .
We then deduce that

Ξ t + n ≥ (α + 1) log b α (1 -b -s n )(1 -2ε) n α (α+1)
. Going back to (3.38), one sees that min

   ∑ u∈t \u * b e x α u x u ∈ N ∩ [M, A n ); ∀u ∈ t \u * b ; s u ≥ (1 -2ε) n ; ∀u ∈ t \u * b s.t.|u| = t + n    ≥ (1 -b -s n )e Ξ t + n ≥ (1 -b -s n )e ( α+1 α (1-b -sn )(1-2ε) log b) α α+1 α α+1 n . (3.39)
Using it to bound Σ t \u * b ,A tells us that

Σ t \u * b ,A ≤ (CA n ) b t + n +1 exp{-(1 -b -s n )e ( α+1 α (1-b -sn )(1-2ε) log b) α α+1 α α+1 n }.
Plugging it and (3.36) into (3.35) implies that 

P(M n ≤ m n -n ) ≤ exp -e η 0 (ε n /2) α α+1 b t + n -δ n + o n (1)P(M n ≤ m n -n ) + (CA n ) b t + n +1 exp{-(1 + o n ( 1 
ε = η 0 ( ε 2 ) α α+1 so that e η 0 (ε n /2) α α+1 b t + n -δ n e ( α+1 α (1-2ε) log b) α α+1 α α+1 n b t + n log(CA n ).
This suffices to conclude that lim inf

n→∞ 1 α α+1 n log[-log P(M n ≤ m n -n )] ≥ α + 1 α (1 -2ε) log b α α+1
for arbitrary small ε > 0. This is exactly what we need.

Small ball probability of D ∞ in B öttcher case

This section is devoted to proving Propositions 1.5 and 1.7. In fact, we only prove Proposition 1.5 when P(X < -x) ∼ e -λx α . And we feel free to omit the proof of Proposition 1.7 as it follows from the similar ideas. where given (S u : |u| = n), D (u) {|u|=n} are i.i.d. copies of D. It is known from [START_REF] Madaule | The tail distribution of the Derivative martingale and the global minimum of the branching random walk[END_REF] that there exists a constant C D > 0 such that as x → +∞,

P(D > x) ∼ C D x . ( 4.2) 
We only present the proof for (1.11). (1.14) can be obtained by similar arguments as the proof of Theorem 1.6.

Lower bound

First observe from (4.1) that for any n ≥ 1 and δ > 0,

P(D < ε) =P ∑ |u|=n e θ * (S u -nx * ) D (u) < ε ≥P ∀|u| = n, e θ * (S u -nx * ) ≤ ε 1+δ ; ∑ |u|=n D (u) < ε -δ
where ∑ |u|=n D (u) = Θ P (Z n log Z n ) because of (4.2). Therefore, by independence,

P(D < ε) ≥P ∀|u| = n, e θ * (S u -nx * ) ≤ ε 1+δ ; Z n = b n ; ∑ |u|=n D (u) < ε -δ =P ∀|u| = n, S u ≤ (1 + δ) log ε θ * + nx * ; Z n = b n P b n ∑ k=1 D k < ε -δ
where D k ; k ≥ 1 are i.i.d. copies of D. By weak law for triangular arrays in [START_REF] Durrett | Probability: Theory and Examples[END_REF],

∑ b n k=1 D k = (C D + o P (1))b n log(b n ). As long as we take n = t ε -δ log ε log b so that nb n ε -δ , P ∑ b n k=1 D k < ε -δ = 1 + o(1). So for ε > 0 small enough, P(D < ε) ≥ 1 2 P ∀|u| = t ε , S u ≤ (1 + δ) log ε θ * + t ε x * ; Z t ε = b t ε
The sequel of this proof will be divided into two parts. Write a ε :=log ε for convenience.

Subpart 1: the case α > 1. Choose t ε = (α -1) log((1+δ)a ε ) log b and a k = (b α -1)(1+2δ)a ε θ * b k α . Then a ε θ * t ε x * and ∑ t ε k=1 (-a k ) = (1 -b -t ε α ) -(1+2δ)a ε θ * ≤ (1 + 2δ) log ε θ * + t ε x * . As a consequence, P(D < ε) ≥ 1 2 P ∀|u| = t ε , S u ≤ (1 + δ) log ε θ * + t ε x * ; Z t ε = b t ε ≥ 1 2 P Z t ε = b t ε ; ∀|u| = k ∈ {1, • • • , t ε }, X u < -a k ≥ exp -λ (1 + 2δ)a ε θ * α (b α -1) α-1 -Θ (1 + δ)a ε θ * α-1 , (4.3) 
where the inequality follows from the same reasonings as (3.6). Letting ε ↓ 0 then δ ↓ 0 implies that lim inf

ε→0+ 1 (-log ε) α log P(D ∞ < ε) ≥ - λ (θ * ) α b 1 α-1 -1 α-1 . Subpart 2: the case α = 1. Choose t ε = 1. Then it follows that P(D < ε) ≥ 1 2 P ∀|u| = t ε , S u ≤ (1 + δ) log ε θ * + t ε x * ; Z t ε = b t ε =P Z 1 = b; X u ≤ (1 + δ) log ε θ * + x * , for all |u| = 1 ≥p b c b e λb((1+δ) log ε θ * +x * ) , (4.4) 
which implies lim inf

ε→0+ 1 (-log ε) α log P(D ∞ < ε) ≥ - λ(1 + δ) θ * b.
Then we obtain the lower bound by letting δ → 0.

Upper bound

Subpart 1: the case α > 1. Define U 0 (t, ) := {u ∈ T : |u| = t and θ * (S utx * ) ≥ }.

We first consider the case α > 1. Observe that

P (D < ε) = P ∑ |u|=t e θ * (S u -tx * ) D (u) < ε ≤ P e θ * (S u -tx * ) D (u) < ε, ∀|u| = t (4.5)
We first obtain a rough bound, in fact,

P (D < ε) ≤ P D (u) < 1, ∀u ∈ U 0 (t, log ε); #U 0 (t, log ε) ≥ b t + P #U 0 (t, log ε) < b t ≤ P(D < 1) b t + P Z t log ε θ * + tx * , ∞ < b t ≤ e -cb t + P ∑ |u|=t 1 {S u ≤ log ε θ * +tx * } ≥ 1 , (4.6) 
because P(D < 1) < 1 and Z t ≥ b t . Similar to (3.11), by Markov inequality,

P ∑ |u|=t 1 {S u ≤ log ε θ * +tx * } ≥ 1 ≤ e -θ aε θ * +Θ(t)
for any θ > 0 such that E[e -θX ] < ∞. We take t = 2 log a ε / log b so that b t a ε and t a ε . Then, if α > 1, for ε > 0 small enough,

P (D < ε) ≤ e -2a ε , (4.7) 
where a ε =log ε.

Now again by (4.5), for any δ ∈ (0, 1),

t ε ∈ N + and δ ε ∈ (0, t ε ) ∩ N, P(D < ε) ≤P sup u∈U 0 (t ε ,(1-δ) log ε) D (u) < ε δ , #U 0 (t ε , (1 -δ) log ε) ≥ b t ε -δ ε + P #U 0 (t ε , (1 -δ) log ε) < b t ε -δ ε ≤P(D < ε δ ) b tε -δε + P #U 0 (t ε , (1 -δ) log ε) < b t ε -δ ε . ( 4.8) 
By (4.7), one sees that P(D < ε δ ) b tε -δε ≤ e 2δb tε -δε log ε .

On the other hand, for the second term on the r.h.s. of (4.8), by taking

t ε = Θ(log a ε ) a ε , P #U 0 (t ε , (1 -δ) log ε) < b t ε -δ ε ≤P ∑ |u|=t ε 1 S u ≥t ε x * +(1-δ) log ε θ * < b t ε -δ ε ≤P ∑ |u|=t ε 1 S u ≥-(1-2δ) aε θ * < b t ε -δ ε .
which by the same arguments for deducing (3.23), is less than

Cb t ε +1 e -λ(Aa ε ) α + (CAa ε ) b tε +1 exp{-λ(b α -1) α-1 ( a ε θ * ) α (1 -4δ) α (1 + o ε (1))}. Consequently, (4.8) becomes that P(D < ε) ≤ e -2δb tε -δε a ε + Cb t ε +1 e -λ(Aa ε ) α + (CAa ε ) b tε +1 exp{-λ(b α -1) α-1 ( a ε θ * ) α (1 -4δ) α (1 + o ε (1))}.
Let t ε = α-1/3 log b log a ε , δ ε = 1/3 log b log a ε and A ≥ 1 be a large constant so that b t ε -δ ε a ε a α ε b t ε log(CAa ε ), A α ≥ 2 θ * (b α -1) α-1 . This implies that for any δ ∈ (0, 1/4), lim sup ε↓0 1 (log ε) α log P (D < ε) ≤ -λ (θ * ) α (b α -1) α-1 (1 -4δ) α , which gives the upper bound for the case α > 1.

Subpart 2: the case α = 1. For δ ∈ (0, 1/b), similar to (4.6), we have, for any t ε ∈ (0, a ε ) ∩ N, P(D < ε) ≤P D (u) < 1, ∀u ∈ U 0 (t ε , log ε); #U 0 (t ε , log ε) ≥ δb t ε + P #U 0 (t ε , log ε) < δb t ε ≤P(D < 1) δb tε + P #U 0 (t ε , log ε) < δb t ε ≤e -cδb tε + P ∑ |u|=t ε 1 S u ≥t ε x * -aε θ * < δb t ε . (4.9)

Note that for t ε = Θ(log a ε ) ≤ δ a ε with some δ ∈ (0, 1),

P ∑ |u|=t ε 1 S u ≥t ε x * -aε θ * < δb t ε =P Z t ε [t ε x * - a ε θ * , ∞) < δb t ε ≤P Z t ε [-(1 -δ ) a ε θ * , ∞) < δb t ε ,
which by the same reasonings as (3.14), yields that

P Z t ε [-(1 -δ ) a ε
θ * , ∞) < δb t ε ≤ e -θb(1-δ ) aε θ * +Θ(t ε ) , for any θ ∈ (0, λ). Going back to (4.9), one sees that P(D < ε) ≤ e -cδb tε + e -θb(1-δ ) aε θ * +Θ(t ε ) .

By taking t ε = 2 log b log a ε and θ = λ(1δ ), one obtains that for any δ ∈ (0, 1), lim sup

ε↓0 1 -log ε log P(D < ε) ≤ - λb θ * (1 -δ ) 2 .
The the desired upper bound for the case α = 1 follows obviously.

5 Moderate deviation in Schr öder case: proof of Theorem 1.8

Recall that M n := max |u|=n {S u }. In Schr öder case, let max ∅ := -∞ for convenience. Then Aïdékon in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] proved that for any x ∈ R,

lim n→∞ P(M n ≤ m n + x) = E[e -Ce -x D ∞ ], (5.1) 
where C > 0 is some constant and D ∞ is the a.s. limit of derivative martingale which is a.s. 0 on the extinction set {T < ∞}. Therefore,

lim n→∞ P s (M n ≤ m n + x) = E s [e -Ce -x D ∞ ],
which means that M nm n converges in law to some real-valued random variable under P s .

The idea to obtain Theorem 1.8 is borrowed from [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF]. We first recall some results in the literatures, which will be used later. The idea to this proof is borrowed from [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF]. We first recall some results from existed literatures. The following result is the well-known Cramér theorem; see Theorem 3.7.4 in [START_REF] Dembo | Large Deviation Techniques and Applications[END_REF]. (5.

2)

The next two statements characterize asymptotic behaviors of lower deviation probability for Galton-Watson process; see Corollary 5 in [START_REF] Fleischmann | Lower deviation probabilities for supercritical Gal-ton¨CWatson processes[END_REF] or Proposition 3 in [START_REF] Fleischmann | Large deviations for sums indexed by the generations of a Galton-Watson process[END_REF]. Recall b := min{k ≥ 1 : p k > 0} and γ = log f (q). We also have the following fact whose proof can e.g. be found in Lemma 1.2.15 in [START_REF] Dembo | Large Deviation Techniques and Applications[END_REF]. For i ≥ 1, let (a i n ) n≥1 be a sequence of positive numbers and a i = lim sup n→∞ =:

I 1 + I 2 ,
where in the first inequality, we use Lemma 5.1 [START_REF] Gantert | Large deviations for the maximum of a branching random walk[END_REF] and the fact that (S u ) and (M u n-t n ) are independent. We first estimate I 1 . For any t ∈ F(δ), one can check that tx * -1 + ε < 0 We have completed the proof.
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 31 Assume (1.1), (1.2), (1.3), (1.4) and b ≥ 2. For any θ > 0 such that E[e -θX ] < ∞ and for n sufficiently large, we have P(M n ≤ m nn ) ≤ e -θ n /2 . (3.8)

  \u * * up to the generation t + n -1 have at least b children, except the parent of u * . And the parent of u * has at least b -1 children. So we can extract from t \u * * an "almost" b-ary regular tree t \u * b so that its all descendants are located above (1 -2ε) n . Here in t \u * b , the parent of u * has b -1 children, and all others except the leaves have exactly b children.

Figure 1 :

 1 Figure1: We first exchange u 1 's blue child with u 2 's red child; then we exchange u 2 's blue children with two of u 3 's red children. So we color u 1 and u 2 red and color u 3 and u 4 blue (Notice that one of u 3 's children is red.) Next, we exchange u 2 and its subtree with u 4 and its subtree. Then w is colored red and v is colored blue.

Figure 2 :

 2 Figure 2: Both u 1 and u 2 have two offsprings. After exchanging subtrees rooted at w and v, u 1 is colored red and u 2 is colored blue.

  where β(α, b) = t log b = 1+α α log b α α+1 .

  Now we are ready to prove the upper bound. Let t+ n := t + α α+1 n = o( n ) and δ n := δ α α+1

  ))e ( α+1 α (1-2ε) log b) Here we choose t + = [ α+1 α (1 -2ε) log b α α+1η ε /6]/ log b and δ = η ε 6 log b where η

Write

  D for D ∞ for simplicity. It is easy to see that for any time n ≥ 1, D a.s. = ∑ |u|=n e θ * (S u -nx * ) D (u) , (4.1)
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 51 Under the assumption (1.2), we have for any a > 0, as n → ∞, lim n→∞ 1 n log P(S n ≤ -an) = -I(-a).
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 521 Assume (1.1) and p 0 + p 1 > 0. Then for the minimal positive offspring number b,lim n→∞ 1 n log P s (Z n = b) = lim n→∞ 1 n log P(Z n = b) = γ, (5.3)and for every subexponential sequence a n with a n → ∞, lim n→∞ log P s (Z n ≤ a n ) = γ.(5.4) 

  2ε) n ;∀u∈t \u * Note that for any α > 0, there exists M ≥ 1 such that x → e x α is convex on [M, ∞).

												b s.t.|u|=t + n }
	where we need to bound from below						
												
	min	  ∑ b u∈t \u *	e x α u x u ∈ N ∩ [M, A n ); ∀u ∈ t	\u * b ; s u ≥ (1 -2ε) n ; ∀u ∈ t	\u * b s.t.|u| = t + n	 	. (3.37)
												Let us take
	such M and observe that								
			∑ u∈t \u * b	e x α u =	t + n ∑ k=1	|t	\u * b | k ∑ |u|=k	|t	1 \u * b | k	e x α u ≥	k=1 t + n ∑	|t	\u * b | k e x α k ,
	where x k denotes the averaged displacements of the k-th generation. As |t	\u * b

  (T n ∈ (tδ, t]) ≤ lim P s (M n ≤ m nn |T n ∈ (tδ, t]) = P s ( max |u|=t n S u + M u n-t n ≤ m nn |T n ∈ (tδ, t]) ≤ P s ( max |u|=t n S t n + M u n-t n ≤ m nn |T n ∈ (tδ, t]) ≤ P(S t n ≤ m n -(1ε) nm n-t n ) + P s ( max ≤ m n-t nε n |T n ∈ (tδ, t])

	Note that by (5.4),							
	lim n→∞	1 n	log P s Z	n ( * ∨x * )(1+2ε)	≤ 3 n	=	γ ( * ∨ x * )(1 + 2ε)	(5.9)
	and							
	lim sup						n→∞	1 n	log P s Z (t-δ) n ≤ 3 n = γ(t -δ).	(5.10)
	Meanwhile,							
								|u|=t n	M u n-t n
	k ≥ 2 it holds that								1 n log a i n . Then, for all
			lim sup n→∞	1 n	k ∑ i=1	log a i n = max i∈{1,••• ,k}	a i .	(5.5)

n→∞ 1 n log P s

  t n ≤ m n -(1ε) nm n-t n ) ≤ -tI tx * -1 + ε t .Next, we turn to I 2 .I 2 = E s [P s (M n-t n ≤ m n-t nε n ) Z t n |T n ∈ (tδ, t]] ≤ P s (M n-t n ≤ m n-t nε n ) (Z tn ≤ 2 n |T n ∈ (tδ, t]) ≤ (1q + o(1))P(∃k ≤ δn, Z k ≤ 2 n |Z 0 = 3 n ) ≤ C (M n-t n ≤ m n-t nε n ) = e -c * < 1. (M n ≤ m nn |T n ∈ (tδ, t]) ≤ -tI tx * -1 + ε (M n ≤ m nn )

	≤ sup t∈(0, 1 * ∨x * )	tγ -tI	tx * -1 t	
	= sup y≥(x * - * ) +	-I(x * - * -y) + γ * + y	.	(5.12)
	Thus			
	lim sup			
					2 n 3 n	q	3 n -2
	Thus I 2 ≤ e -c 1 2 n and hence			
	lim sup			t	.	(5.11)
	Going back to (5.8), together with (5.9), (5.10) and (5.5), one has	
	lim sup			

2θ * log nt n n + (tx * -1 + ε) n ≤ (tx * -1 + ε) n . n→∞ 1 n log P(S 2 n + P s (Z t n ≤ 2 n |T n ∈ (tδ, t]).

Notice that as

P s (T n ∈ (tδ, t]) ≥ 1-q n 3 1-q P(T n ∈ (tδ, t]),

P s n and by Theorem 1.1 in [2], we have there exists c * ∈ (0, ∞] such that lim n→∞ P s n→∞ 1 n log P s n→∞ 1 n

log P s (M n ≤ m nn ) ≤ γ ( * ∨ x * )(1 + 2ε) ∨ sup t∈F(δ) (tδ)γ -tI tx * -1 + ε t ,

which by letting ε ↓ 0 and δ ↓ 0 implies lim sup n→∞ 1 n log P s
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Lower bound

For the lower bound, we consider the case that there are only b particles at some generation t n , and the random walk of one of those b-particles moves to the level -at n . Furthermore, families induced by other b -1 particles at t n -th generation die out before time n. For any ε > 0 and y ≥ (x * - * ) ∨ 0 such that a = *x * + 2ε + y > 0, let t n = n * +y+ε . Note that t n < n for n large enough. By using Markov property at time t n , we have for n large enough,

where in the last inequality we use the fact that lim n→∞ P(Z n-

Then one can check for n large enough,

and then for n large enough,

Letting ε ↓ 0, together with the fact that r.h.s. is independent of y, gives lim inf

-I(x * - *y) + γ * + y .

Upper bound

Let T n = inf{t ≥ 0 : Z t n ≥ 3 n } and for δ > 0 and ε > 0 small enough set

Then (5.8)