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This paper deals with the construction of reduced order models (ROMs) for the simulation of the interaction between a fluid and a rigid body with imposed rotation velocity. The approach is a follows. First, we derive a monolithic description of the fluid-structure interaction by extending the Navier-Stokes equations from the fluid domain to the solid domain (rotor) similarly to the fictitious-domain approach. Second, we build a ROM by a proper orthogonal decomposition (POD) of the resulting multi-phase flow. This method consists in (i) constructing an optimal albeit empirical spatial basis for a very small subspace of the solution space, and (ii) projecting the governing equations on this reduced basis. Third, we cope with the reconstruction of the high-dimensional velocity field needed to evaluate the imposed velocity constraint by a POD of the rigid body membership function. This provides a substantial computation time saving compared to existing approaches. Fourth, we use a novel approach to interpolate between available POD bases to build the proposed POD-ROM for a range of parameters values. The complete procedure is applied to a simple configuration and proves efficient in the reconstruction of the velocity in both the fluid domain and the solid domain, while substantially reducing the

Introduction

This work focuses on the construction of reduced order models (ROMs) to speed-up the resolution in computational fluid dynamic (CFD) problems associated with flows induced by rigid bodies with imposed rotation velocity. Such physical problems are involved in several applications of industrial interest (predictive simulation, active control, parametric shape optimization) in which axial fans or agitators play a major role (e.g turbomachinery, industrial furnaces and process engineering).

Flows induced by rotating bodies are a special case of fluid-structure interaction (FSI), for which numerous computational methods are available (see e.g. [START_REF] Dowell | Modeling of Fluid-Structure Interaction[END_REF] for FSI in general and [START_REF] Dixon | Fluid mechanics and thermodynamics of turbomachinery[END_REF][START_REF] Pinto | Computational fluid dynamics in turbomachinery: a review of state of the art[END_REF] for CFD methods dedicated to turbomachinery). Despite some limitations in the extensive use of CFD simulations when compared to experimental data [START_REF] Denton | Some limitations of turbomachinery cfd[END_REF][START_REF] Montomoli | Limitations in Turbomachinery CFD[END_REF], this is the nowadays standard approach to the industrial design and performance analysis. Most of these methods can be divided in two categories [START_REF] Hou | Numerical methods for fluid-structure interaction-a review[END_REF]: multi-domains and multi-phase approaches. In multi-domains approaches, the computational domain is divided into material subdomains, over each of them a local model is treated [START_REF] Houzeaux | A chimera method based on a dirichlet/neumann (robin) coupling for the navier-stokes equations[END_REF][START_REF] Felippa | Partitioned analysis for coupled mechanical systems[END_REF]. The global solution is then constructed by properly aggregating the local solutions. In multi-phase approaches, a single equation with spatially dependent material properties is solved over the global computational domain. This includes e.g. the ficitious domains method [START_REF] Glowinski | A fictitious domain method with distributed lagrange multipliers for the numerical simulation of particulate flow[END_REF][START_REF] Glowinski | A distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Patankar | A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Court | A fictitious domain approach for fluid-structure interactions based on the extended finite element method[END_REF] (also called immersed volume method in [START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF][START_REF] Hachem | Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation[END_REF]), the immersed boundary method [START_REF] Fedkiw | A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF][START_REF] Fadlun | Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[END_REF], and the ghost fluid method [START_REF] Fedkiw | A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF]. Both approaches yield computationally expensive simulation codes despite efforts in the CFD community to reduce the complexity of the problem with simplifying assumptions, e.g. small disturbance assumption or boundary-layer assumption [START_REF] Epureanu | Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling[END_REF]. In particular, very fine meshing of the computational domain is usually needed to achieve high-fidelity simulation [START_REF] Tucker | Computation of unsteady turbomachinery flows: Part 1progress and challenges[END_REF] leading to High-Dimensional Models (HDM). Thus, reliable reduced order models (ROMs) are needed for design, parametric analysis and control.

The ROMs proposed in this paper are based on the well established Proper Orthogonal Decomposition (POD, also known as Karhunen-Loeve decomposition, SVD or PCA), introduced as a tool for the identification of coherent structures in dynamical systems in [START_REF] Holmes | Turbulence, coherent structures, dynamical systems and symmetry[END_REF] based on previous works grounded in statistical analysis [START_REF] Kosambi | Statistics in function space[END_REF][START_REF] Karhunen | Zur spektraltheorie stochastischer prozesse[END_REF][START_REF] Loève | Fonctions aléatoires du second ordre, Appendix to the book of P. Lévy: Processus stochastiques et mouvement Brownien[END_REF][START_REF] Loève | Probability theory: foundations, random sequences[END_REF]. This method turns out to be efficient in the extraction of Proper Orthogonal Modes (POMs) associated with the evolution of complex large-scale dynamical systems (e.g. structural and fluid mechanics and electromagnetics) from experimental measurements or high-fidelity simulations. These POMs form a spatial basis onto which the governing equations are projected to build the so called POD-ROMs. Several previous works have been devoted to the construction of POD-ROMs for turbomachinery. In most of the approaches, the linearized Euler equations or linearized Navier-Stokes equations are considered, and the POD is performed in the frequency domain. This approach is justified by the usual geometric periodicity of the rotors in turbomachinery in general and axial fans or agitators in particular. It has been first

proposed in [START_REF] Willcox | Low order aerodynamic models for aeroelastic control of turbomachines[END_REF][START_REF] Willcox | Reduced-order aerodynamic models for aeroelastic control of turbomachines[END_REF], and subsequently considered in [START_REF] Epureanu | Reduced-order models of unsteady transonic viscous flows in turbomachinery[END_REF][START_REF] Epureanu | Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling[END_REF][START_REF] Epureanu | A parametric analysis of reduced order models of viscous flows in turbomachinery[END_REF]. More recently, the use of a weighted POD have been proposed in [START_REF] Bistrian | Weighted proper orthogonal decomposition of the swirling flow exiting the hydraulic turbine runner[END_REF] to construct from experimental data a ROM for the axial-circumferential velocity profile associated with the steady axisymmetric parallel flow of an inviscid and incompressible fluid in a Francis turbine. Also, an Arnoldi procedure associated with a matching of transfer functions between original and reduced order model is proposed as a compromise to POD in [START_REF] Willcox | An arnoldi approach for generation of reduced-order models for turbomachinery[END_REF]. These approaches suffer from two drawbacks. First, they yield accurate POD-ROMs only if the small disturbance assumption is verified so that the frequency domain analysis is justified. Second, they are not generally applicable and usually need dedicated CFD solvers.

In this work, we consider the non-linearized Navier-Stokes equations for flows in an incompressible newtonian fluid, and the POD is performed directly in the time domain over the d-dimensional velocity profile (d = 2 or 3). Note that we do not consider the stress load applied by the fluid to the body, the dynamics of which is imposed. In order to circumvent the incompatibility of the POD (which yields spatial modes) with moving domains (the rotating bodies), we use a multi-phase approach. More precisely, the Navier-Stokes equations are extended to the solid domain in which the ensemble rotation velocity is enforced by a constraint relaxed through the definition of an appropriate distributed Lagrange multiplier. Note that the combination of the multi-phases approach and POD has been previously considered e.g. in [START_REF] Liberge | Low order dynamical system for fluid-rigid body interaction problem using pod method[END_REF][START_REF] Liberge | Reduced order modelling method via proper orthogonal decomposition (pod) for flow around an oscillating cylinder[END_REF] for fluid-structure interaction, in [START_REF] Rao | Pod combined with fictitious domain method for solving shape optimization problem[END_REF] for shape optimization and in [START_REF] Tissot | Feedback stabilization of an oscillating vertical cylinder by pod reduced-order model[END_REF] for feedback stabilization in FSI. The evaluation of the rigidity constraint in the body usually requires the reconstruction of the full order solution at runtime, so that the simulation of the resulting POD-ROMs still depends on the number of degrees of freedom. In order to cope with this full order reconstruction, we propose a novel approach that benefits from the periodicity in the geometry of the rotors by applying the POD also to the characteristic function of the solid domain. The resulting POD-ROMs are independent of the number of degrees of freedom of the HDM, while preserving the accuracy of the standard approach. Additionally, any CFD software can be used to produce the snapshots from which the proper orthogonal basis is built (non-intrusive method).

It is known that ROMs built from POD are valid in the vicinity of the parameter used to produce the set of snapshots, i.e. they lack robustness with respect to changes in the parameters (see e.g. [START_REF] Epureanu | A parametric analysis of reduced order models of viscous flows in turbomachinery[END_REF] for a parametric analysis in the context of turbomachinery and [START_REF] Akkari | On the sensitivity of the pod technique for a parameterized quasi-nonlinear parabolic equation[END_REF] for a mathematical a priori estimates of parametric sensibility in the context of CFD). That is, the simulation of the HDM must be performed for each new parameter to build the associated POMs, hence the order reduction performance is lost. To circumvent the parametric robustness problem, some modified POD methods were proposed, such as global POD method, local POD method, and adaptive POD method (see e.g. [START_REF] Jin | An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system[END_REF] and references therein). In this work, we use a state of the art adaptive method to allow fast construction of the proposed POD-ROMs for a given parameter value by interpolating a set of precomputed POMs. The first adaptive method have been proposed in [START_REF] Amsallem | High-order interpolation of reduced-order models for near real-time aeroelastic prediction[END_REF][START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF] and consists in interpolating the POMs over the tangent space to the Grassmann manifold at a reference point. This method requires to properly select the reference point to achieve a good accuracy. Thus, we propose the use of the method introduced in [START_REF] Mosquera | Pod-basis interpolation via inverse distance weighting on grassmann manifolds[END_REF] that consists in extending the Inverse Distance Weighting (IDW) interpolation method from vector spaces to Grassmann manifolds which automatically adapts to the available sample of POMs.

This paper is organized as follows. The goals and the approach are detailed in the problem statement in section 1. The multi-phase governing equations for the coupled fluid-structure system used to construct the POD-ROMs are recalled in section 2. The two proposed POD-based low order dynamical systems are given in section 3. The parametric interpolation method is given in section 4.

Finally, numerical results for a simple configuration are presented in section 5 before conclusions.

Problem statement

In this section, we define the domains and the notations used throughout the paper. Then, we state the data that are supposed to be available for the construction of the POD-ROMs. Finally, we detail the issues addressed in this work.

Domains definitions and notations

We consider the computational domain Ω ⊂ R d (with d the spatial dimension) and the temporal domain T = [0, T ] ⊂ R + . The computational domain contains (i) a rotating body S that occupies the physical domain Ω S (t) at time t ∈ T and (ii) an incompressible newtonian fluid F, that is Ω = Ω S (t) ∪ Ω F (t) (see figure 1). The computational boundary domain is denoted by Γ = ∂Ω, the body boundary is Γ S (t) = ∂Ω S (t) and the fluid boundary is Γ

F (t) = Γ ∪ Γ S (t).
The characteristic function of the solid domain is

χ S (x, t) =    1 if x ∈ Ω S (t), 0 otherwise. (1)
In the case of turbomachinery, the rigid body (fan, agitator) is assumed to rotate around a given axis e ω passing through the center of rotation x ω , at the angular velocity dθ dt , where θ is the angle with respect to a given reference position. The associated rotation velocity is

u ω (x, t) = ω × (x -x ω ) (2) 
with ω = dθ dt e ω the rotation vector. The characteristic function is obtained at every time as the rotation of the initial configuration:

χ S (x, t) = R θ(t) χ S (x, 0), (3) 
with R(θ) the rotation through angle θ around the axis e ω .
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First, the construction of POD-ROMs involves the computation of the discrete approximation of the material velocity u h : Ω × T × R p → R d for a given parameter p ∈ R p on a reference (fixed) grid. Any CFD method can be used to simulate the HDM associated with the FSI problem described in the previous subsection. In case of moving meshes or remeshing solvers, the snapshots are interpolated to a reference mesh. Second, we assume that sets of snapshots U(p n ) 1≤n≤np have been generated for a family of n p parameters, where U denotes a set of n T snapshots of the velocity stored as U ij = u h (x i , t j ) with

x i ∈ Ω and t j ∈ T for i ∈ {1, • • • , n x } and j ∈ {1, • • • , n T }.

Objectives and approach

The first objective of this work is to construct a POD-ROM that is able to reproduce the solution u h (p) for a given parameter p over the time period T and beyond. The second objective is to construct the POD-ROM associated with a new parameter p / ∈ (p n ) 1≤n≤np from sets of snapshots U(p n ) 1≤n≤np , avoiding the resolution of the HDM for the parameter p

The approach is as follows. First, we construct a low dimensional projection basis by POD of the snapshots associated with a given parameter (POMs).

Second, reduced order models are constructed by projecting the problem equations onto a small subset of these POMs. Third, we interpolate between the POMs associated with the sets of snapshots U(p n ) 1≤n≤np via a robust subspaces interpolation method to construct the POD-ROM associated with a new parameter p / ∈ (p n ) 1≤n≤np .

Interaction between a fluid and a rigid body with imposed rotation velocity

In this section we adapt the fictitious-domain method introduced in [START_REF] Glowinski | A fictitious domain method with distributed lagrange multipliers for the numerical simulation of particulate flow[END_REF][START_REF] Glowinski | A distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF] and developed in [START_REF] Patankar | A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF] to the case of a flow induced by a rigid body with imposed rotation velocity. First, we detail the strong form of the governing equations.

Second, we give the associated weak form. Third, we give the standard iterative method to solve the resulting saddle point problem. This yields the HDM which is the starting point in the derivation of the POD-ROMs in the next section 3.

Governing equations

The fluid domain Ω F is governed by the incompressible Navier-Stokes equations. To derive the governing equations for the solid domain and the fluidstructure interaction, we adapt the fictitious domain approach [START_REF] Glowinski | A distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Patankar | A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF] in which a monolithic formulation is derived by modeling the solid domain as a fluid with additional constraints to enforce rigidity. The difference here is that we enforce directly the rotation velocity to describe the motion of the rotor. The rotation constraint is given by

u(x, t) -u ω (x, t) = 0, ∀x ∈ Ω S (t) and ∀t ∈ T, (4) 
where u ∈ (H 1 (Ω, T)) d is the eulerian velocity with H 1 the standard Sobolev space. A direct consequence of ( 4) is that no deformation of the solid domain occurs:

D (u S ) = ∇ • u S = 0, ∀x ∈ Ω S (t), ∀t ∈ T. (5) 
Thus, the incompressible Navier-Stokes equations can be extended to the solid domain provided an appropriate force term λ ∈ L 2 (Ω, T) d which is added, ensuring that the additional constraint (4) is verified. The strong form of the governing equations are then: find u ∈ H 1 (Ω, T) d such that ∀x ∈ Ω and

∀t ∈ T:            ρ ∂u ∂t + ∇u • u = ∇ • σ + f -λ, ∇ • u = 0, χ S (u -u ω ) = 0, (6) 
where σ = 2 η D (u) -p I is the stress tensor with D (u) = 1 2 (∇u + ∇u) the deformation rate tensor and I the d-dimensional identity tensor, ρ and η are respectively the fluid density and the dynamical viscosity, and f are the volume forces acting on the material domain. Note that the pressure p can be interpreted as the Lagrange multiplier associated with the incompressibility constraint in [START_REF] Hou | Numerical methods for fluid-structure interaction-a review[END_REF]. The problem ( 6) is completed with the following set of boundary and initial conditions:

         u F = u D ∀x ∈ Γ D , ∀t ∈ T, σ F • n = 0 ∀x ∈ Γ N , ∀t ∈ T, u(x, 0) = u 0 (x) ∀x ∈ Ω F (0), t = 0, (7) 
with constant Dirichlet boundary condition on the boundary Γ D ⊆ Γ and standard outflow boundary condition (zero normal stress) on the remaining bound-

ary Γ N = Γ \ Γ D .
The initial velocity u 0 is assumed to be compatible with the constraint (4).

Remark 1 (fluid-structure interaction). The interaction stress between the fluid and the rigid body on the interface Γ S is naturally included in the proposed formulation. This can be shown by deriving [START_REF] Hou | Numerical methods for fluid-structure interaction-a review[END_REF] as in the fictitious domain method by an eulerian description of the standard local equilibrium equations for the rigid body and replacing the rigidity constraint D (u) = 0 by the imposed rotation in Ω S so that the boundary traction on Γ S in each domain cancels.

Remark 2 (Material properties). Here, the density of the rigid body equals that of the fluid. This is justified by the fact that the velocity of the rigid body is imposed and is not impacted by the dynamics of the fluid nor by the action of the volume forces f . Also, the viscosity of the rigid body equals that of the fluid. This is justified by the fact that this parameter has no physical meaning and must be considered as a scaling coefficient (see [START_REF] Hachem | Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation[END_REF]).

Weak formulation

Here, we specify the functional setting used to derive a standard weak formulation of ( 6) in view of the subsequent construction of the low order dynamical system. The trial and test spaces for the velocity are respectively

W = u ∈ H 1 (Ω, T) d ; u = u D ∀x ∈ Γ D , and (8) 
W 0 = u ∈ H 1 (Ω, T) d ; u = 0 ∀x ∈ Γ D . (9) 
The trial and test spaces for the pressure are respectively

P 0 = p ∈ L 2 Ω, T ; Ω p(x, t) dx = 0 , and L 2 Ω, T . (10) 
Assuming the solid domain never intersects the computational boundary, the trial and test spaces associated with the Lagrange multiplier can be both chosen as W 0 . The resulting week form of ( 6) is given by: find u ∈ W, p ∈ P 0 , λ ∈ W 0 such that

ρ ∂u ∂t + ∇u • u v = (f -χ S λ| v) + (p| ∇ • v) -2 η (D (u)| D (v)) (11) (∇ • u| q) = 0, ( 12 
) (χ S (u -u ω )| µ) = 0, (13) 
for all v ∈ W 0 , q ∈ L 2 Ω, T and µ ∈ W 0 , with (•| •) the inner product on L 2 (Ω).

Iterative method

The weak form of the velocity constraint ( 13) can be relaxed iteratively using an augmented Lagrangian formulation coupled with an Uzawa algorithm (see [START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF] for details on this algorithm and [START_REF] Liberge | Low order dynamical system for fluid-rigid body interaction problem using pod method[END_REF][START_REF] Hachem | Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation[END_REF] for its application in FSI). The resulting iterative procedure to carry out within each time step is described in algorithm 1. It is the starting point in the derivation of the POD-ROMs of the next section 3.

Proposed reduced order models

In this section, we introduce the proposed low-order dynamical systems associated with the governing equations [START_REF] Patankar | A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Court | A fictitious domain approach for fluid-structure interactions based on the extended finite element method[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF]. First, the momentum equation is projected on the POD basis associated with the velocity. This yields a reduced order model which involves the reconstruction of the complete velocity field at each inner Uzawa iteration to evaluate the increment in the Lagrange multiplier. Thus, we propose a second reduced order model by (i) decomposing also the characteristic function in a POD basis and (ii) constructing an explicit evaluation of the basis coefficients from the known rigid body angle. In this work, we use the classical snapshot POD method introduced in [START_REF] Sirovich | Turbulence and the dynamics of coherent structures part i: coherent structures[END_REF] and recalled in § Appendix A.

Data: Initial values u 0 , p 0 (e.g. from the previous time-step).

Result: u p , λ solution of [START_REF] Patankar | A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Court | A fictitious domain approach for fluid-structure interactions based on the extended finite element method[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF].

1 Initialize ← 0, λ ← 0, e ← ∞ and δe ← ∞;

2 while e > tol and δe > tol do 3 Update ← + 1 ;

4 Solve for u , p :

5 ρ δ t u + ∇u • u v -f -χ S λ -1 v -p ∇ • v + 2 η D u D (v) = 0, 6 ∇ • u q = 0; 7 Update λ : 8 λ ← λ -1 + r χ S u -u ω ;
9

Check for convergence:

10 e ← χS (u -uω) L 2 (Ω) χS uω L 2 (Ω)
and δe ← e -1 -e ;

11 end Algorithm 1: Uzawa algorithm associated with the weak form of the governing equations (11-13).

Galerkin projection of the momentum equation

We suppose that discrete solutions (u h (x, t n )) 1≤n≤n T of the governing equations (11-13) have been obtained. Each snapshot u h (x, t n ) is decomposed into a mean part u h (x) and a fluctuating part u h (x, t), and the fluctuating part is decomposed over a POD basis Φ u = (φ u i ) 1≤i≤n T truncated to n u modes:

u h (x, t n ) = u h (x) + nu i=1 φ u i (x) a i (t n ), (14) 
where the set a = (a i ) 1≤i≤nu collects the temporal coefficients of the fluctuating part of the velocity in the POD basis Φ u , elements of which are called velocity POD modes.

Remark 3 (Continuity equation). The mean field u h and the elements of Φ u are built from linear combinations of the snapshots for u h (see A.9), so that (i) the velocity POD modes are divergence free ∇ • φ u i = 0, 1 ≤ i ≤ n u and (ii) the approximation u h automatically satisfies the continuity equation ∇ • u h = 0.

Remark 4 (Dirichlet boundary conditions). The Dirichlet boundary conditions are assumed constant over time so that they are all included in the mean field u(x), x ∈ Γ D and the velocity POD modes vanish on the boundary Γ D .

Now performing a standard Galerkin projection of the governing equation (that is, using the ersatz ( 14) instead of u and the POMs (φ u i (x)) 1≤i≤nu in replacement of the test functions v in (11-13)) yields the following low-order dynamical system, referred as ROM1:

A • da dt + B • a + C : a ⊗ a + E + F = 0. ( 15 
)
with the Uzawa update of the Lagrange multiplier

λ +1 = λ + r χ S u + nu i=1 φ u i a i -u ω , (16) 
where the components of vectors

E ∈ R nu , F ∈ R nu , matrices A ∈ R nu×nu ,
B ∈ R nu×nu and third-order tensor C ∈ R nu×nu×nu are given below.

                     A ij = ρ φ u j φ u i (= ρ δ ij ), B ij = ρ ∇φ u j • u + ∇u • φ u j φ u i + 2η D φ u j D (φ u i ) , C ijk = ρ ∇φ u j • φ u k φ u i , E i = χ S λ φ u i , F i = ρ (∇u • u| φ u i ) + 2η D φ u j D (φ u i ) -(f | φ u i ) . ( 17 
)
Remark 5 (Cost reduction). The model ROM1 reduces the cost associated with the computation of the momentum equation ( 15), but the complete resolution still depends on the number of degrees of freedom of the solution due to (i) the reconstruction of the velocity field in the Uzawa iteration ( 16) and (ii) the projection of the Lagrange multiplier to evaluate the vector E in each inner iteration.

Reduction of the characteristic function

To cope with the reconstruction of the full order velocity field and the projection of the Lagrange multiplier on the velocity POD basis, we propose to also decompose the fluctuating part of the characteristic function χ S = χ S + χ S over a POD basis Φ χ = (φ χ i ) 1≤i≤n T truncated to n χ modes:

χ S (x, t) χ S + nχ i=1 φ χ i (x) c i θ(t) . (18) 
The choice of χ S is specified in the following subsection 3.3 (remark 6). Notice the coefficients (c i ) 1≤i≤nχ are parametrized by the rotation angle θ and the rotation velocity dθ dt is imposed so that no evolution equation is needed. Projecting the Uzawa iteration ( 16) over the velocity POD basis Φ u and approximating the characteristic function as in [START_REF] Tucker | Computation of unsteady turbomachinery flows: Part 1progress and challenges[END_REF] yields the following reduced expression:

λ +1 = λ + r G • a + H • c + L : c ⊗ a + M , (19) 
with the coefficients given below.

                     λ i = χ S λ φ u i , G ij = χ S φ u j φ u i , H ik = (φ χ k (u -u ω )| φ u i ) , L ijk = φ χ k φ u j φ u i , M i = (χ S (u -u ω )| φ u i ) . (20) 
Due to the iterative procedure for updating the Lagrange multiplier λ, the reduced Lagrange multiplier λ = ( λ i ) 1≤i≤nu can be directly used in place of E 215 in the reduced momentum equation ( 15):

A • da dt + B • a + C : a ⊗ a + λ + F = 0. (21) 
The reduced momentum equation ( 21) along with the reduced Uzawa iteration ( 19) constitute the proposed low order dynamical system, referred as ROM2.
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Here, we construct explicit evaluations of the coefficients c(θ) for caracteristic function. In practical applications, the rotating bodies (fans, agitators) exhibit some rotational symmetries that can be exploited. Denote θ S the angular period defined as the minimum angle such that χ S = R(θ S )χ S with R(θ) the rotation through angle θ around the axis e ω , so that the

c i : [0, θ S ] → R, 1 ≤ i ≤ n χ are 225 periodic functions c i (0) = c i (θ S ).
In this work, we propose to use the periodic piecewise polynomial interpolators (periodic splines) as follows.

Remark 6 (Mean characteristic function). In this work, the reference field 18) is defined as the mean of the characteristic function over a rotation by the angle θ S :

χ S : Ω → [0, 1] in (
χ S (x) = 1 θ S θS 0 R(θ)χ S (x, 0) dθ. ( 22 
)
The reference coefficients c i (θ n ), 1 ≤ i ≤ n χ are defined as the projection of the fluctuating part of the characteristic function over its POMs Φ χ for a set of selected angles (θ n ) 1≤n≤N -1 taken in the angular period θ n ∈ [0, θ S ]:

c i (θ n ) = R θ n χ S (x, 0) -χ S (x) φ χ i (x) , 1 ≤ i ≤ n χ . (23) 
The set D i of N i + 1 data points used to build the interpolator for the i-th coefficient is

D i θ 0 , c i (θ 0 ) , • • • , θ Ni , c i (θ Ni ) , (24) 
with 0 = θ 0 < • • • < θ n < • • • < θ Ni = θ S .
The associated interpolant S i c i on the domain Θ = [θ 0 , θ Ni ] is such that S i (θ) = P i,n (θ), ∀θ ∈ (θ n , θ n+1 ) where the P i,n (θ), 0 ≤ n ≤ N i -1 are third order polynomials that fulfill the following constraints:

(C1) P i,n (θ n ) = P i,n-1 (θ n ) = c i (θ n ), 1 ≤ n ≤ N i -1, (C 0 interpolator); (C2) P i,n (θ n ) = P i-1 (θ n ), 1 ≤ n ≤ N i -1, (C 1 interpolator); (C3) P i,n (θ n ) = P i-1 (θ n ), 1 ≤ n ≤ N i -1, (C 2 interpolator); (C4) P (k) i,0 (θ 0 ) = P (k) i,Ni (θ Ni ), 0 ≤ k ≤ 2 (periodic).
The N i + 1 interpolation points for the i-th coefficient can be selected by a greedy approach, as detailed in § Appendix B. Finally, we define the multivalued function S(θ) = S 1 (θ), • • • , S nχ (θ) so that the reduced Uzawa iteration [START_REF] Holmes | Turbulence, coherent structures, dynamical systems and symmetry[END_REF] reads:

λ +1 = λ + r G • a + H • S(θ) + L : S(θ) ⊗ a + M , (25) 
with the vectors, matrices and third order tensor defined in [START_REF] Kosambi | Statistics in function space[END_REF].

Interpolation of the reduced order models

The POD approach yields reduced order models that lack robustness with respect to changes in the parametric configuration. Among the numerous approaches considered to circumvent the costly simulation of the HDM needed to derive the POD basis for a new parameter, the most appealing are based on interpolation (see e.g. [START_REF] Jin | An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system[END_REF] and references therein). In this work, we focus on a robust interpolation method proposed in [START_REF] Mosquera | Pod-basis interpolation via inverse distance weighting on grassmann manifolds[END_REF], namely, the Grassmannian Inverse Distance Weighting (IDW-G) which take account for the geometry of the Grassmann manifold. First, we motivate and recall the Grassmannian interpolation method proposed in [START_REF] Amsallem | High-order interpolation of reduced-order models for near real-time aeroelastic prediction[END_REF][START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF]. Second, we recall the IDW-G algorithm.

Third, we sketch the use of this method to interpolate the POD-ROMs proposed in the previous section 3.

Interpolation over the Grassmann Manifold

Denote by Φ = (Φ i ) 1≤i≤np the set of POD bases obtained from the simulation of the HDM for the set of parameters P = (p i ) 1≤i≤np , and p / ∈ P the new parameter for which we want to construct one of the POD-ROMs presented in section 3. It has been shown that the construction of the POD-ROMs involves the projection of the governing equation over the POD basis. On the other hand, it is well known that the projection on the subspace V i = span (Φ i ) does not depend on the chosen basis used to describe it:

π Φ (U) = π Φ•M (U), ∀M ∈ O(m), (26) 
where

π Φ (•) = Φ • Φ • • is a projection operator and O(m)
is the set of square orthogonal matrices of size m. Thus, we seek for a method to interpolate the set

(V i ) 1≤i≤np of m-dimensional subspaces of R n , hence to realize an interpolation in the space G m (R n ) = {M ∈ R n×m ; M • M = I}
known as the Grassmann manifold (see e.g. [START_REF] Wong | Differential geometry of grassmann manifolds[END_REF]). The subspaces (V i ) 1≤i≤np are associate with the equivalence classes of all their bases, and form a set of points on G m (R n ). The approach proposed in [START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF] to interpolate over G m (R n ),is as follows. First, the sample (subspaces generated by the) POD bases are sent to the tangent space of G m (R n ) at a given reference point span (Φ r ) through the geodesic logarithm, which matrix representation is [START_REF] Wong | Differential geometry of grassmann manifolds[END_REF][START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF] log

Φr (Φ i ) = U • arctan(Σ) • V • ( Φ i • Φ i ) 1 2 , ∀i ∈ {1, • • • , n p }, with U • Σ • V = SVD Φ i • ( Φ r • Φ i ) -1 -Φ r • ( Φ r • Φ r ) 1 2 . ( 27 
)
Second, the images are interpolated by any standard method suitable for vector space. Third, the resulting interpolation is sent back on the manifold through the geodesic exponential map which matrix representation is [START_REF] Wong | Differential geometry of grassmann manifolds[END_REF][START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF] exp

Φr (Γ) = Φ r • ( Φ r • Φ r ) 1 2 • V • cos(Σ) + U • sin(Σ) • V • ( Φ r • Φ r ) 1 2 , with U • Σ • V = SVD Γ • ( Φ r • Φ r ) 1 2 . ( 28 
)
Remark 7 (Well posed interpolation). It is assumed that all the sample points are in the injectivity radius of the exponential map with det( Φ r

• Φ i ) = 0, ∀i ∈ {1, • • • , n p }.
Remark 8 (Dependence on the reference point). The method from [START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF] recalled 245 above depends on the choice of the reference point. This could impact the robustness of the interpolation. To circumvent this drawback, we propose to use the IDW-G interpolation method from [START_REF] Mosquera | Pod-basis interpolation via inverse distance weighting on grassmann manifolds[END_REF] which we recall below.

Inverse Distance Weighting

In this paper, we consider the Inverse Distance Weighting interpolation over the Grassmann manifold (IDW-G) proposed in [START_REF] Mosquera | Pod-basis interpolation via inverse distance weighting on grassmann manifolds[END_REF]. The IDW-G method solves the following minimization problem:

(P p )        For p ∈ R, find Φ I ∈ G m (R n ) s.t. : Φ I (p) = arg min Φ∈Gm(R n ) 1 2 np i=1 w i (p) d G (Φ, Φ i ) , (29) 
where d G denotes the geodesic distance and the weights (w i (λ)) 1≤i≤np verify np i=1 w i (λ) = 1. The method relies on the following constructive theorem from [START_REF] Mosquera | Pod-basis interpolation via inverse distance weighting on grassmann manifolds[END_REF].

Theorem 1 (IDW-G sequence). If the Φ 1 , • • • , Φ np are all contained in the ball B(Φ * , r) where Φ * ∈ G m (R n ) and r < π 4 √
2 , then for all p ∈ R, the problem (P p ) admits a unique solution Φ I in B(Φ * , r). Moreover, for all initial Φ ∈ B(Φ * , r), the sequence Φ I ∈N defined by:

Φ I 0 = Φ; Φ I +1 = exp Φ I 1 2n p np i=1 w i (p) log Φ I (Φ i ) ( 30 
)
converges to Φ I .

In practice, convergence is assumed when the norm of the gradient of the functional associated with the problem P p is below a predefined threshold (see [START_REF] Mosquera | Pod-basis interpolation via inverse distance weighting on grassmann manifolds[END_REF]).

This sequence yields the algorithm 2.

Interpolation of the low-order dynamical systems

The set of non-dimensional parameters involved in the full-order model are classically the Reynolds number and some shape parameters for the rotating body. Additionally, the POD-ROMs presented in section 3 involve the following bases:

ROM1: POD basis for the velocity Φ u only, ROM2: POD bases for the velocity Φ u and the characteristic function Φ χ .

In this work, we focus on the interpolation over a set of Reynolds number (related with the rigid body rotation velocity). This situation arises in most industrial cases for which only the fans or agitators rotation velocity is controlled. In those cases, there is no need to interpolate the POD bases for the characteristic function which can be determined once for all along with the spline approximation (S i ) 1≤i≤nχ defined in subsection 3.3.

Data: Sets of parameters (p n ) 1≤n≤np with associated POD bases (Φ n ) 1≤n≤np , exponent α, residual tolerance tol and target parameter p .

Result: Interpolated basis Φ I Φ .

1 r = argmin i∈[1,np] |p -p i | // Select initial value ; 2 = 0 ; 3 Φ I = Φ r ; 4 S = np i=1 1 p -p i α
// Sum of inverse distance weights ;

5 for i ∈ [1, n p ] do 6 w i = 1 S p -p i α
// Normalized inverse distance weights ; In order to interpolate the POD bases for the velocity as described in algorithm 2, the velocity POD bases have to be orthonormal with respect to the scalar product of R n . However, the scalar product of L2 is used to construct the snapshot correlation matrices from which the POD bases are derived so that the POD bases are orthogonal in L 2 . Thus, the sample bases must be orthonormalized in R n before the interpolation, and the interpolated basis must be orthonormalized back in L 2 , e.g. with a Gram-Schmidt procedure.

7 end 8 = ∞ ; 9 while > tol do = + 1 ; for i ∈ [1, n p ] do Γ i = log Φ I -1 (Φ i ) //
Finally, the proposed POD-ROMs involve the mean fields for the velocity and the characteristic function. Since we do not identify a special interpolation space, they are interpolated by a cubic spline applied to the matrices coefficients.

Numerical results

This section is devoted to the illustration of the performances of the proposed methods through numerical results. We consider here a simple 2D geometry (rotating ellipsoidal rigid body). However, any geometry χ S can be considered provided an adapted mesh is given. First, we describe the simple configuration used in the tests. Second, we show the advantage of the two reduced order models proposed in section 3. Third, we show the results for the interpolation method describe in previous section 4. All the numerical tests have been performed using the Python/C++ finite element library DOLFIN [START_REF] Logg | Dolfin: A c++/python finite element library[END_REF] on a computer equipped with a processor1 Intel Xeon E5-2620 v4 and 64Go of RAM.

Description of the configuration

We consider a circular spatial domain Ω = Ω S ∪ Ω F (d = 2) filled with a rotating ellipsoidal body Ω S immersed in an incompressible newtonian fluid Ω F (see figure 2a). The domain radius is 1m, the ellipse principal radius is R = 0.5m with an aspect ratio of 0.2. In the sequel, the Reynolds number associated with this configuration is defined as

Re = ρ U L η , (31) 
with the density ρ = 1 (kg.m -3 ), the dynamic viscosity η = 0.01 (kg.m -1 .s -1 ), the reference velocity U = R dθ dt (m.s -1 ) and L = 2R (m) the ellipse principal diameter. We use the fictitious domain method [START_REF] Glowinski | A fictitious domain method with distributed lagrange multipliers for the numerical simulation of particulate flow[END_REF] as described in section 2 to derive the finite element formulation of the fluid-structure interaction. The mesh includes 52669 nodes and is not conforming 2 with the rigid body boundaries (see figure 2b). The boundary condition on ∂Ω = Γ N is outflow (σ F • n = 0).

The momentum equation and the continuity equation are solved together by a monolithic formulation for which the finite element spaces are chosen as the linear vector Lagrange elements enriched with the cubic vector bubble elements for the velocity and piecewise linear elements for the pressure. This mixed finite element space is known as the mini space (see [START_REF] Arnold | A stable finite element for the stokes equations[END_REF] for details). The time-step for temporal discretization is fixed to 1ms. The parameters for Uzawa iterations 2 A mesh conforming with the body would be moving over time so that the snapshots should be interpolated back on a single fixed mesh before applying the POD (as stated in §1).

(see section 2.3) are r = 10 3 and tol = 10 -3 . For this setting, an average of = 6 Uzawa iterations are needed to achieve convergence of the velocity in the solid domain. The average computational time for each Uzawa iteration of the high-dimensional model is 5, 2s.

Comparison between HDM and proposed POD-ROMs

The configuration described in previous subsection is used for the simulation of the HDM with a zero initial condition. In this subsection, the Reynolds number ( 31) is fixed to Re = 1000. The POD is classically applied to ergodic processes for which the statistical and temporal averages coincide. Thus, we first present the results obtained for a steady periodic flow. Second, the results for the transient period are shown.

Steady Periodic flow

We first run the HDM simulation for a transient period of 7, 5s. Second, n T = 150 regularly spaced snapshots are generated over a period of T = 0, 75s to construct the POD basis for the velocity Φ u (figure 3). Additionally, we construct the POD basis for the characteristic function of the rigid body Φ χ as described in sections 3.3 and 2 (see figure 4).

The eigen-values (λ i ) 1≤i≤n T of the correlation matrices (A.8) associated with the velocity and the characteristic function are shown in figure 5a. The figure 5b shows the associated reconstruction error computed from the eigen values as

E(n) = 1 - n T i=n+1 λ i n T j=1 λ j . ( 32 
)
We select n u = 30 modes for the velocity and n χ = 35 modes for the characteristic function in order to capture 99.9% of the snapshots information. The parameters for the reduced Uzawa algorithm are r = 100 and tol = 10 -3 . The constant time-step for the POD-ROMs is 5ms and we use a mid-point numerical scheme to solve [START_REF] Fedkiw | A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF] and [START_REF] Karhunen | Zur spektraltheorie stochastischer prozesse[END_REF] as

A • δa k δt + B • a k+ 1 2 + C : a k+ 1 2 ⊗ a k+ 1 2 = RHS; a k+τ = a k + τ δa k . ( 33 
)
The periodic spline interpolation in ROM2 of the angular coefficients for the characteristic function described in subsection 3.3 is build over the angular period θ S = π rad from a data set of N = 1000 angles in [0, θ S ] and a relative tolerance on the periodic spline reconstruction of ε θ = 10 -3 . The computational times are detailed in table 1 in which the advantage of the ROM2 over the ROM1 is clear. The fluctuating velocity for the three models (HDM, ROM1 and ROM2) is shown in figure 6. The reconstructions provided by both the ROM1 and the ROM2 are very close to the HDM, despite some artifacts due to the truncation of the POD bases. These results are reflected in the vorticity shown in figure 7,

where we see the tiny vortices at the ellipse tips are well reconstructed. Finally, the temporal coefficients associated with the first six POMs of the velocity are shown in § Appendix C, figure C.12 for the three models. A detailed comparison of the error on these coefficients, defined as

∆a ROM i (t n ) = |a HDM i (t) -a ROM i (t)| 1 T T 0 a HDM i (t) 2 dt , (34) 
is shown in figure 8. The coefficients for the HDM are obtained by projection of the snapshots over the POD modes a i (t) = (u h (x, t)| φ u i (x)). The coefficients 330 for the ROM1 and the ROM2 are obtained from the solution of ( 15) and ( 21), respectively. We see that despite the rigid body's characteristic function is approximated in ROM2, both models yields similar results. for the HDM and 5ms for the POD-ROMs and parameters for the Uzawa algorithm differ leading to an average of 6 iterations for the HDM and 10 iterations for the POD-ROMs. 

Transient flow

Here, we apply the proposed method on the transient period. That is, we start the simulation from a zero initial condition and consider 200 snapshots over a rotation of the body by an angle of θ = π (see figure 9). The Reynolds a detailed comparison of the error on these coefficients is shown in figure 10. We see the temporal evolution of the dominant modes is conform with the HDM for both the ROM1 and the ROM2.

Comparison between the direct and interpolated ROM2

In this section, we show the results of the ROM2 obtained from the interpolation of POMs with respect to the Reynolds number (31) by the IDW-G method (algorithm 2). First, we build the POMs and the ROM2 from a direct simulation at p = 1250. This will be used a reference (thus labeled ref)

to which the interpolated POMs and ROM2 are compared. Second, we build the POMs associated with the parameters p ∈ [1000, 1150, 1350, 1500] and we interpolate at p by two methods: (i) a vector interpolation of the POMs coefficients by a piecewise linear interpolator (naive method labeled vec) and (ii) by the method described in algorithm 2, section 4 (labeled idw) with exponent parameter α = 2 and numerical tolerance tol = 10 -9 . The Grassmann distance between the reference and both interpolation are:

d(Φ u ref , Φ u vec ) = 2.06, d(Φ u ref , Φ u idw ) = 1.56. ( 35 
)
Recall the injectivity radius for the exponential map on the Grassmann manifold is π 2 , so that the basis Φ u vec is unreliable. This is reflected in the reconstruction error:

U ref -U vec F = 235.44,

U ref -U idw F = 82.01, (36) 
where [U] i,j = nu n=1 a n (t j ) φ u n (x i ) and • F denotes the Froebenius norm. 

Conclusion

We have proposed a POD-based reduced order model (ROM2) for flows induced by rigid bodies in forced rotation that substantially reduces the computational cost compared to previous approaches, while maintaining a high precision compared to the results obtained from the high dimensional model or from the standard POD-ROM (ROM1). The method is non-intrusive, and thus widely applicable. Additionally, it proves compatible with state of the art adaptive method to avoid the computational cost associated with the production of the snapshots for each new parameter.

The high number of modes needed to achieve a prescribed reconstruction error could be reduced by considering a rotational frame and mapping each snapshot to a reference frame. This is the subject of a work in progress. Also, a parametric exploration of the effects of the rigid body geometry on the flow should be performed by interpolation also with respect to the body's geometric parameters.
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 1 Figure 1: Schematic view of the computational domain Ω = ΩS(t) ∪ ΩF(t).

2 :

 2 Send to the tangent plane at Φ I i Γ i // Weighted average; Φ I = exp Φ I -1 (Γ I ) // Go back on the manifold; = Γ I F // Check residual ; end Φ I = Φ I // Update solution ; Algorithm Interpolation of POD bases by the IDW-G method from [38], where • denotes the euclidean norm and • F denotes the Frobenius norm. Closed-form expressions for the matrix expressions of the geodesic logarithm and the geodesic exponential are given in (27) and (28), respectively.

Figure 2 :

 2 Figure 2: Configuration used for the numerical test.
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 3 Figure 3: First modes for velocity (φ u i ) 1≤i≤6 in the steady case (from left to right and top to bottom).

Figure 4 :

 4 Figure 4: First modes for characteristic function (φ χ i ) 1≤i≤6 for both the steady and the transient cases (from left to right and top to bottom).

Figure 5 :

 5 Figure 5: Eigen-values (left) of the temporal correlation matrix (A.8) and reconstruction error (32) associated with the velocity field u (+) and the rigid body characteristic function χS (×).

Figure 6 :

 6 Figure 6: Magnitude of the fluctuating velocity u(x, t) -u(x). Left: HDM. Middle: ROM1. Right: ROM2.

Figure 7 :

 7 Figure 7: Magnitude of vorticity. Left: HDM. Middle: ROM1. Right: ROM2.

Figure 8 :

 8 Figure 8: Error on the coefficients for the fluctuating part of the velocity in the steady state case (see section 5.2.1).

number ( 31 )

 31 is still Re = 1000 as in the previous subsection. The threshold on the RIC is 99%, which yields 45 POMs for the velocity. Since the geometry is the same as in the previous case, the POMs for the characteristic function are unchanged compared to the previous section, with same truncation order n χ = 35. Again, the reconstructions of the velocity from the proposed ROM1 and ROM2 are very close to the HDM with some discrepancies due to (i) the coarse grid and (ii) the truncation in the POMs. The temporal coefficients for the first six POMs for the velocity are shown in § Appendix C, figure C.13 and 345

350Finally,

  we show in § Appendix C, figure C.14 the temporal coefficients for the POMs associated with the velocity obtained by the ROM2 build from the

Figure 9 :

 9 Figure 9: Magnitude of vorticity (transient period, see section 5.2.2).

Figure 10 :

 10 Figure 10: Error on the coefficients for the fluctuating part of the velocity in the transient case (see section 5.2.2). The definition of the error is in equation 34).

Figure 11 :

 11 Figure 11: Error on the coefficients for the fluctuating part of the velocity in the the interpolation case (see section 5.3). The definition of the error is in equation 34).

  

  

  

Table 1 :

 1 Computational times for the HDM, ROM1 and ROM2. Notice the time step is 1ms

2 sockets, 8 cores for each socket,

threads for each core, cadenced at 2.10GHz with a cache of 20MB.
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Appendix A. Recalls on the POD

The Proper Orthogonal Decomposition (POD) has been introduced as a tools for the identification of coherent structures in dynamical systems in [START_REF] Holmes | Turbulence, coherent structures, dynamical systems and symmetry[END_REF] based on previous works grounded in statistical analysis [START_REF] Kosambi | Statistics in function space[END_REF][START_REF] Karhunen | Zur spektraltheorie stochastischer prozesse[END_REF][START_REF] Loève | Fonctions aléatoires du second ordre, Appendix to the book of P. Lévy: Processus stochastiques et mouvement Brownien[END_REF][START_REF] Loève | Probability theory: foundations, random sequences[END_REF]. Consider the spatial domain Ω ⊂ R d and the temporal domain T ⊂ R with x ∈ Ω and t ∈ T.

Then, the POD of a field u : Ω × T → R d consists in finding a deterministic function φ in a Hilbert space H which gives the optimum representation of u by solving the maximization problem

where • denotes a statistical average operator and (•| •) denotes the inner product of H. We restrict ourselves to the application of POD to square integrable functions H = L 2 . In this case, the maximization problem (A.1) is equivalent to the following eigenvalue problem:

where R is the non-negative symmetric spatial correlation tensor defined by

is compact. Then, the Hilbert-Schmidt theorem ensures that there exists a set of positive eigenvalues (λ i ) i≤1 decreasing toward zero:

and a set of eigenmodes (φ i ) 1≤i which forms an orthonormal basis for H so that u can be decomposed as

where the POD temporal coefficient are a i (t) = (u(x, t)| φ i (x)). The eigenmodes (φ i ) 1≤i form the so called POD basis or Proper Orthogonal Modes (POMs).

For details on the POD see [START_REF] Holmes | Low-dimensional models of coherent structures in turbulence[END_REF][START_REF] Volkwein | Proper orthogonal decomposition: Theory and reduced-order modelling[END_REF][START_REF] Cordier | Proper orthogonal decomposition: an overview, Lecture series 2003-04 on post-processing of experimental and numerical data[END_REF]. In practice, the POMs can be obtained 510 from a finite set of snapshots u(x, t n ) 1≤n≤n T by the well known snapshot POD method introduced in [START_REF] Sirovich | Turbulence and the dynamics of coherent structures part i: coherent structures[END_REF] and recalled below.

1. Form the temporal correlation matrix C with elements:

2. Compute the eigen-decomposition of C such that

3. Define the i-th POM as a linear combination of the snapshots with the coefficients of the i-th eigen-vector elements:

Appendix B. Selection of the interpolation angles

In this appendix, we propose a greedy algorithm for the selection of the interpolation angles involved in the evaluation of the angular coefficient associated with the i-th POM of the characteristic function in section 3.3. We assume that the values for the i-th reference coefficient (c i (θ n )) 0≤n≤N defined in ( 23) are known for a set of N angles Θ = {θ 0 , • • • , θ N } and that a procedure for the construction of the periodic spline interpolant for the i-th coefficient S i is available (see e.g. [47, §3.5]). Additionally, we define the relative spline interpolation error as

where c RMS i denotes the root-mean-square value:

The greedy selection is given in algorithm 3.

Data: Original set of angles Θ = θ n ) 1≤n≤N .

Result: Reduced data set Θ = θ n 1≤n≤Ni .

1 Initialize Θ ← θ 0 , θ N and N i ← 1;