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Abstract

This paper deals with the construction of reduced order models (ROMs) for

the simulation of the interaction between a fluid and a rigid solid with imposed

rotation velocity. The approach is a follows. First, we derive a monolithic

description of the fluid/structure interaction by extending the Navier-Stokes

equations from the fluid domain to the solid (rotor) domain similarly to the

fictitious-domain approach. Second, we build a ROM by a proper orthogonal

decomposition (POD) of the resulting multi-phases flow. This method consists

in (i) constructing an optimal albeit empirical spatial basis for a very small sub-

space of the solution space, and (ii) projecting the governing equations on this

reduced basis. Third, we cope with the reconstruction of the high-dimensional

velocity field needed to evaluate the imposed velocity constraint by a POD of

the solid membership function. Fourth, we use state of the art method to in-

terpolate between available POD bases to build the proposed POD-ROM for a

range of parameters values. The proposed method is applied to an academic

configuration and proves efficient in the reconstruction of the velocity in both

the fluid and solid domains while substantially reducing the computational cost.
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Introduction

This work is concerned with the construction of reduced order models (ROMs)

to speed-up the resolution of computational fluid dynamic (CFD) problems as-

sociated with flows induced by rigid solids with imposed rotation velocity. Such

physical problems are involved in several applications of industrial interest (pre-5

dictive simulation, active control, parametric shape optimization) in which axial

fans or agitators play a major role (e.g turbomachinery, industrial furnaces and

process engineering).

Flows induced by rotating solids are a special case of fluid/structure interac-10

tion (FSI), for which numerous computational methods are available (see e.g. [1]

for FSI in general and [2, 3] for CFD methods dedicated to turbomachinery).

Despite some limitations in the extensive use of CFD simulations when com-

pared to experimental data [4, 5], this is the nowadays standard approach to

the industrial design and performance analysis. Most of these methods can15

be divided in two categories [6]: multi-domains approaches and multi-phases

approaches. In multi-domains approaches, the computational domain is di-

vided into material subdomains over each a local model is solved [7, 8]. The

global solution is then constructed by properly aggregating the local solutions.

In mutli-phases approaches, a single equation with spatially dependent mate-20

rial properties is solved over the global computational domain. This includes

e.g. the ficitious domains method [9, 10, 11, 12] (also called immersed vol-

ume method in [13, 14]), the immersed boundary method [15, 16], the ghost

fluid method [15]. Both approaches yield computationally very expensive sim-

ulation codes despite efforts in the CFD community to reduce the complexity25

of the problem with simplifying assumptions, e.g. small disturbance assump-

tion or boundary-layer assumption [17]. In particular, very fine meshing of the

computational domain is usually needed to achieve high-fidelity simulation [18]

leading to High-Dimensional Models (HDM) and thus, reliable reduced order



models (ROMs) are needed for design, parametric analysis and control.30

The ROMs proposed in this paper are based on the well established Proper

Orthogonal Decomposition (POD, also known as Karhunen-Loeve decomposi-

tion, SVD or PCA), introduced as a tools for the identification of coherent

structures in dynamical systems in [19] based on previous works grounded in35

statistical analysis [20, 21, 22, 23]. This method proves efficient in the extraction

of Proper Orthogonal Modes (POMs) associated with the evolution of complex

large-scale dynamical systems (e.g. structural and fluid mechanics and electro-

magnetic) from experimental measurements or high-fidelity simulations. These

POMs form a spatial basis onto which the governing equations are projected to40

build the so called POD-ROMs. Several previous works have been devoted to

the construction of POD-ROMs for turbomachinery. In most approaches, the

linearized Euler equations or linearized Navier-Stokes equations are considered,

and the POD is performed in the frequency domain. This approach is justified

by the usual geometric periodicity of the rotors in turbomachinery in general45

and axial fans or agitators in particular. It has been first proposed in [24, 25],

and subsequently considered in [26, 17, 27]. More recently, the use of a weighted

POD have been proposed in [28] to construct from experimental data a ROM

for the axial-circumferential velocity profile associated with the steady axisym-

metric parallel flow of an inviscid and incompressible fluid in a Francis turbine.50

Also, an Arnoldi procedure associated with a matching of transfer functions

between original and reduced order model is proposed as a compromise to POD

in [29]. These approaches suffer from two drawbacks. First, they yield accurate

POD-ROMs only if the small disturbance assumption is verified so that the fre-

quency domain analysis is justified. Second, they are not generally applicable55

and usually need dedicated CFD solvers.

In this work, we consider the non-linearized Navier-Stokes equations for flows

in an incompressible newtonian fluid, and the POD is performed directly in the

time domain over the d-dimensional velocity profile (d = 2 or 3). In order to60



circumvent the incompatibility of the POD (which yields spatial modes) with

moving domains (the rotating solids), we use a multi-phase approach. More pre-

cisely, the Navier-Stokes equations are extended to the solid domain in which

the ensemble rotation velocity is enforced by a constraint relaxed through the

definition of an appropriate distributed Lagrange multiplier. Note that the com-65

bination of the multi-phases approach and POD has been previously considered

e.g. in [30, 31] for fluid structure interaction, in [32] for shape optimization and

in [33] for feedback stabilization in FSI. However, the evaluation of the rigid-

ity/velocity constraint in the solid usually requires the reconstruction of the full

order solution at runtime, so that the simulation of the resulting POD-ROMs70

still depends on the number of degrees of freedom. In order to cope with the

reconstruction of the full order velocity inside the solid domain, we propose in

this work to benefit from the periodicity in the geometry of the rotors by ap-

plying the POD also to the characteristic function of the solid domain. The

resulting POD-ROMs is independent of the number of degrees of freedom of the75

HDM, while preserving the accuracy of the standard approach. Additionally,

any CFD software can be used to produce the snapshots from which the proper

orthogonal basis is built (non-intrusive method).

However, it is known that ROMs built from POD are valid in the vicinity of80

the parameter used to produce the set of snapshots, i.e. they lack robustness

with respect to changes in the parameters (see e.g. [27] for a parametric analysis

in the context of turbomachinery and [34] for a mathematical a priori estimates

of parametric sensibility in the context of CFD). That is, the simulation of the

HDM must be performed for each new parameter to build the associated POMs85

so that the order reduction significance is lost. To circumvent the parametric

robustness problem, some modified POD methods were proposed, such as global

POD method, local POD method, and adaptive POD method (see e.g. [35] and

references therein). In this work, we use a state of the art adaptive method to

allow fast construction of the proposed POD-ROMs for a given parameter value90

by interpolating a set of precomputed POMs. The historically first adaptive



method have been proposed in [36, 37] and consists in the interpolation of the

POMs over the tangent plane at a reference point on the Grassmann manifold.

This method requires to properly select the reference point to achieve a good ac-

curacy. Thus, we propose the use of the method introduced in [38] that consists95

in the extension of the Inverse Distance Weighting (IDW) interpolation method

from vectorial spaces to Grassman manifolds which automatically adapts to the

available sample of POMs.

This paper is organized as follows. The objectives and approach are detailed100

in the problem statement of section 1. The multi-phases governing equations for

the coupled fluid/solid system used to construct the POD-ROMs are recalled in

section 2. The two proposed POD-based low order dynamical systems are given

in section 3. The parametric interpolation method is given in section 4. Finally,

numerical results for an academic configuration are presented in section 5 before105

conclusions.

1. Problem statement

In this section, we shall define the domains configuration and the notations

used in the remaining of the paper. Then, we state the data that are supposed

to be available for the construction of the POD-ROMs. Finally, we detail the110

issues addressed in this work.

1.1. Domains definitions and notations

We consider the computational domain Ω ⊂ Rd where d is the spatial di-

mension (usually 2 or 3) and the temporal domain T = [0, T ] ⊂ R+. The com-

putational domain is filled with (i) a rotating solid S that occupies the physical

domain ΩS(t) at time t ∈ T and (ii) an incompressible newtonian fluid F, that is

Ω = ΩS(t) ∪ ΩF(t) (see figure 1). The domain boundary is denoted by Γ = ∂Ω,

the solid boundary is ΓS(t) = ∂ΩS(t) and the fluid boundary is ΓF(t) = Γ∪ΓS(t).



Figure 1: Schematic view of the computational domain Ω = ΩS(t) ∪ ΩF(t).

The characteristic function of the solid domain is

χS(x, t) =

 1 if x ∈ ΩS(t),

0 otherwise.
(1)

In the case of turbomachinery, the solid (fan, agitator) is assumed to rotate

around a given axis eω passing through the center of rotation xω, at the angular

velocity dθ
dt , where θ is the angle with respect to a given reference position. The

associated rotation velocity is

uω(x, t) = ω × (x− xω) (2)

with ω = dθ
dt eω the rotation vector. The characteristic function is obtained at

every time as the rotation of the initial configuration:

χS(x, t) = R
(
θ(t)

)
χS(x, 0), (3)

with R(θ) the rotation by angle θ about the axis eω.

1.2. Database construction

The first step toward the construction of POD-ROMs is the computation of115

the discrete approximation of the material velocity uh : Ω × T × Rp → Rd for

a given parameter p ∈ Rp on a reference (fixed) grid. Any CFD method can

be used to simulate the HDM associated with the FSI problem described in the

previous subsection, interpolating the results on the reference mesh if needed



(e.g. in case of moving meshes or remeshing solvers). we assume that sets of120

snapshots
(
U(pn)

)
1≤n≤np

have been generated for a variety of np parameters,

where U denotes a set of nT snapshots of the velocity stored as Uij = uh(xi, tj)

with xi ∈ Ω and tj ∈ T for i ∈ [1, · · · , nx] and j ∈ [1, · · · , nT ].

1.3. Objectives and approach

The first objective of this work is to construct a POD-ROM that is able to125

reproduce the solution uh(p) for a given parameter p over the time period T

and beyond. The second objective is to construct the POD-ROM associated

with a new parameter p? /∈ (pn)1≤n≤np from the snapshots obtained for the

sets of snapshots
(
U(pn)

)
1≤n≤np

.

130

The approach is as follows. First, we construct a low dimensional projec-

tion basis by POD of the snapshots associated with a given parameter (POMs).

Second, reduced order models are constructed by projecting the problem equa-

tions onto a small subset of these POMs. Third, we interpolate between the

POMs associated with the sets of snapshots
(
U(pn)

)
1≤n≤np

via robusts sub-135

spaces interpolation method to construct the POD-ROM associated with a new

parameter p? /∈ (pn)1≤n≤np .

2. Interaction between a fluid and a solid with imposed rotation ve-

locity

In this section we adapt the fictitious-domains method introduced in [9, 10]140

and developed in [11] to the case of a flow induced by a solid with imposed

rotation velocity. First, we detail the strong form of the governing equations.

Second, we give the associated weak form. Third, we give the standard iterative

method to solve the resulting saddle point problem which is the starting point

in the derivation of the POD-ROMs in the next section 3.145



2.1. Governing equations

The fluid domain ΩF is governed by the incompressible Navier-Stokes equa-

tions. To derive the governing equations for the solid domain and the fluid/structure

interaction, we adopt an approach similar to the fictitious domain approach [10,

11] in which a monolithic formulation is derived by modeling the solid domain

as a fluid with additional constraints to enforce rigidity. The difference here is

that we enforce directly the ensemble rotation velocity to describe the motion

of the rotor. The rotation constraint is given by

u(x, t)− uω(x, t) = 0, ∀x ∈ ΩS(t) and ∀t ∈ T, (4)

where u ∈ (H1(Ω,T))d is the eulerian velocity with H1 the standard Sobolev

space. A direct consequence of (4) is that no deformation of the solid domain

occurs:

D (uS) = ∇ · uS = 0, ∀x ∈ ΩS(t), ∀t ∈ T. (5)

Thus, the incompressible Navier-Stokes equations can be extended to the solid

domain provided an appropriate force term λ ∈
(
L2(Ω,T)

)d
which ensures

that the additional constraint (4) is verified. The strong form of the governing

equations are then: find u ∈
(
H1(Ω,T)

)d
such that ∀x ∈ Ω and ∀t ∈ T:

ρ

(
∂u

∂t
+∇u · u

)
= ∇ · σ + f − λ,

∇ · u = 0,

χS(u− uω) = 0,

(6)

where σ = 2 η D (u) − p I is the stress tensor with D (u) = 1
2 (∇u+ᵀ∇u) the

deformation rate tensor and I the d-dimensional identity tensor, ρ and η are

respectively the fluid density and dynamic viscosity, and f are the volume forces

acting on the material domain. Note that the pressure p can be interpreted as

the Lagrange multiplier associated with the incompressibility constraint in (6).

The problem (6) is equipped with the following set of boundary and initial



conditions: 
uF = uD ∀x ∈ ΓD, ∀t ∈ T,

σF · n = 0 ∀x ∈ ΓN, ∀t ∈ T,

u(x, 0) = u0(x) ∀x ∈ ΩF(0), t = 0,

(7)

with constant Dirichlet boundary condition on the boundary ΓD ⊆ Γ and stan-

dard outflow boundary condition (zero normal stress) on the remaining bound-

ary ΓN = Γ \ ΓD. The initial velocity u0 is assumed to be compatible with the

constraint (4).150

Remark 1 (Fluid/structure interaction). The interaction stress between the

fluid and the solid on the interface ΓS is naturally included in the proposed

formulation. This can be shown by deriving (6) as in the fictitious domain

method by an eulerian description of the standard local equilibrium equations

for the solid and replacing the rigidity constraint D (u) = 0 by the imposed155

rotation in ΩS so that the boundary traction on ΓS in each domain cancels.

Remark 2 (Material properties). The density of the solid equals that of the

fluid in the proposed formulation. This is justified by the fact that the velocity of

the solid is imposed and is not impacted by the dynamics of the fluid nor by the

action of the volume forces f . Also, the viscosity of the solid equals that of the160

fluid. This is justified by the fact that this parameter has no physical meaning

and must be considered as a scaling coefficient (see [14]).

2.2. Weak formulation

Here, we precise the functional setting used to derive a standard weak formu-

lation of (6) in view of the subsequent construction of the low order dynamical165

system. The velocity trial and test spaces are respectively

W =
{
u ∈

(
H1(Ω,T)

)d
; u = uD ∀x ∈ ΓD

}
, and (8)

W0 =
{
u ∈

(
H1(Ω,T)

)d
; u = 0 ∀x ∈ ΓD

}
. (9)

The pressure trial and test spaces are respectively

P0 =

{
p ∈ L2

(
Ω,T

)
;

∫
Ω

p(x, t) dx = 0

}
, and L2

(
Ω,T

)
. (10)



Assuming that the solid domain never intersect with the computational bound-

ary, the Lagrange multiplier trial and test spaces can be both chosen as W0.

The resulting week form of (6) is given by: find u ∈ W, p ∈ P0, λ ∈ W0 such

that170

ρ

(
∂u

∂t
+∇u · u

∣∣∣∣v) = (f − χS λ|v) + (p| ∇ · v)− 2 η (D (u)|D (v)) (11)

(∇ · u| q) = 0, (12)

(χS (u− uω)|µ) = 0, (13)

for all v ∈ W0, q ∈ L2
(
Ω,T

)
and µ ∈ W0, with (•| •) the inner product on

L2(Ω).

2.3. Iterative method

The weak form of the velocity constraint (13) can be relaxed iteratively using

an augmented Lagrangian formulation coupled with an Uzawa algorithm (see175

[39] for details on this algorithm and [30, 14] for its application in FSI). The

resulting iterative procedure to perform within each time step is described in

algorithm 1. It is the the starting point in the derivation of the POD-ROMs of

the next section 3.

3. Proposed reduced order models180

In this section, we introduce the proposed low-order dynamical system as-

sociated with the governing equations (11–13). First, the momentum equation

is projected on the POD basis associated with the velocity field. This yields a

reduced order model which involves the reconstruction of the complete velocity

field at each inner Uzawa iteration to evaluate the increment in the Lagrange185

multiplier. Thus, we propose a second reduced order model by (i) decomposing

also the characteristic function onto a POD basis and (ii) building an explicit

evaluation of the associated coefficients from the known solid angle. In this work,

we use the classical snapshot POD method introduced in [40] and recalled in

appendix Appendix A.190



Data: Initial values u0, p0 (e.g. from the previous time-step).

Result: u` p`, λ` solution of (11–13).

1 Initialize `← 0, λ` ← 0, e` ←∞ and δe` ←∞;

2 while e` > εtol and δe` > εtol do

3 Update `← `+ 1 ;

4 Solve for u`, p`:

5 ρ
(
δtu

` +∇u` · u`
∣∣v)− (f − χS λ`−1

∣∣v)− (p`∣∣∇ · v)+

2 η
(
D
(
u`
)∣∣D (v)

)
= 0,

6
(
∇ · u`

∣∣ q) = 0;

7 Update λ`:

8 λ` ← λ`−1 + r χS
(
u` − uω

)
;

9 Check for convergence:

10 e` ← ‖χS (u`−uω)‖L2(Ω)

‖χS uω‖L2(Ω)
and δe` ← e`−1 − e` ;

11 end

Algorithm 1: Uzawa algorithm associated with the weak form of the gov-

erning equations (11–13).

3.1. Galerkin projection of the momentum equation

We suppose (discrete) solutions (uh(x, tn))1≤n≤nT of the governing equa-

tions (11–13) have been obtained. Each snapshot uh(x, tn) is decomposed into

a mean part uh(x) and a fluctuating part ũh(x, t), and the fluctuating part is

decomposed over a POD basis Φu = (φu
i )1≤i≤nT truncated to nu modes:

ûh(x, tn) = uh(x) +

nu∑
i=1

φu
i (x) ai(tn), (14)

where the set a = (ai)1≤i≤nu collects the temporal coefficients of the fluctuating

part of the velocity in the POD basis Φu, which element are called velocity POD

modes.

Remark 3 (Continuity equation). The mean field uh and the elements of Φu
195

are built from linear combinations of the snapshots for uh (see A.9), so that (i)

the velocity POD modes are divergence free ∇ ·φu
i = 0, 1 ≤ i ≤ nu and (ii) the



approximation ûh automatically satisfies the continuity equation ∇ · ûh = 0.

Remark 4 (Dirichlet boundary conditions). The Dirichlet boundary conditions

are supposed constant over time so that they are all included in the mean field200

u(x), x ∈ ΓD and the velocity POD modes vanish on the boundary ΓD.

Now performing a standard Galerkin projection of the governing equation

(that is, using the ersatz (14) in place of u and the POMs (φu
i (x))1≤i≤nu in

replacement of the test functions v in (11–13)) yields the following low-order

dynamical system, referred as ROM1:205

A · da

dt
+ B · a+ C : a⊗ a+ E` + F = 0. (15)

with the Uzawa update of the Lagrange multiplier

λ`+1 = λ` + r χS

(
u+

nu∑
i=1

φu
i ai − uω

)
, (16)

where the coefficients of vectors E ∈ Rnu , F ∈ Rnu , matrices A ∈ Rnu×nu ,

B ∈ Rnu×nu and third-order tensor C ∈ Rnu×nu×nu are given below.

Aij = ρ
(
φu
j

∣∣φu
i

)
(= ρ δij),

Bij = ρ
(
∇φu

j · u+∇u · φu
j

∣∣φu
i

)
+ 2η

(
D
(
φu
j

)∣∣D (φu
i )
)
,

Cijk = ρ
(
∇φu

j · φu
k

∣∣φu
i

)
,

E`i =
(
χS λ

`
∣∣φu

i

)
,

Fi = ρ (∇u · u|φu
i ) + 2η

(
D
(
φu
j

)∣∣D (φu
i )
)
− (f |φu

i ) .

(17)

Remark 5 (Cost reduction). The model ROM1 reduces the cost associated with

the computation of the momentum equation (15), but the complete resolution

still depends on the number of degrees of freedom of the solution due to (i)

the reconstruction of the velocity field in the Uzawa iteration (16) and (ii) the

projection of the Lagrange multiplier to evaluate the vector E` in each inner210

iteration.

3.2. Reduction of the characteristic function

To cope with the reconstruction of the full order velocity field and the pro-

jection of the Lagrange multiplier onto the velocity POD basis, we propose to



also decompose the fluctuating part of the characteristic function χS = χS + χ̃S

over a POD basis Φχ = (φχi )1≤i≤nT truncated to nχ modes:

χS(x, t) ' χS +

nχ∑
i=1

φχi (x) ci
(
θ(t)

)
, (18)

The choice of χS is precised in the following subsection (equation (22). Notice

the coefficients (ci)1≤i≤nχ are parametrized by the rotation angle θ and the

rotation velocity dθ
dt is imposed so that no evolution equation is needed (see

subsection 3.3). Projecting the Uzawa iteration (16) over the velocity POD

basis Φu and approximating the characteristic function as in (18) yields the

following reduced Uzawa iteration

λ̂`+1 = λ̂` + r
(
G · a+ H · c+ L : c⊗ a+ M

)
, (19)

with the coefficients given below.

λ̂`i =
(
χS λ

`
∣∣φu

i

)
,

Gij =
(
χS φ

u
j

∣∣φu
i

)
,

Hik = (φχk (u− uω)|φu
i ) ,

Lijk =
(
φχk φ

u
j

∣∣φu
i

)
,

Mi = (χS (u− uω)|φu
i ) .

(20)

Due to the iterative procedure for updating the Lagrange multiplier λ, the

reduced Lagrange multiplier λ̂` = (λ̂`i)1≤i≤nu can be directly used in place of E`

in the reduced momentum equation (15):215

A · da

dt
+ B · a+ C : a⊗ a+ λ̂` + F = 0. (21)

The reduced momentum equation (21) along with the reduced Uzaw itera-

tion (19) constitute the proposed low order dynamical system, referred as ROM2.

3.3. Parametrization of the characteristic function

Now, we shall build explicit evaluations of the coefficients c(θ) for carac-

teristic function. In practical applications, the rotating solids (fans, agitators)220

usually exhibit some rotational symmetries that can be exploited. Denote θS



the angular period defined as the minimum angle such that χS = R(θS)χS with

R(θ) the rotation by angle θ about the imposed rotation axis eω, so that the

ci : [0, θS]→ R, 1 ≤ i ≤ nχ are periodic functions ci(0) = ci(θS). In this work, we

propose the use of periodic piecewise polynomial interpolators (periodic splines),225

built as follows.

Remark 6 (Mean characteristic function). In this work, the reference field

χS : Ω→ [0, 1] in (18) is defined as the mean of the characteristic function over

a partial rotation of angle θS:

χS(x) =
1

θS

∫ θS

0

R(θ)χS(x, 0) dθ. (22)

The reference coefficients ci(θn), 1 ≤ i ≤ nχ are defined as the projection of

the fluctuating part of the characteristic function over its POD basis Φχ for a

set of selected angles (θn)1≤n≤N−1 taken in the angular period θn ∈ [0, θS]:

ci(θn) =
(
R
(
θn
)
χS(x, 0)− χS(x)

∣∣φχi (x)
)
, 1 ≤ i ≤ nχ. (23)

The set Di of Ni + 1 data points used to build the interpolator for the i-th

coefficient is

Di ,
[(
θ0, ci(θ0)

)
, · · · ,

(
θNi , ci(θNi)

)]
, (24)

with 0 = θ0 < · · · < θn < · · · < θNi = θS. The associated interpolant Si ' ci

on the domain Θ = [θ0, θNi ] is such that Si(θ) = Pi,n(θ), ∀θ ∈ (θn, θn+1) where

the Pi,n(θ), 0 ≤ n ≤ Ni− 1 are third order polynomials that fulfill the following

constraints:

(C1) Pi,n(θn) = Pi,n−1(θn) = ci(θn), 1 ≤ n ≤ Ni − 1, (C0 interpolator);

(C2) P ′i,n(θn) = P ′i−1(θn), 1 ≤ n ≤ Ni − 1, (C1 interpolator);

(C3) P ′′i,n(θn) = P ′′i−1(θn), 1 ≤ n ≤ Ni − 1, (C2 interpolator);

(C4) Pi,0(θ0) = Pi,Ni(θNi), (periodic);

(C5) P ′i,0(θ0) = P ′i,Ni(θNi), (periodic);

(C6) P ′′i,0(θ0) = P ′′i,Ni(θNi), (periodic).

The Ni + 1 interpolation points for the i-th coefficient can be selected by a

greedy approach, as detailed in appendix Appendix B. Finally, we define the



multi-valued function S(θ) =
(
S1(θ), · · · , Snχ(θ)

)
so that the reduced Uzawa

iteration (19) reads:

λ̂`+1 = λ̂` + r
(
G · a+ H · S(θ) + L : S(θ)⊗ a+ M

)
, (25)

with the vectors, matrices and third order tensor defined in (20).

4. Interpolation of the reduced order models

The POD approach yields reduced order models that lack robustness with

respect to changes in the parametric configuration (see e.g. [27] for a parametric230

analysis in the context of turbomachinery and [34] for a mathematical a priori

estimate in the context of CFD). Among the numerous approaches considered to

circumvent the costly simulation of the HDM needed to derive the POD-ROM

for a new parameter, the most appealing are based on some kind of interpolation

(see e.g. [35] and references therein). In this work, we focus on a robust inter-235

polation method proposed in [38], namely, the IDW-G method which is based

on the geometry of the Grassmann manifold. First, we motivate and recall the

historical Grassmannian interpolation method developed in [36, 37]. Second,

we recall the IDW-G algorithm. Third, we sketch the use of this method to

interpolate the POD-ROMs proposed in the previous section 3.240

4.1. Interpolation over the Grassmann Manifold

Denote by Φ = (Φi)1≤i≤np the set of POD bases obtained from the simula-

tion of the HDM for the set of parameters P = (pi)1≤i≤np , and p? /∈ P the new

parameter for which we want to construct one of the POD-ROM presented in

section 3. It has been shown that the construction of the POD-ROM involves

the (weighted) euclidian projection of the governing equation over the POD ba-

sis. On the other hand, it is well known that the projection onto the subspace

Vi = span (Φi) does not depend on the chosen basis used to describe it:

πΦ(U) = πΦ·M(U), ∀M ∈ O(m), (26)



where πΦ(•) = Φ ·ᵀΦ · • is a projection operator and O(m) is the set of square

orthogonal matrices of size m. Thus, we seek for a method to interpolate the set

(Vi)1≤i≤np of m-dimensional subspaces of Rn, that is, to realize an interpolation

in the space Gm(Rn) = {M ∈ Rn×m; ᵀM ·M = I} known as the Grassmann

manifold (see e.g. [41]). The subspaces (Vi)1≤i≤np are associate with the equiv-

alence classes of all their bases, and form a set of points on Gm(Rn). In [37],

the authors propose to cope with the difficulty to interpolate over a manifold as

follows. First, the sample (subspaces engendered by the) POD bases are sent to

the tangent space of Gm(Rn) at a given reference point span (Φr) through the

geodesic logarithm, which expression is [41, 37]

logΦr (Φi) = U · arctan(Σ) ·ᵀV · ( ΦTi · Φi)
1
2 , ∀i ∈ [1, · · · , np],

with U ·Σ ·ᵀV = SVD
( (

Φi · ( ΦTr · Φi)−1 − Φr
)
· ( ΦTr · Φr)

1
2

)
.

(27)

Second, the images are interpolated by any standard method suitable for vector

space. Third, the resulting interpolation is sent back on the manifold through

the geodesic exponential map which expression is [41, 37]

expΦr (Γ) =
(

Φr · ( ΦTr · Φr)
1
2 ·V · cos(Σ) + U · sin(Σ)

)
·ᵀV · ( ΦTr · Φr)

1
2 ,

with U ·Σ ·ᵀV = SVD
(
Γ · ( ΦTr · Φr)

1
2

)
.

(28)

Remark 7 (Well posed interpolation). It is assumed that det( ΦTr · Φi) 6= 0,

∀i ∈ {1, · · · , np}.

Remark 8 (Dependence on the reference point). The method from [37] recalled

above depends on the choice of the reference point. This could impacts the ro-245

bustness of the interpolation. To circumvent this drawback, we focus propose to

use the IDW-G interpolation method from [38] which we recall below.

4.2. Inverse Distance Weighting

In this paper, we also consider the Inverse Distance Weighting interpolation

over the Grassmann manifold (IDW-G) proposed in [38]. The advantage of this

method compared with the standard interpolation [37] recalled in the previous



section is that it does not rely on the choice of a reference point at which

the tangent space is constructed. The IDW-G method solves the following

minimization problem:

(Pp)


For p ∈ R, find ΦI ∈ Gm(Rn) s.t. :

ΦI(p) = arg min
Φ∈Gm(Rn)

(
1
2

np∑
i=1

αi(p)
(
dG(Φ,Φi)

))2
,

(29)

where dG is the geodesic distance and the weights (αi(λ))Ni=1 verify
∑N
i=1 αi(λ) = 1.

The method relies on the following constructive theorem from [38].250

Theorem 1 (IDW-G sequence). If the Φ1, · · · ,Φnp are all contained in the ball

B(Φ∗, r) where Φ∗ ∈ Gm(Rn) and r < π
4
√

2
, then for all p ∈ R, the problem (Pp)

admits a unique solution ΦI in B(Φ∗, r). Moreover, for all initial Φ̂ ∈ B(Φ∗, r),

the sequence
(
ΦI
`

)
`∈N defined by:

ΦI
0 = Φ̂; ΦI

`+1 = expΦI
`

(
1

2np

np∑
i=1

αi(p) exp−1
ΦI
`
(Φi)

)
(30)

converges to ΦI.

In practice, convergence is assumed when the norm of the gradient of the

functional associated with the problem Pp is below a predefined threshold (see [38]).

This sequence yields the algorithm 2.

4.3. Interpolation of the low-order dynamical systems255

The set of non-dimensional parameters involved in the full-order model are

classically the Reynolds number and some shape parameters for the rotating

solid. Additionally, the POD-ROMs presented in section 3 involve the following

bases:

ROM1: POD basis for the velocity Φu only,260

ROM2: POD bases for the velocity Φu and the characteristic function Φχ.

In this work, we focus on the interpolation over a set of Reynolds number (re-

lated with the solid rotation velocity). This situation arises in most industrial



Data: Sets of parameters (pn)1≤n≤np with associated POD bases

(Φn)1≤n≤np , exponent α, residual tolerance εtol and target

parameter p?.

Result: Interpolated basis ΦI ' Φ?.

1 r = argmin
i∈[1,np]

|p? − pi| // Select initial value ;

2 ` = 0 ;

3 ΦI
` = Φr ;

4 S =
∑np
i=1

1

‖ p? − pi ‖α
// Sum of inverse distance weights ;

5 for i ∈ [1, np] do

6 wi =
1

S ‖ p? − pi ‖α
// Normalized inverse distance weights ;

7 end

8 ε =∞ ;

9 while ε > tol do

10 ` = `+ 1 ;

11 for i ∈ [1, np] do

12 Γi = logΦI
`−1

(Φi) // Send to the tangent plane at ΦI
`−1 ;

13 end

14 ΓI
` = 1

2np

∑np
i=1 wiΓi // Weighted average;

15 ΦI
` = expΦI

`−1
(ΓI

`) // Go back on the manifold;

16 end

17 ΦI = ΦI
` // Select solution ;

Algorithm 2: Interpolation of POD bases by the IDW-G method from [38],

where ‖ • ‖ denotes the euclidean norm. Closed-form expressions for the

geodesic logarithm logΦ : Gm(Rn)→ TΦGm(Rn) and the geodesic exponen-

tial expΦ : TΦGm(Rn) → Gm(Rn) over the Grassmann manifold are given

in (27) and (28), respectively.

cases for which the installation geometry is fixed and only the fans/agitators

rotation velocity is controlled. In those cases, there is no need to interpolate the265



POD bases for the characteristic function which can be determined once for all

along with the spline approximation (Si)1≤i≤nχ defined in subsection 3.3 before

the construction of the ROM2.

In order to interpolate the POD bases for the velocity as described in the270

previous subsection (algorithm 2), the velocity POD bases have to be orthonor-

mal with respect to the scalar product of Rn. However, the scalar product of

L2 is used to construct the snapshot correlation matrices from which the POD

bases are derived so that the POD bases are orthogonal in L2. In that case,

the sample bases must be orthonormalized in Rn before the interpolation, and275

the interpolated basis must be orthonormalized back in L2, e.g. with a Gram-

Schmidt procedure.

Finally, the proposed POD-ROMs involve the mean fields for the velocity

and the characteristic function. Since we do not identify a special interpolation280

space, they are interpolated by a cubic spline applied on the matrices coefficients.

5. Numerical results

This section is devoted to illustrate the performances of the proposed meth-

ods through numerical results. First, we describe the academic configuration

used in the tests. Second, we show the benefit of the two reduced order models285

proposed in section 3. Third, we show the results for the interpolation method

describe in previous section 4. All the numerical tests have been performed us-

ing the Python/C++ finite element library DOLFIN [42] on a computer with

32 cores and 64Go of RAM.

5.1. Description of the configuration290

We consider a circular spatial domain Ω = ΩS ∪ ΩF (d = 2) filled with a

rotating ellipsoidal solid ΩS immersed in an incompressible newtonian fluid ΩF

(see figure 2a). The domain radius is 1m, the ellipse principal radius is R = 0.5m



with an aspect ratio of 0.2. In the sequel, the Reynolds number associated with

this configuration is defined as

Re =
ρUL

η
, (31)

with the density ρ = 1 (kg.m−3), the dynamic viscosity η = 0.01 (kg.m−1.s−1),

the reference velocity U = R dθ
dt (m.s−1) and L = 2R (m) the ellipse principal

diameter.

(a) Schematic (b) Non-conforming mesh

Figure 2: Academic configuration used for the numerical test.

The finite element mesh includes 52669 nodes and is not conforming with

the solid boundaries (see figure 2b). The boundary condition on ∂Ω = ΓN is295

outflow (σF ·n = 0). The momentum equation and the continuity equation are

solved together by a monolithic formulation for which the finite element spaces

are chosen as the linear vector Lagrange elements enriched with the cubic vector

bubble elements for the velocity and piecewise linear elements for the pressure.

This mixed finite element space is known as the mini space (see [43] for details).300

The time-step for temporal discretization is fixed to 1ms. The parameters for

Uzawa iterations (see section 2.3) are r = 103 and εtol = 10−3. For this setting,

an average of ` = 6 Uzawa iterations are needed to achieve convergence of the

velocity in the solid domain. The average computational time for each Uzawa

iteration of the high-dimensional model is 5, 2s.305



5.2. Comparison between HDM and proposed POD-ROMs

The configuration described in previous subsection is used for the simulation

of the HDM with a zero initial condition. In this subsection, the Reynolds

number (31) is fixed to Re = 1000. The POD is classically applied to ergodic

processes for which the statistical and temporal averages coincide. Thus, we310

first present the results obtained for a steady periodic flow. Second, the results

for the transient period are shown.

5.2.1. Steady Periodic flow

We first run the HDM simulation for a transient period of 7, 5s. Second,

nT = 150 regularly spaced snapshots are exported over a period of T = 0, 75s315

to construct the POD basis for the velocity Φu (figure 3).

Figure 3: First modes for velocity (φu
i )1≤i≤6 in the steady case (from left to right and top

to bottom).

The eigen-values (λi)1≤i≤nT of the correlation matrices (A.8) associated with

the velocity and the characteristic function are shown in figure 5a. The figure 5b



Figure 4: First modes for characteristic function (φχi )1≤i≤6 for both the steady and the

transient cases (from left to right and top to bottom).

shows the associated reconstruction error computed from the eigen values as

E(n) = 1−

nT∑
i=n+1

λi

nT∑
j=1

λj

. (32)

We select nu = 30 modes for the velocity and nχ = 35 modes for the charac-

teristic function in order to capture 99.9% of the snapshots information. The

time-step for the POD-ROMs is 5ms, and the parameters for the Uzawa algo-

rithm are r = 100 and εtol = 10−3.320

The periodic spline interpolation in ROM2 of the angular coefficients for

the characteristic function described in subsection 3.3 is build over the angular

period θS = π rad from a data set of N? = 1000 angles in [0, θS] and a relative



tolerance on the periodic spline reconstruction of εθ = 10−3. The computational

(a) Eigen-values (b) Relative-information content

Figure 5: Eigen-values (left) of the temporal correlation matrix (A.8) and reconstruction error

(32) associated with the velocity field u (+) and the solid characteristic function χS (×).

325

times are detailed in table 1 in which the advantage of the ROM2 over the

ROM1 is clearly visible. The fluctuating velocity for the three models (HDM,

ROM1 and ROM2) is shown in figure 6. The reconstructions provided by both

the ROM1 and the ROM2 are very close to the HDM, despite some artifacts

associated with the truncation of the POD basis. These results are reflected330

in the vorticity shown in figure 7, where we see the tiny vortices at the ellipse

tips are well reconstructed. Finally, the temporal coefficients associated with

the first six POMs of the velocity are shown in Appendix C, figure C.12 for

the three models. A detailed comparison of the error on these coefficients is

shown in figure 8. We see that despite the characteristic function for the solid335

is approximated, both models yields similar results.

5.2.2. Transient flow

Here, we apply the proposed method on the transient period. That is, we

start the simulation from a zero initial condition and consider 200 snapshots over

a rotation of the ellipsoidal body by an angle of θ = π. The Reynolds number340

(31) is still Re = 1000 as in the previous subsection. We fix the threshold on

the RIC to 99%, which yields 45 POMs for the velocity. Since the geometry



Figure 6: Magnitude of the fluctuating velocity u(x, t)−u(x). Left: HDM. Middle: ROM1.

Right: ROM2.

Figure 7: Magnitude of vorticity. Left: HDM. Middle: ROM1. Right: ROM2.

is the same as in the previous case, the number of POMs for the characteristic

function is still 35. Again, the reconstructions of the velocity from the proposed

ROM1 and ROM2 are very close to the HDM with some discrepancies due to (i)345

the coarse grid and (ii) the truncation in the POMs. The temporal coefficients

for the first six POMs for the velocity are shown in Appendix C, figure C.13 and

a detailed comparison of the error on these coefficients is shown in figure 10. We

see the temporal evolution of the dominant modes is conform with the HDM for

both the ROM1 and the ROM2.350



Uzawa iteration Total

HDM 5.2s 7h 34m 53s

ROM1 0.6s 19m 36s

ROM2 0.01s 21s

Table 1: Computational times for the HDM, ROM1 and ROM2. Notice the time step is 1ms

for the HDM and 5ms for the POD-ROMs and parameters for the Uzawa algorithm differ

leading to an average of 6 iterations for the HDM and 10 iterations for the POD-ROMs.

Figure 8: Temporal evolution of the coefficients for the fluctuating part of the velocity in the

transient case (see section 5.2.1). The coefficients for the HDM are obtained by projection of

the snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)

)
. The coefficients for the ROM1

and the ROM2 are obtained from the solution of (15) and (21), respectively.

5.3. Comparison between the direct and interpolated ROM2

In this section, we show the results of the ROM2 obtained from the inter-

polation of POMs with respect to the Reynolds number (31) by the IDW-G

method (algorithm 2). First, we build the POMs and the ROM2 from a di-

rect simulation at p? = 1250. This will be used a reference (thus labeled ref)

to which the interpolated POMs and ROM2 are compared. Second, we build



HDM ROM1 ROM2

θ = 0

θ = π/4

θ = π/2

θ = 3π/2

θ = π

Figure 9: Magnitude of vorticity (transient period, see section 5.2.2).



Figure 10: Temporal evolution of the coefficients for the fluctuating part of the velocity

during the transient period (see section 5.2.2). The coefficients for the HDM are obtained by

projection of the snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)

)
. The coefficients

for the ROM1 and the ROM2 are obtained from the solution of (15) and (21), respectively.

the POMs associated with the parameters p ∈ [1000, 1150, 1350, 1500] and we

interpolate at p? by two methods: (i) a naive method (vectorial interpolation

of the POMs coefficients by a piecewise linear interpolator) which we label vec

and by the method described in algorithm 2, section 4 with exponent α = 2 and

tolerance εtol = 10−9 which we label idw. The Grassmann distance between the

reference and both interpolation are:

d(Φu
ref ,Φ

u
vec) = 2.06,

d(Φu
ref ,Φ

u
idw) = 1.56.

(33)

Recall the injectivity radius for the exponential map on the Grassmann manifold

is π
2 , so that the basis Φu

vec is unreliable. This is reflected in the reconstruction

error:

‖ Uref −Uvec ‖F= 235.44,

‖ Uref −Uidw ‖F= 82.01,
(34)



where [U]i,j =
∑nu

n=1 an(tj)φ
u
n(xi) and ‖ • ‖F denotes the Froebenius norm.

Finally, wee show in Appendix C, figure C.14 the temporal coefficients for the

POMs associated with the velocity obtained by the ROM2 build from the ref-

erence and both interpolated bases. The error between the reference and the355

interpolated ROM2 are shown in figure 11

Figure 11: Temporal evolution of the coefficients for the fluctuating part of the velocity in the

interpolation case (see section 5.3). The coefficients for the HDM are obtained by projection

of the snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)

)
. The coefficients for the

ROM1 and the ROM2 are obtained from the solution of (15) and (21), respectively.

6. Conclusion

We have proposed a POD-based reduced order model for flow induced by

rigid solids in forced rotation that substantially reduces the computational cost

compared to previous approaches, while maintaining a high precision compared360

to the results obtained from the high dimensional model or from the standard

POD-ROM. The method is non-intrusive, and thus widely applicable. Addi-

tionally, it proves compatible with state of the art adaptive method to avoid



the computational cost associated with the production of the snapshots for each

new parameter.365

The high number of modes needed to achieve a prescribed reconstruction

error could be reduced by considering a rotational frame, mapping each snapshot

to a reference frame. This is the subject of a work in progress. Also, a parametric

exploration of the effects of the solid geometry on the flow should be performed370

by interpolation also with respect to the geometric parameters.
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[22] M. Loève, Fonctions aléatoires du second ordre, Appendix to the book of P.
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Appendix A. Recalls on the POD505

The Proper Orthogonal Decomposition (POD) has been introduced has a

tools for the identification of coherent structures in dynamical systems in [19]

based on previous works grounded in statistical analysis [20, 21, 22, 23]. Con-

sidering the spatial domain Ω ⊂ Rd and the temporal domain T ⊂ R with

x ∈ Ω and t ∈ T. Then, the POD of a field u : Ω × T → Rd consists in find-

ing a deterministic function φ in a Hilbert space H which gives the optimum

representation of u by solving the maximization problem〈
(u|φ)

2
〉

(φ|φ)
= max

ψ∈H

〈
(u|ψ)

2
〉

(ψ|ψ)
(A.1)

where 〈•〉 denotes a statistical average operator and (•| •) denotes the inner

product of H. We restrict ourselves to the application of POD to square in-

tegrable functions H = L2. In this case, the maximization problem (A.1) is

equivalent to the following eigenvalue problem:∫
Ω

R(x,x′)φ(x′) dx′ = λφ(x) (A.2)

where R is the non-negative symmetric spatial correlation tensor defined by

R(x,x′) = 〈u(x, t)⊗ u(x′, t)〉 . (A.3)

Moreover, if R is continuous, the following operator

R : H → H

φ(•) 7→
∫

Ω
R(•,x′)φ(x′) dx′

(A.4)



is compact. Then, the Hilbert-Schmidt theorem ensures that there exists a set

of positive eigenvalues (λi)i≤1 decreasing toward zero:

λi+1 > λi, lim
i→∞

λi = 0 (A.5)

and a set of eigenmodes (φi)1≤i which forms an orthonormal basis for H so that

u can be decomposed as

u(x, t) =

∞∑
i=1

ai(t)φi(x) (A.6)

where the POD temporal coefficient are given by ai(t) = (u(x, t)|φi(x)) and the

eigenmodes (φi)1≤i form the so called POD basis or Proper Orthogonal Modes

(POMs). For details on the POD see [44, 45, 46]. In practice, the POMs can

be obtained from a finite set of snapshots
(
u(x, tn)

)
1≤n≤nT

by the well known

snapshot POD method introduced in [40] and recalled below.510

1. Form the temporal correlation matrix C with elements:

[C]mn = (u(x, tm)|u(x, tn)) . (A.7)

2. Get the eigen decomposition of C such that

C · vi = λivi. (A.8)

3. Define the i-th POM as a linear combination of the snapshots from the

coefficients of the i-th eigen-vector elements:

φi(x) =

nT∑
j=1

[vi]j u(x, tj). (A.9)

Appendix B. Selection of the interpolation angles

In this appendix, we propose a greedy algorithm for the selection of the in-

terpolation angles involved in the evaluation of the angular coefficient associated

with the i-th POM of the characteristic function in section 3.3. We assume that

the values for the i-th reference coefficient (c?i (θ
?
n))0≤n≤N? defined in (23) are

known for a set of N? angles Θ? = [θ?0 , · · · , θ?N? ] and that a procedure for the



construction of the periodic spline interpolant for the i-th coefficient Si is avail-

able (see e.g. [47, §3.5]). Additionally, we define the relative spline interpolation

error as

ei(θ) =
|c?i (θ)− Si(θ)|

cRMS
i

, (B.1)

where cRMS
i denotes the root-mean-square value:

cRMS
i =

√√√√ 1

N?

N?∑
n=0

(c?i (θ
?
n))

2
. (B.2)

The greedy selection is given in algorithm 3.

Data: Original set of angles Θ? =
(
θ?n)1≤n≤N? .

Result: Reduced data set Θ̂ =
(
θn
)

1≤n≤Ni
.

1 Initialize Θ̂←
(
θ?0 , θ

?
N?

)
and Ni ← 1;

2 while max
θ?∈Θ?

ei(θ
?) > εθ do

3 Find j s.t. ei(θ
?
j ) = max

θ?∈Θ?
ei(θ

?) ;

4 Insert θ?j in Θ̂ ;

5 Increment Ni ← Ni + 1 ;

6 end

Algorithm 3: Greedy algorithm to select the set of angles for the con-

struction of the periodic spline interpolant for the evaluation of the angular

coefficients associated with the characteristic function in (18).

Appendix C. Additional results



Figure C.12: Temporal evolution of the coefficients for the fluctuating part of the velocity in

the steady case (see 5.2.1). The coefficients for the HDM are obtained by projection of the

snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)

)
. The coefficients for the ROM1 and

the ROM2 are obtained from the solution of (15) and (21), respectively.



Figure C.13: Temporal evolution of the coefficients for the fluctuating part of the velocity

during the transient period (see 5.2.2). The coefficients for the HDM are obtained by projection

of the snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)

)
. The coefficients for the

ROM1 and the ROM2 are obtained from the solution of (15) and (21), respectively.



Figure C.14: Temporal evolution of the coefficients for the fluctuating part of the velocity

in the interpolation case (see section 5.3). The coefficients for the HDM are obtained by

projection of the snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)

)
. The coefficients

labeled vec and idw are obtained from the solution of (21) for the ROM2 constructed from the

bases interpolated by a naive method and by the method described in section 4, respectively.
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