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Abstract

Thermo-acoustic tomography is a non-invasive medical imaging technique: the ob-
ject to be reconstructed is excited by an impulse, inducing inhomogeneous heating and
thus tissue expansion. This creates an acoustic wave pressure that can be measured
by sensors. The reconstruction of internal heterogeneities can then be achieved by
solving an inverse problem, once the sound wave measurements are known outside the
body. As the measured pressure intensity is expected to be low, a difficult problem is
to position the sensors properly.

This article is devoted to determining the positions of the sensors in order to carry
out the reconstruction procedure in an optimal way. We first introduce a model of
optimal sensor position that involves a deviation function between the theoretical
pressure and the measured pressure for a first series of sensor measurements, and a
constant observable type function that describes the quality of reconstruction. We use
it to determine an appropriate position of the sensors for a second set of measurements.

Far from providing an intrinsic solution to the general issue of positioning sensors,
solving this problem makes it possible to obtain a new position of the sensors improving
the quality of the reconstruction before obtaining a new series of measurements.

This model is analyzed mathematically: we study the existence problems and intro-
duce a numerical algorithm to solve them. Finally, several 2D numerical simulations
illustrate our approach.

Keywords: wave equation, observability, shape optimization, calculus of variation, min-
imax problem, primal-dual algorithm.
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(maitine.bergounioux@univ-orleans.fr).
‡Univ Lyon, INSA de Lyon, CNRS UMR 5208, Institut Camille Jordan, 20 avenue Albert Einstein,

F-69621 Villeurbanne Cedex, France (elie.bretin@insa-lyon.fr)
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1 Introduction

In this article, we focus on thermo-acoustic tomography, a non-invasive medical imaging
technique that seems very promising because, compared to other imaging techniques such
as X-ray tomography or emission tomography, it is based on simple and relatively inexpen-
sive equipment. It is particularly well suited for low-density tissue imaging and is likely
to become a major tool for mammography and even brain imaging. The development of
non-invasive and non-ionizing imaging techniques is particularly important for the early
detection of breast cancer in young patients, whose mammograms are generally of low
contrast. The principle of this imaging process is very simple: the tissue to be visualized
is irradiated by a pulse and this energy induces a heating process. If the pulse is an elec-
tromagnetic radio-frequency pulse, the technique is called thermo-acoustic tomography
(TAT); if the pulse is a laser (the frequency is much higher), it is called photo-acoustic
tomography (PAT). In any case, this creates a thermally induced pressure surge that
propagates as a sound wave, which can be detected by sensors located outside the body to
image. By detecting pressure waves, heterogeneities can be observed: this gives important
information such as the position and/or size of tumors in breast cancer. For more details
on the process and related work, we refer to [1, 11, 12, 25] and the references contained
therein. Basically, TAT and PAT are two hybrid techniques using electromagnetic waves
as excitation (input) and acoustic waves as observation (output). Both techniques lead to
similar misplaced reverse problems. The modeling of the direct problem does not lead to
the same equations, since the physical background is not the same. However, the process
can be described using two equations (or systems of equations):

• The first system of equations describes the generation of the heating process inside
the body; in PAT, this system involves the fluence equation (the fluence rate is
the average of the light intensity in all directions) which is a diffusion equation [11]
whereas in TAT, this equation is replaced by the Maxwell equations [1]. Temperature
is described by the classical thermal equation, which can be neglected in PAT since
the high speed of light implies that the thermal effect is almost instantaneous. In
both cases, the resulting term is a source pressure wave p0 at the time t = 0.

• The second equation models the behaviour of the acoustic wave once the source p0

is known. It writes
∂ttp(t, x)− div(c(x)∇p(t, x)) = 0 in (0, T )× B,
p(0, ·) = p0, on B,
∂tp(0, ·) = 0 on B,
p = 0 on (0, T )× ∂B,

(1.1)

where T > 0 is arbitrary and B is a given ball whose radius will be chosen appropri-
ately in the sequel. Most articles on the subject have focused on this second equation
to address inversion. Indeed, if measurements are made to determine p0, then the
heterogeneities can be identified by quantitative estimates of two appropriate physi-
cal parameters: diffusion and absorption coefficients in PAT, or electrical sensitivity
and conductivity in TAT.
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In this article, we focus on the following question:

from the knowledge of a first series of measurements, how to locate the
sensors before performing a second one, in a relevant way?

Such a question is related to the general problem of optimal sensor positioning. In
the following, we focus on the pressure equation to obtain the best reconstruction of p0.
The future analysis can be used interchangeably in both PAT and TAT frameworks. In
the following, we always refer to the TAT process for readability reasons.

Our goal is therefore to determine the position of the sensors providing the best possible
reconstruction. As a result, we do not focus on solving the inverse problem (where the
sensors are fixed). Many articles on TAT/PAT reconstruction have been written in recent
decades. For example, we refer to [1, 7, 8, 9, 11, 12, 25, 33] and to the book by Ammari
et al. [3, 6] or Scherzer et al. [31].

To our knowledge, the question of the optimal positioning of the sensors has not yet
been addressed in the context of photoacoustic tomography. However, it can be noted that
the search for the optimal position and/or shapes of the sensors for the wave/heat equation
in a delimited domain has been studied in [26, 27, 28, 29, 30]. In these articles, it is assumed
that, in a certain sense, a phenomenon of reflection of solutions at the boundary of the
domain occurs. Such an assumption is not relevant for the application we are considering
here and we propose an alternative approach. Also worth mentioning is [2, 4], where the
issue of recovering small inhomogeneities of conductivity in a homogeneous background
medium from dynamic boundary measurements over a part of the boundary and over a
finite time interval is addressed. These problems differ from those studied here, since
the proposed reconstruction algorithm depends on particular choices of initial data and
boundary conditions. In the following, we basically look for the initial data and optimal
sensor positions at the same time, which requires a dedicated method.

Another related problem is the optimization of electrode positions in electrical impe-
dance tomography, which aims to retrieve information on electrical conductivity within a
physical body from current and potential boundary measurements. The optimal electrode
locations are determined so that, taking into account the measurement, the conditional
conductivity density is as localized as possible (see for example [17, 20, 23, 24, 34]). Nev-
ertheless, a huge difference between this work and the present paper lies in the physical
model itself. The modeling and approaches studied in our paper are adapted to the wave
equation model. Indeed, we will use a certain observability constant to define the func-
tional cost, time inversion techniques to solve the resulting problem numerically, etc.

In the following, the determination of the optimal position or shape of the sensors will
be addressed in two ways:

(i) First attempt: prescription of the total surface area of the sensors. We first
choose to process sensors described by the characteristic function of a measurable
subset whose Lebesgue measurement is prescribed. A possible disadvantage of such
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an approach is that the optimal solution may not exist or may have a high/infinite
number of connected components (see problem (2.13)).

(ii) Second attempt: prescription of the maximum number of sensors. To
avoid the emergence of overly complex solutions and to make problem modeling
more realistic, we will examine a second point of view where a maximum number of
N0 of sensors (specifically connected components of the sensor set) is prescribed, in
addition to the total surface mentioned above (see Problem (2.21)).

The document is organized as follows: Section 2 is dedicated to problem modeling.
We justify here the point of view adopted. In the section 3, we analyze the problem of
optimization, in particular the problems of existence and deduce the optimal conditions.
Finally, the 4 section is devoted to describing a numerical algorithm and presenting the
first promising numerical results.

2 Modeling the problem

2.1 The PDE (direct) model and the sensors set

Throughout this paper, we will use the notation 1A as the characteristic function of a set
A ⊂ IRd (d ≥ 1) which is the function equal to 1 on A and 0 elsewhere.

As explained in Section 1, the acoustic wave is assumed to solve the partial differential
equation 

∂ttp(t, x)− div(c(x)∇p(t, x)) = 0 in (0, T )× B,
p(0, ·) = p0, on B,
∂tp(0, ·) = 0 on B,
p = 0 on (0, T )× ∂B,

(2.1)

where T > 0 is arbitrary and B ⊂ IRd is a given ball whose radius R is chosen in the
sequel.

Let us also introduce Ω as a convex open subset of IRd, representing the body to image,
which means in particular that

supp(p0) ⊂ Ω, (2.2)

where supp(p0) denotes the support of p0. The convexity assumption on Ω is technical,
and will be used to make the set of admissible designs well defined in the sequel. This will
be commented later.

For this reason, we assume that B is large enough so that Ω ⊂ B; the set B \Ω stands
for the ambient media (water or air), where the wave propagates.

The function c ∈ L∞(IRd) stands for the sound speed and satisfies

c(x) ≥ c0 > 0 a.e. x ∈ IRd.

A typical choice for c is to assume it is piecewise constant, namely:

c = c11Ω + c21B\Ω, with (c1, c2) ∈ (IR∗+)2, (2.3)
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with c1, c2 > 0. Recall that for every initial p0 ∈ H1
0 (Ω), there exists a unique solution p

to System (2.1) and that solution satisfies p ∈ C1
(
[0, T ], L2(B)

)
∩ C0

(
[0, T ], H1

0 (B)
)

(see
e.g. [16, 19]).

Remark 2.1. For (future) numerical purposes, we choose B as a bounded ball with radius
R. However, R is large enough, then p vanishes on ∂B all along the recording process (i.e.
for t 6 T ). Precisely, there exists R > 0 large enough such that, for every p0 ∈ H1

0 (Ω),
the solution of problem (2.1) coincides with the solution of

∂ttp(t, x)− div(c(x)∇p(t, x)) = 0 in (0, T )× IRd,

p(0, ·) = p0(·) on IRd,

∂tp(0, ·) = 0 on IRd,

(2.4)

with the convention that the initial datum p0 has been extended by 0 to the whole space
IRd. One refers for instance to [19].

As mentioned in Section 1, the inverse problem of recovering p0 ∈ H1
0 (Ω) from p mea-

surements on a set (0, T )×Σ (where Σ is the position of the sensors) has been extensively
studied over the past two decades. We refer to [3, 6, 11, 12, 25] and the references therein
for more details. However, the point of view we adopt here is a variational one. Specifi-
cally, we do not use a reconstruction formula (exact or not) or a time inversion approach.
to deal with the inverse problem. Following the philosophy of [1, 11, 12], we rather in-
clude the unknown parameter in a cost functional. As a result, the reconstruction of p0

and the question of the position of the sensors will be addressed in terms of functional
minimization.

The sensors set. To model the sensors optimal positioning, we first describe the class
of admissible designs/sensors to be considered.

Let us endow the Lipschitz set ∂Ω with the usual (d−1)-dimensional Hausdorff measure
Hd−1. In the sequel, we say by convention that Γ ⊂ ∂Ω is measurable whenever it is
measurable for the Hausdorff measure Hd−1.

Introduce Σ ⊂ IRd as the subdomain of IRd occupied by sensors. Roughly speaking,
we will assume that every connected component of Σ is located around the boundary of
Ω and has a positive thickness ε. Precisely, we assume the existence of a measurable set
Γ ⊂ ∂Ω such that

Σ = {s+ µ ν(s), s ∈ Γ, µ ∈ [0, ε]} , (2.5)

where ν(s) denotes the outward unit normal to Ω at s (see Figure 2.1). The set Σ is thus
supported by the annular ring

∂̃Ω := {s+ µν(s), s ∈ ∂Ω, µ ∈ [0, ε]}.
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The function cp¨q stands for the sound speed, and is assumed to be piecewise constant, and
writing

c “ c11⌦ ` c21Bz⌦, with pc1, c2q P pIR˚
`q2. (3)

Recall that for every initial p0 P H1
0 p⌦q, there exists a unique solution p to System (1) satisfying

moreover p P C1
`r0, T s, L2pBq˘ X C0

`r0, T s, H1
0 pBq˘

(see e.g. [3]).

Remark 1. For (future) numerical purposes, the set B is chosen bounded but it may be noticed
that, if the radius R of B is large enough, then p vanishes on B⌦ all along the recording process
(i.e. for t § T ). More precisely, there exists R ° 0 large enough such that, for every p0 P H1

0 p⌦q,
the solution of problem (1) coincides with the solution of

$
&
%

Bttppt, xq ´ divpcpxqrppt, xqq “ 0 in p0, T q ˆ IRn,
pp¨, 0q “ p0p¨q on IRn,
Btpp¨, 0q “ 0 on IRn,

(4)

with the convention that the initial datum p0 has been extended by 0 to the whole space IRn. One
refers for instance to [3]

**** Quelques précisions sur le problème inverse classique ****
For further explanations on the inverse problem, one refers to **** blabla ****

The sensors set. Solving the inverse problem aims at recovering the initial condition p0 P H1
0 p⌦q

out of boundary measurements on a set of sensors. To model the optimal design problem of locating
in the best way sensors, we first make the class of admissible designs/sensors that we will consider.

Let us endow the Lipschitz set B⌦ with the usual pn´1q-dimensional Hausdor↵ measure Hn´1.
In the sequel, we adopt the convention to say that � Ä B⌦ is measurable whenever it is measurable
for the Hausdor↵ measure Hn´1.

Introduce ⌃ Ä IRn as the subdomain of IRn occupied by sensors. Roughly speaking, we will
assume that each connected component of ⌃ is located around the boundary of ⌦ and has a positive
thickness ". More precisely, we assume the existence of a measurable set � Ä B⌦ such that

⌃ “ ts ` µ ⌫psq, s P �, µ P r0, "su , (5)

where ⌫psq denotes the outward unit normal to ⌦ at s (see figure 1). The set ⌃ is thus supported
by the annular ring

ÄB⌦ :“ ts ` µ⌫psq, s P B⌦, µ P r0, "su.

⌫psq

ŝ "�

⌃

B⌦

B
⌦ ⌃�

Figure 1: The set of sensors.
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Figure 2.1: The set of sensors.

Remark 2.2. In this work, we have chosen to treat volumetric sensors: this will determine
the choice of the term observability in the cost functional. Another relevant model could be
that of boundary sensors, which would imply changing the choice of the above observability
term in the cost functional.

When investigating the optimal position or shape of sensors without any restriction
on the sensors domain measure, the solution is trivial and is given by Σ = ∂̃Ω (see e.g.
[26, 27, 28, 29, 30]). This is not relevant for practical purposes and this is why we also
assume in the sequel that the measure of the sensors domain is prescribed: the measurable
subsets Γ of ∂Ω satisfy Hd−1(Γ) = LHd−1(∂Ω), where L ∈ (0, 1) denotes some given real
number. Let us introduce the two classes

VL = {a ∈ L∞(∂Ω), a ∈ {0, 1}, a.e. in ∂Ω,

∫
∂Ω
a(x)dHd−1(x) = LHd−1(∂Ω)}. (2.6)

of admissible subsets Σ ⊂ B characteristic functions and

UL = {a ∈ L∞(∂̃Ω), a(s+ µν(s)) = X(s), a.e. (s, µ) ∈ ∂Ω× [0, ε], with X ∈ VL} (2.7)

of admissible subsets Γ ⊂ ∂̃Ω characteristic functions.
Since Ω is assumed to be convex, the set UL well defined. Indeed, Ω has in particular a

Lipschitz boundary and the normal outward vector ν(·) exists almost everywhere on ∂Ω.

The convexity assumption implies that the map ∂̃Ω 3 s + µν(s) 7→ (s, µ) ∈ ∂Ω × [0, ε] is
invertible according to the projection on a convex set theorem.

2.2 Criteria choices and optimization problems

In this section, we model the problem by describing the cost functional and set the opti-
mization problems. Let pobs ∈ L2((0, T )×Σ) denote the measured pressure: it is defined in
(0, T )×Σ. We extend pobs by 0 to (0, T )×B and denote the obtained function similarly, with
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a slight abuse of notation. Hence, one has pobs = 1Σ pobs so that pobs ∈ L2(0, T, L2(B)).
For p0 ∈ H1

0 (Ω), we also introduce p[p0] as the solution of Problem (2.1) for the initial
datum p0.

The issue we are now addressing is as follows: given a first (series of) measure-
ment(s), how can we determine a relevant sensor position before performing
a new (series of) measurement(s)?
To achieve this objective, we introduce an optimal design problem. Our approach can be
split into two steps that we roughly describe.

• First step: determination of an initial pressure condition p0. Recall that, in
the PDE model we consider (see Eq. (2.1)), the initial velocity is assumed to vanish
identically in B. It is therefore enough to reconstruct the initial pressure. A first
natural (naive) idea would be to consider the problem

inf
p0∈P0(Ω)

A1(1Σ, p0) (2.8)

where

A1(1Σ, p0) :=
1

2

∫ T

0

∫
B
1Σ(x)(p[p0](t, x)− pobs(t, x))2 dx dt. (2.9)

and P0(Ω) is a given functional space to be chosen adequately in the sequel. Unfor-
tunately, the well-posedness of such least square problems, is in general not ensured.
In addition, due to the uncertainties of sensor measurements and the fact that Σ
is a strict sub-domain of ∂̃Ω, there could be many initial pressures of p0 leading
to the observation pobs. Therefore, we decide to select an initial pressure function
denoted p̃0 by solving a penalized optimization problem in order to impose three
kinds of physical constraints: we look for (i) positive pressure term, (ii) whose sup-
port is included in a fixed compact set K of B, and (iii) belonging to a functional
space well-chosen to ensure the well-posedness of the problem and therefore good
reconstruction properties. From a practical viewpoint, this will be done adding a
penalization-regularization term denotedR(p0) in the definition of the criterion. The
choice of such a term will be introduced and commented in Section 3.1.

Solving the resulting problem (see its definition below) is a way to define an initial
pressure function reconstructed (almost) everywhere in B and not only on Σ. This
is the key point to address the optimal design problem in the second step.

• Second step: determination of the best position of sensors. Once an initial
pressure p̃0 has been determined with a given position of sensors, the new position
will be obtained by solving the optimal design problem

sup
1Σ∈UL

A2(1Σ, p0),

where

A2(1Σ, p0) :=

∫ T
0

∫
B 1Σ(x)∂tp[p̃0](t, x)2 dx dt

‖p0‖2H1(Ω)

. (2.10)
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The functional to maximize represents the quality of the observation: we discuss
and comment on such a choice below. In summary, we are looking for the position
of the sensors allowing the best observation of the worst possible pressure p0 leading
to the observation pobs.

To summarize, this two step procedure leads to the following optimal design problem:

Optimal position of sensors (new version). Let pobs ∈ L2(Σ) and γ ∈ IR∗+
be a fixed parameter.

1. Computation of an initial pressure function p̃0 (whenever it exists) by solving
the problem

inf
p0∈P0(Ω)

J0(1Σ, p0), (2.11)

where the cost-functional J0 is defined by

J0(1Σ, p0) = A1(1Σ, p0) + γR(p0), γ > 0 (2.12)

and the admissible set is

P0(Ω) = {p0 ∈ L2(Ω) | supp(p0) ⊂ K, p0 > 0 a.e. in Ω and R(p0) < +∞},

where R(p0) is a penalization-regularization term whose choice will be made
precise in Section 3.1.

2. Assuming that Problem (2.11) has a solution p̃0, determination of a new sensors
position by solving

sup
1Σ∈UL

A2(1Σ, p̃0) (2.13)

Next, to deal with more realistic constraints, we introduce a modified optimal design
problem, where then sensors set is assumed to be the union of connected components N0

having the same length, N0 being a given non-zero integer. For simplicity’s sake, we will
assume that the dimension of the space is d = 2 and that the boundary of the convex
set Ω is smooth, say C1.. Let O denote any point of Ω and assume that Ω has as polar
equation r = ρ(θ) in a given orthonormal basis of IR2 centered at O, where ρ is a Lipschitz
function of the one-dimensional torus T = IR/[0, 2π).

Let us make this sensors set precise. Let ` > 0 be such that `N0 <
∫
T
√
ρ(θ)2 + ρ′(θ)2 dθ.

We choose to consider the set of sensors represented by Σ ⊂ ∂̃Ω associated to the domain
Γ with 1Γ ∈ VL through the formula (2.7)-(2.6), parametrized by a nondecreasing family
(θn)n∈{1,...,N0} ∈ TN0 such that Σ is associated to Γ by the relation

1Σ(x) = 1Γ(s+ µν(s)) = 1Γ(s), for a.e. x ∈ ∂̃Ω, s ∈ ∂Ω, µ ∈ [0, ε] (2.14)
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for some 1Γ ∈ VL, where

Γ =

N0⋃
n=1

Γn with Γn = {(r cos θ, r sin θ) ∈ Γ | θ ∈ (θn, θ̂n)}, (2.15)

where θ̂n is defined from θn by the relation∫ θ̂n

θn

√
ρ(s)2 + ρ′(s)2 ds = `. (2.16)

Note that, since the mapping T 3 θ 7→
∫ θ̂n
θn

√
ρ(s)2 + ρ′(s)2 ds is continuous and monotone

increasing, it defines a bijection. This justifies the consistence of definition of θ̂n by (2.16).
Basically, the last equality requires that all sensors be represented by N0 of almost identical
connected components (up to isometrics).

To avoid the overlapping of sensors, we will also require that

∀n ∈ {1, . . . , N0 − 1}, θ̂n 6 θn+1. (2.17)

It will be useful for the upcoming analysis to note that this last condition will rewrite

∀n ∈ {1, . . . , N0 − 1},
∫ θn+1

θn

√
ρ(s)2 + ρ′(s)2 ds > `. (2.18)

As a conclusion, we will restrict the set of admissible configurations to

U `L,N0
= {1Σ ∈ UL | Σ associated to Γ by (2.14) with 1Γ ∈ V`L,N0

}, (2.19)

where
V`L,N0

= {1Γ ∈ VL | Γ satisfies (2.15)-(2.16)-(2.18)}. (2.20)

Optimal position of sensors (updated version with a maximal num-
ber of connected components). Let N0 ∈ IN∗, ` > 0 such that `N0 <∫ 2π

0

√
ρ(θ)2 + ρ′(θ)2 dθ, pobs ∈ L2(Σ) and γ ∈ IR∗+ be a fixed parameter.

1. Computation of an initial pressure function p̃0 (whenever it exists) by solving
the problem (2.11) (as for the optimal design problem (2.13)).

2. Assuming that Problem (2.11) has a solution p̃0, determination of a new sensors
position by solving

sup
1Σ∈U`

L,N0

A2(1Σ, p̃0), (2.21)

where U `L,N0
is given by (2.19).

In the section 4, we will discuss this method and illustrate it with several numerical
results.
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Comments on the terms A1 and A2. We end this section with comments on the
choice of the functional.

The term A1(1Σ, p0) is a least-square fidelity term, ensuring that the initial pressure
p0 makes the pressure p[p0] (corresponding to the reconstructed image) as close as possible
to the observed pressure pobs on the domain occupied by sensors. The term A2(1Σ, p0) is
inspired by the notion of observability in the theory of control or inverse problems. Indeed,
the equation (2.1) is said to be observable in time T on Σ if there is a positive constant
C such that the inequality

C‖p0‖2H1
0
6
∫ T

0

∫
B
1Σ(x)

∣∣∂tp[p0](t, x)
∣∣2 dxdt, (2.22)

holds for every initial datum p0 ∈ H1
0 (Ω). The largest constant C = CT (1Σ) such that

the inequality (2.22) holds is the so-called observability constant and writes

CT (1Σ) = inf
p0∈H1

0 (B)

∫ T
0

∫
B 1Σ(x)

∣∣∂tp[p0](t, x)
∣∣2 dx dt

‖p0‖2H1
0

.

This constant CT (1Σ) gives an idea of the well-posed character of the p0 reconstruction
from measurements of p[p0] on Σ. In short, the higher the observability constant, the
better the quality of the reconstruction.

The functional A2 thus models the efficiency of a set of sensors occupying the Σ domain.
It should also be noted that the choice of the observation variable 1Σ∂tp[p0] is determined
by the fact that the sensors are generally piezoelectric microphones, which are supposed
to record temporal pressure variations.

Finally, to understand the role of maximization with respect to the position of the
sensors, we have illustrated a a bad situation on Figure 2.2; here a sensors position on a
domain Σ2 gives a less precise result than another position on a subdomain Σ1, since the
observed pressure coincides only with the real one on the domain Σ2. Maximization with
respect to design can then be interpreted as a functional worst case function, used to move
the sensors to a position ignored by previous measurements and where the reconstructed
pressure is far from that observed.

Justification of the cost functional choice. Before analyzing existence issues for these prob-
lems, let us provide the motivations for considering them.

The term A1p1⌃, p0q is a “least-square” kind term, ensuring that the initial pressure p0 makes
the pressure prp0s for the reconstructed image as close as possible to the observed pressure pobs on
the domain occupied by sensors.

The term A2p1⌃, p0q is inspired by the notion of observability in control or inverse problems
theory. Indeed, the equation (1) is said observable in time T on ⌃ whenever there exists a positive
constant C such that the inequality

C}p0}2
H1

0
§
ª T

0

ª

B
1⌃pxq ˇ̌Btprp0spt, xqˇ̌2

dxdt, (10)

holds for every initial datum p0 P H1
0 p⌦q. The largest constant C “ CT p1⌃q such that the

inequality (10) holds is the so-called observability constant and writes

CT p1⌃q “ inf
p0PH1

0 pBq

≥T
0

≥
B 1⌃pxq ˇ̌Btprp0spt, xqˇ̌2

dxdt

}p0}2
H1

0

.

The constant CT p1⌃q provides an account of the well-posedness character of the inverse problem of
reconstructing p0 from measurements of prp0s on ⌃. Roughly speaking, the largest the observability
constant is, the best will by the reconstruction quality.

The functional A2 thus models the e�ciency of a set of sensors occupying the domain ⌃. Notice
also that the choice of the observation variable 1⌃Btprp0s is driven by the fact that sensors consist
in general of piezoelectric microphones, and are thus assumed to record time variations of the
pressure.

Finally, to understand the role of the maximization with respect to the location of sensors, we
have illustrated a bad situation on Figure 2, where a location of sensors on a domain ⌃2 provides a
less accurate result than another location on a subdomain ⌃1, since the observed pressure coincides
only with the real pressure on the domain ⌃2. The maximization with respect to the design can
then be interpreted as a ”worst case” functional, used to move the sensors toward a location ignored
by the previous measures and where the reconstructed pressure is far from the observed one.

⌃1 ⌃2

pobs

p

B⌦

O

Figure 2: A bad situation.

Remark 4. Notice that, by energy conservation, one has for every t P r0, T s,
ª

B
Btppt, xq2 dx §

ª

B

`Btppt, xq2 ` |rppt, xq|2˘
dx §

ª

⌦

|rp0pxq|2 dx “ }p0}2
H1

0 p⌦q,

and therefore, we infer that A2p1⌃, p0q P r0, T s for every p0 P H1
0 p⌦qzt0u.

3 Analysis of the optimization problems

As underlined in Section 2.2, a key point of our approach rests upon the existence of a solution for
Problem (7). In Section 3.1, we will emphasize that this is not true at least in the particular case

6

Figure 2.2: A bad situation.
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3 Analysis of Problems (2.11) and (2.13)

3.1 Choice of the regularization term R(p0)

Let’s add some comments to fully specify the model (via the cost functional). If we consider
Problem (2.8), it is clear that the ill-posedness of this problem prevents a solution from
being found (to highlight such a claim, one can easily build counterexamples based on
gaussian beams). Therefore, it is necessary to define a coercive cost functional in relation
to the functional space by adding a penalty-regularization term R(p0).

• If we decide to choose L2(B), as initial pressure space, we ask for the weakest reg-
ularity. In that case R(p0) = ‖p0‖L2 . This implies that p0 may be small since the
first term only involves “sparse” observation of p and is expected to be small even
for small ε.

• We hope to recover the heterogeneities as images with sharp edges, which can be
captured adequately by considering the functions of bounded variation. Indeed, the
involvement of the first derivative via the total variation has a noise-reducing effect.
However, to our knowledge, the solution of the wave equation with the BV data is
not standard. For this reason, in the upcoming analysis, we prefer to process more
regular data and choose a penalization functional that induces aH1-smoothing effect.
Therefore, we expect to recover diffuse objects. To avoid a too hard regularization
process, we also use the W 1.1 standard (which is the same as TV -one in this case).

• Finally, we don’t have any compactness result to achieve the convergence process of
subsequences. Therefore, we add a (small) viscosity penalization term which must
rather be interpreted as a theoretical tool.

Eventually, we choose

R(p0) = ‖∇p0‖L1 +
ε

2γ
‖p0‖2H1 , (3.1)

so that the cost functional reads

J(p0) := A1(1Σ, p0) + γ‖∇p0‖L1 +
ε

2
‖p0‖2H1 , (3.2)

where ε� γ and A1(p0) = A1(1Σ, p0) is given by (2.9). Throughout this section, we omit
the dependence with respect to Σ since this set is fixed. Hence, Problem (2.11) can be
written as

inf
p0∈PK(Ω)

J(p0), (3.3)

where K is a fixed compact subset of Ω and

PK(Ω) = {p0 ∈ H1
0 Ω) | supp(p0) ⊂ K and p0 > 0 a.e. in Ω}.

Note that PK(Ω) is convex and closed for the weak H1(Ω)-topology.

Remark 3.1. Typically, we choose K := {x ∈ Ω | d(x, ∂Ω) ≥ δ } for some positive
parameter δ.
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3.2 Analysis of Problem (3.3)

In the sequel we denote by bold letters functions that are defined on (0, T )×B. Precisely,
for any p ∈ H1

0 (Ω) , we denote p the solution of (2.1) where p(0, ·)=p.

Existence and uniqueness.

Theorem 3.1. Fix ε > 0 and γ > 0. Then problem (3.3) has a unique solution p∗.

Proof. Let (pn)n∈IN be a minimizing sequence of (3.3). Therefore, (pn)n∈IN is weakly
convergent to some p0 in H1(Ω) and W 1,1(Ω) and strongly in L2(Ω). As PK(Ω) is H1(Ω)
weakly closed then p0 ∈ PK(Ω). Moreover, the sequence (pn)n∈IN defined by pn := p[pn]

strongly converges to p0 := p[p0] in L∞
(
[0, T ], L2(B)

)
(see [16, Theorem 2 p. 567]).

According to the Lebesgue theorem, we infer that A1(pn)→ A1(p0) as n→ +∞. We end
the proof with the lower semi-continuity of the norms in the regularizing term. Uniqueness
is an easy consequence of the strict convexity of the H1-norm. Note that the ‖p0‖2H1 term
is used both for existence and uniqueness.

Optimality conditions. Let p∗ be the solution to (3.3) and (as before) p∗ the solution
of (2.1) where p∗(0, ·) = p∗ and look for optimality conditions. For every p ∈ PK(Ω) we
get

0 ∈ ∂J(p∗),

where ∂J(p∗) stands for the subdifferential of J at p∗ (see [18] for example). Indeed, J is
not Gâteaux-differentiable because of the TV term. This yields

−D[A1](p∗)− ε(p∗ −∆p∗) ∈ γ∂TV (p∗). (3.4)

Recall that TV (p∗) = ‖∇p∗‖L1 since p∗ ∈ H1
0 (Ω) but we use this notation for convenience.

We first compute D[A1](p∗) (the derivative with respect to p∗) by introducing an adjoint
state. Let us define q∗ as the solution of

∂ttq
∗(t, x)−div(c(x)∇q∗(t, x))=(p∗(t, x)−pobs(t, x)))1Σ(x) in (0, T )× B,

q∗(T, ·) = 0, ∂tq
∗(T, ·) = 0 on B,

q∗ = 0 on (0, T )× ∂B,
(3.5)

For every p ∈ H1
0 (Ω), a simple computation yields

D[A1](p∗) · p =

∫ T

0

∫
B
1Σ(x)(p∗(t, x)− pobs(t, x)) p(t, x)dx dt.

Indeed, by linearity, the derivative of p0 7→ p[p0] with respect to p0 is p[p0]. Using (3.5) and
two integrations by parts, we get

D[A1](p∗) · p = −
∫
B
1Σ(x) q∗(0, x)p(x) dx ,

12



so that D[A1](p∗) = −1Σ q∗(0). Equation (3.4) writes

1

γ

(
1Σq∗(0)− ε(p∗ −∆p∗)

)
∈ ∂TV (p∗). (3.6)

Finally, the first order optimality conditions are stated in the following result.

Theorem 3.2. Fix K, Σ, ε > 0 and γ > 0. The function p∗ ∈ H1
0 (Ω) is the optimal

solution to (3.3) if and only if equation (3.6) is satisfied with q∗ solution to (3.5) and p∗

solution to (2.1) with p∗ as initial condition.

The optimality condition above is sufficient by a convexity argument.

Remark 3.2. The computation of ∂TV (p∗) is standard in a finite dimensional setting,
either using a primal-dual algorithm or performing an approximation of TV (p∗) .

3.3 Analysis of Problem (2.13)

We now focus on the optimal design problem (2.13). To perform the analysis, we give
an equivalent formulation of A2(1Σ, p0) using the particular form of 1Σ. Indeed, for all
x ∈ Σ, we will say that Γ is a subset of ∂Ω associated to Σ ∈ UL whenever

1Σ(x) = 1Γ(s+ µν(s)) = 1Γ(s), for a.e. x ∈ ∂̃Ω, s ∈ ∂Ω, µ ∈ [0, ε] (3.7)

for some 1Γ ∈ VL where 1Γ is the characteristic function of a subset Γ of ∂Ω. Using
Fubini-Tonelli-Lebesgue theorem, one has

A2(1Σ, p0) =
1

‖p0‖2H1(Ω)

∫ T

0

∫
B
1Σ(x)∂tp[p0](t, x)2 dx dt

=
1

‖p0‖2H1(Ω)

∫
∂Ω

1Γ(s)ψ[p0](s) dHd−1 (3.8)

where

ψ[p0](s) =

∫ T

0

∫ ε

0
∂tp[p0](t, s+ µν(s))2 dµ dt (3.9)

Indeed, it follows directly from the regularity property of p[p0] that ψ[p0] ∈ L1(∂Ω). Next
theorem gives an existence result:

Theorem 3.3. Let p̃0 ∈ H1(Ω) be a solution of Problem (2.11). Then, the optimal design
problem (2.13) has at least one solution. Moreover, there exists a real number λ such that
Σ∗ is a solution of (2.13) if and only if Σ∗ is associated to Γ∗ (in the sense of (3.7)) where

1{ψ[p̃0](s)>λ} 6 1Γ∗(s) 6 1{ψ[p̃0]>λ}(s), for a.e. s ∈ ∂Ω. (3.10)
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Proof. The proof is a direct adaptation of [28, Theorem 1]. It is based directly on the
fact that the functional A2 rewrites as (3.8), as well as a standard argument of decreasing
rearrangement. Another convexity argument can be used to get this result, observing that
the functional

Ã2 : L∞(∂Ω, [0, 1]) 3 ρ 7→
∫
∂Ω
ρ(s)ψ[p0](s) dHd−1

is continuous for the weak-star topology of L∞ and that the set

CL =

{
ρ ∈ L∞(∂Ω, [0, 1]) |

∫
∂Ω
ρ = LHd−1(∂Ω)

}
is compact for this topology. It follows that the problem

inf

{∫
∂Ω
ρ(s)ψ[p0](s) dHd−1, ρ ∈ CL

}
has at least one solution. Moreover, one shows easily that the solution can be chosen
among the extremal points of the convex set CL, by using the convexity of the mapping
Ã2.

3.4 Analysis of Problem (2.21)

This section is devoted to solving Problem (2.21) in the two-dimensional case, where the
sensors set is the union of N0 similar connected components (the definition of the sensors
set has been made precise in (2.19)). Let us define

f[p̃0] : T 3 θ 7→ ψ[p̃0](ρ(θ) cos θ, ρ(θ) sin θ). (3.11)

where ψ[p̃0] is given by (3.9).

Theorem 3.4. Let p̃0 ∈ H1(Ω) be a solution of Problem (2.11). Then, the optimal design
problem (2.21) has at least a solution ΣN0,`. Let ΓN0,` (resp. (θn)n∈{1,...,N0} ∈ TN0) be the
associated set of ∂Ω in the sense of (2.14) (resp. the associated family of angles in the
sense of (2.15)). Then,

1. if N0 = 1, then, f[p̃0](θ1) = f[p̃0](θ̂1).

2. if N0 > 2, let n ∈ {1, . . . , N0 − 1}. One has the following alternative: either θ̂n =
θn+1, or f[p̃0](θn) = f[p̃0](θ̂n).

If one assumes furthermore that ρ belongs to C2(T), then one has

f ′[p̃0](θ̂n)√
ρ(θ̂n)2 + ρ′(θ̂n)2

−
f ′[p̃0](θn)√

ρ(θkn2 + ρ′(θn)2
6 0

whenever N0 = n = 1 or N2 > 2 and n ∈ {1, . . . , N0 − 1} is such that θ̂n < θn+1.
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Proof. We first assume, without loss of generality that N0 > 2, the case where N0 = 1
being easily inferred by adapting the following reasoning. In what follows, we will use
several times that ρ(θ) > 0 for all θ ∈ T, which is a consequence of the fact that the point
O (center of the considered orthonormal basis) belongs to the open set Ω.

First, using the same computations as those at the beginning of Section 3.3, we claim
that Problem (2.21) can be recast as

sup
(θ1,...,θN0

)∈Θ`
L,N0

J(θ1, . . . , θN0) (3.12)

where

J(θ1, . . . , θN0) =

N0∑
n=1

∫ θ̂n

θn

f[p̃0](θ)
√
ρ(θ)2 + ρ′(θ)2 dθ, (3.13)

with f[p̃0] defined by (3.11), θ̂n defined by (2.16) and

Θ`
L,N0

=

{
(θ1, . . . , θN0) ∈ TN0 |

∫ θn+1

θn

√
ρ(s)2 + ρ′(s)2 ds > `, n = 1, . . . , N0 − 1

}
. (3.14)

Existence of a solution to this problem is standard and follows immediately from both
the compactness of Θ`

L,N0
in TN0 and the continuity of the functional. Let (θ1, . . . , θN0) ∈

Θ`
L,N0

be a solution of the optimization problem (3.12). Let us assume the existence of

n ∈ {1, . . . , N0 − 1} such that θ̂n < θn+1, in other words such that∫ θn+1

θn

√
ρ(s)2 + ρ′(s)2 ds > `. (3.15)

Then, it follows from the Karush-Kuhn-Tucker theorem that ∂J
∂θn

(θ1, . . . , θN0) = 0,
which rewrites√

ρ(θn)2 + ρ′(θn)2f[p̃0](θn) = f[p̃0](θ̂n)

√
ρ(θ̂n)2 + ρ′(θ̂n)2

∂θ̂n
∂θn

(θn),

simplifying into
f[p̃0](θn) = f[p̃0](θ̂n), (3.16)

by using that
∂θ̂n
∂θn

(θn) =

√
ρ(θn)2 + ρ′(θn)2√
ρ(θ̂n)2 + ρ′(θ̂n)2

, (3.17)

according to the combination of (2.16) with the implicit functions theorem. Furthermore,
assuming that ρ is a C2 function, the necessary second order optimality conditions write

∂2J

∂θ2
n

(θ1, . . . , θN0) 6 0,
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which comes to

− ρ′(θn) (ρ(θn) + ρ′′(θn))√
ρ(θn)2 + ρ′(θn)2

f[p̃0](θn)− f ′[p̃0](θn)
√
ρ(θn)2 + ρ′(θn)2

+
∂θ̂n
∂θn

(θn)f ′[p̃0](θ̂n)
√
ρ(θn)2 + ρ′(θn)2 +

ρ′(θn) (ρ(θn) + ρ′′(θn))√
ρ(θn)2 + ρ′(θn)2

f[p̃0](θ̂n) 6 0 (3.18)

Combining this inequality with both the optimality condition (3.16) and the relation (3.17)
yield the desired result.

4 Numerical simulations

We are now interested in the numerical resolution of the problems according to the strategy
provided by (2.11)-(2.13). However, as explained above, we will make some simplifications
of the model for its numerical implementation.

We assume here that the sound speed c(·) is constant equal to 1. Since the aim is
to validate the methodology introduced in the section 2.2, this simplification allows us to
calculate in a simple way the solution of the Fourier space wave equation and thus obtain
a high resolution in time and space.

Minimizing J0 functional (Problem (2.11)) is carried out using a gradient splitting
descent. More precisely, we alternate explicit processing of A1(1Σ, p0) via a time reversal
imaging method [5, 13, 21, 22], with implicit processing of the term TV using the algorithm
introduced by A. Chambolle in [14]. In addition, in practice, we also apply the FISTA
strategy [10] to accelerate convergence.

With regard to determining the best position for the sensors Γ∗, we calculate the energy
function ψ[p0] defined for all s ∈ ∂Ω by

ψ[p0](s) =

∫ T

0
∂tp[p0](t, s)

2dt.

• For Problem (2.13) (continuous setting): We apply Theorem 3.3, which shows
that Γ∗ should have the form

Γ∗λ = {s ∈ ∂Ω | ψ[p0](s) > λ}.

It is also a simplification since ψ[p0] is only observed on ∂Ω and the optimal constant
λ is determined by using a dichotomy approach, looking for λ so that the constraint
Hd−1(Γ∗λ) = LHd−1(∂Ω)is satisfied.
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• For Problem (2.21) (discrete setting, with a maximum number of connected
components): although Theorem 3.4 provides a partial characterization of the solution,
we have observed numerically the existence of many local optima. For this reason, we have
chosen to set up a genetic algorithm procedure. Precisely, we solve Problem (3.12) by using
the Matlab c© function ga designed to solve a finite dimensional optimization problem with
a genetic algorithm. In practice, it is not worth taking into account the constraint (3.15)
since it is naturally satisfied to the optimum.

We recall several standard results about time reversal Imaging in Section (4.1). In
addition, in section (4.2), we show how the gradient of the functional A1(1Σ, p0) can be
calculated using a generalized time reversal imaging technique. We also present a classical
discretization of the wave equation (4.3) and its integration into Fourier space. Finally,
we show some numerical illustrations of our approach in section 4.4, which highlights the
improved reconstruction of the source p0 when optimizing the position of the sensors.

4.1 Time reversal imaging

Recall that p[p0] denotes the solution of Problem (2.1) for the initial datum p0. If the given
data pobs are complete on the boundary of Ω i.e

pobs(t, y) = p[p0](t, y) for all (t, y) ∈ [0, T ]× ∂Ω,

then, the reconstruction of the initial source p0 from data g = pobs can be done following
time reversal imaging method, by using that

p0(·) ' I[pobs](·) = w(T, ·),

where w is defined as the solution of the (backward) wave equation
∂ttw(t, x)−∆w(t, x) = 0, (t, x) ∈ [0, T ]× Ω,

w(0, x) = ∂tw(0, x) = 0, x ∈ Ω,

w(t, y) = pobs(y, T − t), t ∈ [0, T ].

More precisely, T is required to be sufficiently large to satisfy u(T, ·) ' 0 and ∂tu(T, ·) ' 0
on Ω [21]. However, as explained in [5], the discretization of this imaging functional
requires data interpolation on the boundary of Ω: this introduces smoothing effects on
the reconstructed image (identical to the use of the penalization term R(p0) in Problem
(2.8)). In practice, it is more efficient to use an approximation version reading

I[pobs](x) =

∫ T

0
vs(T, x)ds,

where vs solves the wave equation{
∂2
ttvs(t, x)−∆vs(t, x) = ∂t

(
δ{t=s}g(x, T − s)

)
δ∂Ω, (t, x) ∈ IR× IRd

vs(t, x) = 0, ∂tvs(t, x) = 0, x ∈ IRd, t < s.
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Here, δ{t=s} denotes the time Dirac distribution at time t = s and δ∂Ω is the surface Dirac
measure on the manifold ∂Ω.

In particular, by using the so-called Helmholtz-Kirchhoff identity, it is proved in [3]
that when Ω is close to a sphere with large radius in IRd, there holds

p0(x) ' I[pobs](x).

Another advantage of the modified time reversal imaging technique is its variational
character. Indeed, recall that p[p0] can be expressed as

p[p0](·) = ∂tG(t, ·) ∗ p0,

where ∗ is the convolution product in space, G the temporal Green function obtained as
the inverse Fourier transform of Gω

G(t, ·) = F−1
t [Gω(·)](t),

where Gω denotes the outgoing fundamental solution to the Helmholtz operator −(∆+ω2)
in IRd, that is the distributional solution of the equation

(∆ + ω2)Gω(x) = −δ{x=0} x ∈ IRd

subject to the outgoing Sommerfeld radiation equation

lim
|x|→∞

|x| d−1
2

(
∂

∂|x| − iω
)
u(x) = 0.

The discrepancy functional A1 defined by (2.9) can then be recast as

A1(1Σ, p0) =
1

2

∫ T

0

∫
B
1Σ(y)((∂tG(t, .) ∗ p0(.))(y)− pobs(t, y))2dy dt.

Its Gâteaux-derivative with respect to the variable p0, say

〈dA1(1Σ, p0), h〉 = lim
τ↘0

A1(1Σ, p0 + τh)−A1(1Σ, p0)

τ
,

writes

〈dA1(1Σ, p0), h〉 =

∫
Ω
∇A1(1Σ, p0)(x)h(x) dx,

where ∇A1(1Σ, p0) is the gradient with respect to p0, identified to

∇A1(1Σ, p0) =

∫ T

0
∂tG(t, .) ∗

[
(p[p0](t, ·)− pobs(t, ·))1Σ(·)

]
dt

or

∇A1(1Σ, p0) =

∫ T

0
vs(T, ·) ds, (4.1)
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where vs solves{
∂2
ttvs(t, x)−∆vs(t, x) = ∂t

(
δ{t=s}

[
p[p0](T − s, ·)− pobs(T − s, ·)

])
1Σ(·),

vs(t, x) = 0, ∂tvs(t, x) = 0, x ∈ IRd, t < s.

This claim follows from an straightforward adaptation of the proof of Theorem 3.2. In
particular, the gradient ∇A1(1Σ, p0) corresponds to the modified time reversal imaging
associated to the data p[p0]−pobs, where the Dirac mass δ∂Ω is replaced by the characteristic
function 1Σ and

∇A1(1Σ, p0) = I[p[p0] − pobs].

4.2 Solving Problem (2.11)

In this section, we focus on numerical algorithms to solve Problem (2.11). Because of the
smoothing effects mentioned in Section 4.1, it is not worth to add a H1-penalization term
from a practical point of view. This is why we eventually consider that

J0(1Σ, p0) = A1(1Σ, p0) + γTV (p0).

A first idea is to use a gradient-iterative scheme with an implicit treatment of the TV
norm, combined with an explicit treatment of A1(1Σ, p0). In this context, the simplest
iterative scheme is the forward-backward algorithm, reading

pn+1
0 = (I + ηγ∂TV )−1(pn0 − η∇A1(1Σ, p

n
0 )), n > 0,

where p0 = 0 and η is a given (small positive) descent step. The TV proximal operator
proxηTV [u] is defined by

proxηTV [u] = (I + η∂TV )−1(u) = argmin
v∈L2(B)

{
1

2η
‖u− v‖2L2(B) + TV (v)

}
.

is computed by using the dual approach introduced by Chambolle in [14].

Finally, the gradient ∇A1(1Σ, p0) is computed via a time reversal imaging approach.
Indeed, ∇A1(1Σ, p0) given by (4.1) can also be expressed (using the superposition princi-
ple) as ∇A1(1Σ, p0) = vs(T, ·), with{

∂2
ttvs −∆vs = F, (t, x) ∈ IR+ × IRd,

vs(0, x) = 0 = ∂tvs(0, x) = 0, x ∈ IRd,

where the right hand-side term is the measure

F = ∂t
(
δ{t=s}

[
p[p0](T − s, ·)− pobs(T − s, ·)

])
1Σ.
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4.3 Time reversal Imaging, wave equation and discretization

Recall that the direct problem and the time reversal imaging approach only require to
solve a Cauchy wave equation on the form{

∂2
ttvs(t, x)−∆vs(t, x) = F (t, x), (t, x) ∈ IR+ × IRd,

vs(0, x) = H1(x), ∂tvs(0, x) = H2(x), x ∈ IRd,

Comments on numerics. With regard to numerical discretization, all wave-like equa-
tions are solved in in the box B = [−D/2, D/2]2 with periodic boundary conditions, where
D is supposed to be large enough to prevent any reflection on the boundary. The numerical
integrations of each equation are then performed exactly in Fourier space.

We recall that the Fourier truncation of a two-dimensional function u to the M first
modes, in a box B = [−D/2, D/2]2 is given by

uM (t, x) =

[M/2]∑
n1,n2=−[M/2]

cn(t)e2iπξn·x

where n = (n1, n2), ξn = (n1/D, n2/D) and [·] stands for the integer part function.
Here, the coefficients cn stand for the (2[M/2])2 first discrete Fourier coefficients of u.
In addition, we use the inverse fast Fourier transform (denoted IFFT ) to compute the
inverse discrete Fourier transform of cn. This leads to uMn = IFFT [cn] where uMn is the
value of u at the points xn = (n1h, n2h) where h = D/M .
Conversely, cn can be computed by applying the discrete Fourier transform to uMn :

cn = FFT [uMn ].

Now, about computation of wave equation solutions, remark that a generic wave equa-
tion

∂2
ttu

M (t, x)−∆uM (t, x) = FM (t, x) =

M∑
n1,n2=−M/2

fn(t)e2iπξn·x

reads

∂t

(
uM

uMt

)
=

(
0 Id
∆ 0

)(
uM

uMt

)
+

(
0
FM

)
which can by simply integrated by solving the linear EDO system

d

dt

(
cn(t)
c′n(t)

)
=

(
0 1

−4π2|ξn|2 0

)(
cn(t)
c′n(t)

)
+

(
0

fn(t)

)
.
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4.4 Numerical experiments

All the numerical simulations of this section are done with the following set of parameters:

• the set Ω is a two-dimensional ball of radius 1

• the box B = [−D/2, D/2]d has size D = 4 and the record time is T = 2;

• the set K is a two-dimensional ball of radius 0.85

• we use a regular time step discretization dt = T/210 and dx = D/29.

• the thickness parameter ε is equal to 0.03.

• the TV -parameter γ = 0.01.

• the descent step η = 0.5.

To avoid inverse crime [15, 32], we also use two different grids to compute the solution of
the direct and inverse problem: the direct data g are then computed on a grid two times
smaller, namely dx = D/210.

On Figure 4.1, we provide a first experiment using ideal complete data g = pobs on the
whole boundary ∂Ω as well as the time reversal imaging I(g) for three different values of
the pressure p0. It is observed that in each case, the reconstructed source and the exact
source are very close.
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Figure 4.1: Source reconstruction using time reversal imaging I. Each line corresponds
to a different choice of the source p0. Left: initial source p0; middle: data g = pobs; right:
I[g]. The white dots corresponds to sensors positions.

On Figure 4.2, we give the result of the reconstruction procedure described in section
2.2 using partial data g = pobs with L = 0.3. To test its effectiveness, we also added 5% of
noise on the data g. The position of sensors is plotted with white marks on each picture.
Each line corresponds to a different choice of the source p0: we have plotted the source p0,
the result of the reconstruction using the time reversal imaging p0

0 and the reconstruction
of the source pn0 after n = 30 iterations. In particular, we observed that some information
on p0 are lost and in particular the discontinuities with normal directions that do not meet
any sensor.
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Figure 4.2: Minimization of J0 w.r.t. (1Σ, p0). Each line corresponds to a different choice
of the source p0. Left: initial source p0; middle: reconstruction using time reversal imaging-
I[g]; right: reconstructed source pn0 after n = 30 iterations. The white dots correspond to
sensors positions.

Next, on Figure 4.3, we present the reconstruction of the source p0 if one allows the
sensors position to evolve. As previously, each line corresponds to a different choice of the
source p0. Moreover, on each line, we respectively plotted

• the reconstructed source pn0 after n = 30 iterations,

• the energy function ψu[pn0 ] computed on Ω and the associated optimal position of
sensors plotted with red marks.
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• the reconstructed source pn0 after n = 15 iterations after using the new position of
sensors.
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Figure 4.3: Optimization of sensors position. Each line corresponds to a different choice
of the source p0; Left: reconstructed source pn0 after n = 30 iterations by using initial
positions of the sensors; middle: function ψpn0 defined by (3.9) on Ω and new position of
sensors (red dots); right: reconstructed source pn0 after n = 20 iterations by using the new
position of sensors.

Finally, as expected, the reconstruction of the source is much better by using the new
position of sensors even if, the reconstruction remains unperfect.
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We present now an illustration of the influence of the initial location of the sensors
on our procedure. On Fig. 4.4, we present several numerical experiments where each line
corresponds to a different value of the initial location. As with previous simulations, we
observe that the reconstruction of the source is much better by using the new position of
the sensors. As for choosing a good initial position, it is not an easy task, especially since
we do not have any a priori information on the source.
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Figure 4.4: Optimization of sensors position : influence of the initial position of sensors.
Each line corresponds to a different choice of the initial location of the sensors ; Left:
reconstructed source pn0 after n = 30 iterations by using initial positions of the sensors;
middle: function ψpn0 defined by (3.9) on Ω and new position of sensors (red dots); right:
reconstructed source pn0 after n = 20 iterations by using the new position of sensors.

Let us illustrate the interest of using the term A2 as a good reconstruction quality
factor. On Figures 4.5 and 4.6, we first compute the optimal position of sensors, respec-
tively in the continuous and discrete1 settings, using the true value of the source term p0.
Second, using the new sensors position, we provide an estimate of the source p0 by solving
Problem (2.11). In each case, we observe that the source reconstruction is almost perfect.

1Meaning that we consider a given number of sensors.
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Figure 4.5: Optimization of sensors position. Each line corresponds to a different choice
of the source p0. Left: function ψ[p0](x) defined by (3.9) on Ω and the best position of
sensors (green dots); middle: reconstruction by using the time reversal imaging I[g]; right:
reconstructed source pn0 after n = 30 iterations by using the resulting optimal position of
sensors.

26



50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 4.6: Optimization of sensors position with only 38 sensors. Each line corresponds
to a different choice of the source p0. Left: function ψ[p0](x) defined by (3.9) on Ω and the
best position of sensors (green dots); middle: reconstruction by using the time reversal
imaging I[g]; right: reconstructed source pn0 after n = 30 iterations by using the resulting
optimal position of sensors.

5 Conclusion

This article is a first attempt to efficiently locate sensors in the highly sensitive context of
thermo-acoustic tomography. While the first numerical results appear promising, we plan
to investigate this issue further by examining the following elements
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• other modeling choices. In particular, are there better choices of functional A2 as
quality factors for reconstruction (e.g. other observers)?

• how to choose more appropriately the term regularization in the optimization prob-
lem and study the sensitivity of the solution to this term?

• will the iterative scheme of successively estimating the source p0 and then a new
position of the sensors converge? In this case, can the limit be identified?

• can we analyze the relationships between the reconstruction parameters and the
number of sensors used for the experiment?

• how to improve the optimization procedure, especially when it comes to a finite
number of sensors for which we use an efficient but expensive genetic algorithm?

• could the reconstruction be improved if one is able to rotate the sensors freely around
the target? Indeed, a first refinement of the method introduced in the present article
could read as follows: fix N sensors. Compute the best location. Perform k − 1
rotations to get kN measurements and go to next step to find the new best location
with kN sensors. However, this issue needs to be more thorough and thoughtful,
taking into account its practical implementation and possibly proposing a dedicated
reconstruction algorithm.

More generally, we also plan to collaborate with physics researchers to conduct exper-
iments and test our approach and method on real medical imaging data. We believe that
the techniques developed in this article can be adapted to many other situations. Never-
theless, it is likely that several additional constraints on the sensor set must be taken into
account, usually a restriction on the sensor position areas.
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[29] Y. Privat, E. Trélat, and E. Zuazua. Optimal shape and location of sensors for
parabolic equations with random initial data. Archive for Rational Mechanics and
Analysis, 216(3):921–981, 2015.
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