Iterative linear algebra methods are the important parts of the overall computing time of applications in various fields since decades. Recent research related to social networking, big data, machine learning and artificial intelligence has increased the necessity for non-hermitian solvers associated with much larger sparse matrices and graphs. The analysis of the iterative method behaviors for such problems is complex, and it is necessary to evaluate their convergence to solve extremely large non-Hermitian eigenvalue and linear problems on parallel and/or distributed machines. This convergence depends on the properties of spectra. Then, it is necessary to generate large matrices with known spectra to benchmark the methods. These matrices should be non-Hermitian and nontrivial, with very high dimension. A scalable parallel matrix generator SMG2S that uses the user-defined spectrum to construct large-scale sparse matrices and ensures their eigenvalues as the given ones with high accuracy is implemented based on MPI and C++11. This report gives the manual of SMG2S.

Chapter 1 Introduction 1.1 Getting Started SMG2S (Scalable Matrix Generator with Given Spectrum) [START_REF] Galicher | Generate very large sparse matrices starting from a given spectrum[END_REF][START_REF] Wu | A parallel generator of non-hermitian matrices computed from given spectra[END_REF] is a software which provides for generating the non-Hermitian Matrices with user-customized eigenvalues. SMG2S is implemented in parallel based on MPI (Message Passing Interface) and C++11 to support efficiently the generation of test matrices in parallel on distributed memory platforms.

Iterative linear algebra methods are essential for the applications in various fields. The analysis of the iterative method behaviors is complex, and it is necessary to evaluate their convergence to solve extremely large non-Hermitian eigenvalue and linear problems on parallel and/or distributed machines. This convergence depends on the properties of spectra. Thus, we propose SMG2S to generate large matrices with known spectra to benchmark these methods. The generated matrices are non-Hermitian and non-trivial, with very high dimension.

The functionality proposed inside SMG2S can verify the ability of SMG2S to keep the accuracy of a given spectrum. This function is based on the shift inverse power method. SMG2S also gives a graphic user interface to compare the given and final spectral distribution for the verification.

We will describe the following subset of the SMG2S.

• Parallel Vector and Matrix: this part presents the functions implemented in SMG2S to establish parallel vector and matrix over distributed memory platforms.

• Nilpotent Matrix Object: this part presents a special nilpotent matrix object for the matrix generation procedure in SMG2S.

• Generating Matrix with prescribed eigenvalues: this part gives the way to use SMG2S to generate required test matrices.

• Interface to Other Languages/Libraries: this part introduces the interface of SMG2S to other languages and existing scientific computational libraries such as PETSc and Trilinos.

• Verification of Eigenvalues of Generated Matrix: this part gives the way to verify the accuracy of eigenvalues of generated matrices comparing with given spectrum. A graphic user interface is also provided to facilitate the comparison.

Installation

To obtain SMG2S, please follow the instructions at the SMG2S download page: https://smg2s.github.io/download.html. Prerequisites:

• C++ Compiler with c++11 support;

• Cmake (version minimum 3.6);

• (Optional) PETSc and SLPEc are necessary for the verification of the ability to keep the given spectrum.

In the main directory:

Programming Language in SMG2S

SMG2S is a collection of templated header files written in C++. The wrappers to C and Python codes are provided. The users of PETSc or Trilinos can directly use SMG2S with the interfaces implemented inside.

Referencing SMG2S

Place cite these papers if you want to reference SMG2S. The distributed vector inside SMG2S is implemented using the C++ programming language and MPI. The parallel vector implementation is composed of two main classes: parV ectorM ap and parV ector. parV ectorM ap class is a vector index map which controls the partitioning and distribution over the processes, and parV ector is the parallel vector itself, which contains the actual distributed data and the corresponding functions controlling the data.

Vector Map

The distribution of a set of integer labels (or elements) across the processes is here called a parV ectorM ap. In SMG2S, it is implemented with the help of std :: map, which maps the proc number and related integers. Basically, parV ectorM ap handles the definition of global and local indices for the mapping across the processes. Here we give some methods of parV ectorM ap < S >: S G e t G l o b a l S i z e () ; // Get t o t a l i n t e r g e r number f o r a l l p r o c s .

Creating a Distributed Vector

A parallel vector parV ector across the processes can be created with the help of parV ectorM ap. The entries of parV ector are distributed over different processes referring to the parV ectorM ap. parV ector < T, S > is implemented with the C++ template, with T the data type of entry, and S the data type of index. This is the constructor of parV ector, with M P I Comm ncomm the working MPI communicator, Slbound and Subound respectively the lower and upper bound of vector global indices on each proc. S G e t G l o b a l S i z e () ; // Get t o t a l i n t e r g e r number f o r a l l p r o c s ;

T * GetArray () ; // Get t h e a r r a y c o n t a i n g t h e e n t r i e s on each pro c ;

void S e t V a l u e L o c a l (S row , T v a l u e) ; // i n s e r t v a l u e i n t h e l o c a l i n d e x named row ;

void S e t V a l u e s L o c a l (S nindex , S * rows , T * v a l u e s) ; // i n s e r t a r r a y i n t h e l o c a l i n d i c e s named rows ;

void SetValueGocal (S row , T v a l u e) ; // i n s e r t v a l u e i n t h e g o c a l i n d e x named row ;

void S e t V a l u e s G o c a l (S nindex , S * rows , T * v a l u e s) ; // i n s e r t a r r a y i n t h e g o c a l i n d i c e s named rows ;

void SetTovalue (T v a l u e) ; // S e t t h e e n t r i e s o f p a r V e c t o r a l l t o same g i v e n v a l u e ; void MA(N i l p o t e n c y <S> n i l p , p a r M a t r i x S p a r s e <T, S> * prod) ; // m a t r i x m u l t i p l e a s p e c i a l n i l p o t e n t m a t r i x ;

void AM(N i l p o t e n c y <S> n i l p , p a r M a t r i x S p a r s e <T, S> * prod) ; // s p e c i a l n i l p o t e n t m a t r i x m u l t i p l e a n o t h e r m a t r i x ;

Creating a Distributed Matrix

The is an example of creating a distributed matrix with the mapping of parallel vector:

/

Introduction

The nilpotent matrix is very important for the generation of test matrices with given spectrum. Il can be defined by several parameters, the explicit implementation is not necessary. The three parameters defined a nilpotent matrix is listed as:

• dIagPostion: the distance of the off-diagonal to the diagonal, refering to p in Fig. 3.1;

• length: the continuous one on the off-diagonal of nilpotent matrix, refering to d in Fig. 3.1;

• probSize: the number of row/column of nilpotent matrix, refering to n in Fig. 3.1. 14

Different Types of Nilpotent Matrix

The different nilpotent matrix will influence the sparsity pattern of the final generated matrix.

• NilpType1: diagPostion = 2

• NilpType2: diagPostion = 3

• NilpType3: diagPostion > 3 3.3

Parameter Validation for Nilpotent Matrix

• NilpType1: parameter length can be any integer value > 0;

• NilpType2: parameter length sould be even;

• NilpType3: validation of parameter length is complex. length should be divisible by p.

Chapter 4

Generating Matrix with SMG2S

SMG2S Class

The header file ./smg2s/smg2s.h implement the matrix generation method. It is defined as:

template<typename T, typename S> p a r M a t r i x S p a r s e <T, S> * smg2s (S p r o b S i z e , N i l p o t e n c y <S> n i l p , S lbandwidth , s t d : : s t r i n g spectrum , MPI Comm comm)

Inside the definition, typename T is to define the size of matrix, and typename S is to define the scalar types of entries of matrix. We give the meaning of the input parameter as below:

• S ProbSize: the size of matrix to generate;

• Nilpotency<S> nilp: the nilpotent matirx object for generation;

• S lbandwidth: the bandwidth of lower-diagonal band of initial matrix;

• std::string spectrum: the file path of spectra file;

• MPI Comm comm: the working MPI communicator.

Generation Workflow

Customize the Low Band of Initial Matrix

We know that the low band bandwidth of initial matrix can be set by the parameter lbandwidth of smg2s. Additionaly, the distribution of entries of initial matrix can also be customized by the function matInit provided by the file ./verification/tests/specGen.h. En default, these entries are filled in random. The different mechanism to fill them will influence the sparsity of final generated sparse matrix. template<typename T, typename S> void m a t I n i t (p a r M a t r i x S p a r s e <T, S> * Am, p a r M a t r i x S p a r s e <T, S> * matAop , S p r o b S i z e , S lbandwidth)

In this function, distributed matrix Am and matAop should be filled with the same way. And these entries of matrix can be filled by the method Loc SetValue implemented in parMatrixSparse. Loc SetValue uses the global indices of matrix to set values.

Chapter 5

Interface to Other Languages/Libraries

Until now, SMG2S provides interfaces to C, Python, PETSc and Trilinos.

Interface to C

SMG2S install command will generate a shared library libsmg2s.so (libsmg2s2c.dylib on OS X platform) into ${INSTALL DIRECTORY}/lib. It can be used to profit the C wrapper of SMG2S.

The way to use: smg2sRealDoubleInt (m, 1 0 , n , 3 , " " ,MPI COMM WORLD) ; 6. Release Nilpotency Object and parMatrixSparse Object : R e l e a s e N i l p o t e n c y I n t (&n) ; R e l e a s e P a r M a t r i x S p a r s e R e a l D o u b l e I n t (&m) ; 19 SMG2S provides the C interface to different data types. For the data type of matrix size, it can be either int or longint; for the data type of matrix entries, it can be either complex or real with single or double precision.

The Nilpotent Matrix object is implemented for both int and longint as below:

struct N i l p o t e n c y I n t ; struct N i l p o t e n c y L o n g I n t ;

The interface of C for parMatrixSparse Object and smg2s function can be defined as below, SUFFIX can be replaced by one of the selected data types:

• ComplexDoubleLongInt; • ComplexDoubleInt; • ComplexSingleLongInt; • ComplexSingleInt; • RealDoubleLongInt; • RealDoubleInt; • RealSingleLongInt; • RealSignleInt. // l

Create Your Inferface

On each process, the submatrix is stored by the std::map<T,S> provided by C++, which can be gotten through the function GetDynM atLoc implemented in the sparse matrix implementation. The column index and related entry value can be gotten by the C++ iterator. Verification of Eigenvalues SMG2S provides the functionality to verify the abilibity to keep given spectrum. In the directory of ./verification/. The implementation of the functionality is powerInverse.cpp.

Prerequisites

The verification method is implemented based on the shifted inverse method proposed by PETSc/SLEPc. Before the starting of verification, it is necessary to have the two on the platforms.

If not, the download and installation of PETSc can be found: LENGTH=$ (awk 'NR==2{ p r i n t $1 } ' v e c t o r . t x t) echo " Test E i g e n v a l u e s number = " ${LENGTH} f o r ((i =3; i<=$ {LENGTH}+2; i ++)) do r e a l=$ (awk 'NR=='$ i ' { p r i n t $2 } ' v e c t o r . t x t) imag=$ (awk 'NR=='$ i ' { p r i n t $3 } ' v e c t o r . t x t) s r u n -n 1 $ {EXEC} -n $ {N} -l $ {L} -e p s m o n i t o r c o n v \ -e p s p o w e r s h i f t t y p e c o n s t a n t -s t t y p e s i n v e r t \ -e x a c t v a l u e ${ r e a l }+$ { imag } i -t e s t t o l $ {TEST TOL} \ -d e g r e e $ {DEGREE} done Here we list the meaning of the critical parameters in the script above:

• N: the size of matrix to generate, which should be equal to the number of given eigenvalues;

• L: the bandwidth of low part diagonal of matrix to generate;

• TEST TOL: the tolerance to check if the accuracy of one eigenvalue can be accepted or not;

• DEGREE: the continuous one for the nilpotency matrix.

Script for result cleaning

The result file generated during the verification can be cleaned into the pseudo-Matrix Market Vector by the script below:

#! / b i n / b a s h g r e p "@> The e i g e n v a l u e " $1 > tmp . t x t awk ' { p r i n t $5 " " $7 } ' tmp . t x t > tmp2 . t x t awk ' { p r i n t s u b s t r ($0 , 1 , l e n g t h ($0) -1)} ' tmp2 . . / t r a i t e m e n t . sh r e s u l t s . t x t r e s u l t s c l e a n . t x t

In this command, the 1st and 2nd arguments for the execution are separately the initial results file and the final cleaned and formatted file.

 cmake . -DCMAKE INSTALL PREFIX=${INSTALL DIRECTORY} The main.cpp will generate an exectutable smg2s.exe to demonstrate a minimum sample : make The main part of SMG2S is a collection of header files. Install the header files into ${INSTALL DIRECTORY} make i n s t a l l For testing the software in your platforms: make t e s t The output of the test should be like: Running t e s t s . . . Test p r o j e c t / User /name/SMG2S S t a r t 1 : T e s t S i z e 1 0 0 0 0 w p r o c 1 1/4 Test #1: T e s t S i z e 1 0 0 0 0 w p r o c 1 . . Passed 1 . 2 0 s e c S t a r t 2 : T e s t S i z e 2 0 0 0 0 w p r o c 2 2/4 Test #2: T e s t S i z e 2 0 0 0 0 w p r o c 2 . . Passed 1 . 2 2 s e c S t a r t 3 : T e s t S i z e 1 0 0 0 0 s p r o c 1 3/4 Test #3: T e s t S i z e 1 0 0 0 0 s p r o c 1 . . Passed 1 . 2 0 s e c S t a r t 4 : T e s t S i z e 1 0 0 0 0 s p r o c 2 4/4 Test #4: T e s t S i z e 1 0 0 0 0 s p r o c 2 . . Passed 0 . 6 6 s e c 100% t e s t s passed , 0 t e s t s f a i l e d out o f 4 T o t a l Test time (r e a l) = 4 . 2 9 s e c

S

 Loc2Glob (S l o c a l i n d e x) ; // c o n v e r t l o c a l i n d e x t o g l o b a l i n d e x ; S Glob2Loc (S g l o b a l i n d e x) ; // c o n v e r t l o c a l i n d e x t o g l o b a l i n d e x ; int GetRank () ; // Get pro c i n d e x ; S GetLowerBound () ; // Get l o w e r bound i n d e x f o r each proc ; S GetUpperBound () ; // Get upper bound i n d e x f o r each pro c ; S G e t L o c a l S i z e () ; 9 // Get i n d e x number f o r each pr oc ;

/

 * c o n s t r u c t o r * / p a r V e c t o r (MPI Comm ncomm , S lbound , S ubound) ; Here we give some methods of parV ector: parVectorMap<S> * GetVecMap () ; // r e t u r n t h e r e l a t e d parVectorMap o f p a r V e c t o r ; S Loc2Glob (S l o c a l i n d e x) ; // c o n v e r t l o c a l i n d e x t o g l o b a l i n d e x ; S Glob2Loc (S g l o b a l i n d e x) ; // c o n v e r t l o c a l i n d e x t o g l o b a l i n d e x ; int GetRank () ; // Get pro c i n d e x ; S GetLowerBound () ; // Get l o w e r bound i n d e x f o r each proc ; S GetUpperBound () ; // Get upper bound i n d e x f o r each pro c ; S G e t L o c a l S i z e () ; // Get i n d e x number f o r each pr oc ;

void

 VecAdd (p a r V e c t o r * v) ; //Add a n o t h e r v e c t o r v w i t h same mapping ; void V e c S c a l e (T s c a l e) ; // S c a l i n g t h e v e c t o r ; T VecDot (p a r V e c t o r * v) ; // v e c t o r d o t p r o d u c t o p e r a t i o n ; void ReadExtVec (s t d : : s t r i n g spectrum) ; // read v e c t o r from l o c a l f i l e ; void VecView () ; // d i s p l a y t h e v e c t o r ; void specGen (s t d : : s t r i n g spectrum) ; // Generate / l o a l a s p e c i a l v e c t o r c o n t a i n i n g g i v e n spectrum Here we give an example to generate a parV ector by SMG2S: int w o r l d s i z e ; int w o r l d r a n k ; int span , l o w e r b , upper b ; MPI Comm size (comm, &w o r l d s i z e) ; MPI Comm rank (comm, &w o r l d r a n k) ; span = int (c e i l (double (p r o b S i z e) / double (w o r l d s i z e))) ; i f (w o r l d r a n k == w o r l d s i z e -1) { l o w e r b = w o r l d r a n k * span ; upper b = p r o b S i z e -1 + 1 ; } e l s e { l o w e r b = w o r l d r a n k * span ; upper b = (w o r l d r a n k + 1) * span -1 + 1 ; } parVector<T, S> * vec = new parVector<T, S>(\ comm, l o w e r b , upper b) ; vec->SetTovalue (T v a l) ;2.1.3 Parallel MatrixThe one-dimensional row-major parallel matrix parM atrixSparse in SMG2S is distributed with the same parV ectorM ap of a given parV ector. On each process, the columns indices and the entries values are stored by a std :: map < T, S > with S data type of indices and T data type of entries. This is the constructor of parM atrixSparse:/ * c o n s t r u c t o r * / p a r M a t r i x S p a r s e (parVector<T, S> * Vec , parVector<T, S> * Vec) ;Here we given some methods of the parM atrixSparse object: parVectorMap<S> * GetYMap () ; // r e t u r n t h e m a t r i x mapping o f t h e columns ;MPI Comm GetComm () ; // Get c u r r e n t w o r k i n g MPI communicator ; s t d : : map<S , T> * GetDynMatLoc () ; // Get t h e map s t o r i n g c o l s and e n t r i e s on each pr oc ; void LOC MatView () ; // d i s p l a y t h e p a r a l l e l m a t r i x void L o c S e t V a l u e L o c a l (S row , S c o l , T v a l u e) ; // i n s e r t v a l u e i n t h e l o c a l i n d e x row ; void L o c S e t V a l u e s L o c a l (S nindex , S * rows , S * c o l s , \ T * v a l u e s) ; // i n s e r t a r r a y i n t h e l o c a l i n d e x rows ; void SetValueGocal (S row , T v a l u e) ; // i n s e r t v a l u e i n t h e g o c a l i n d e x named row ; void S e t V a l u e s G o c a l (S nindex , S * rows , T * v a l u e s) ; // i n s e r t a r r a y i n t h e g o c a l i n d i c e s named rows ; void L o c S e t V a l u e (S row , S c o l , T v a l u e) ; // S e t t h e e n t r i y (row , c o l) o f p a r M a t r i x w i t h v a l u e ; void L o c S e t D i a g o n a l (parVector<T, S> * d i a g) ; // s e t t h e d i a g o n a l o f m a t r i x t o a g i v e n v e c t o r ; void Loc MatScale (T s c a l e) ; // S c a l i n g t h e m a t r i x ; void Loc MatAXPY (p a r M a t r i x S p a r s e <T, S> * X, T s c a l e) ; //AXPY o p e r a t i o n ; void Loc MatAYPX (p a r M a t r i x S p a r s e <T, S> * X, T s c a l e) ; //AYPX o p e r a t i o n ; void L o c Z e r o E n t r i e s () ; // Zeros a l l e n t r i e s and k e e p t h e p r e v i o u s m a t r i x p a t t e r n ;

 * l o w e r b and u p p e r b o f each proc i s g i v e n * / parVector<T, S> * vec = new parVector<T, S>(\ comm, l o w e r b , upper b) ;p a r M a t r i x S p a r s e <T, S> * A=new p a r M a t r i x S p a r s e <T, S>(vec , vec) ;

Figure 3 . 1 :

 31 Figure 3.1: Nilpotent Matrix

1 .

 1 Include the head file #i n c l u d e <smg2s / smg2s . h> 16 template<typename T, typename S> void parVector<T, S > : : specGen (s t d : : s t r i n g spectrum) In this function, the eigenvalues are stored by the distributed vector text-colorblueparVector. And the filling of values on this parVector can be done by the method SetValueGlobal implemented in parVector, which takes the global indices to set values.

1 .

 1 Add this shared library to LD LIBRARY PATH: export LD LIBRARY PATH=${INSTALL DIRECTORY}/ l i b 2. Include the header file: #i n c l u d e < i n t e r f a c e /C/ c w r a p p e r . h> 3. create Nilpotency object : struct N i l p o t e n c y I n t * n ; n = n e w N i l p o t e n c y I n t () ; NilpType1 (n , 2 , 1 0) ; 4. After that, you need to create the parallel Sparse Matrix Object Mt like this : struct p a r M a t r i x S p a r s e R e a l D o u b l e I n t * m; m = newParMatrixSparseRealDoubleInt () ; 5. Generate by SMG2S :

 p a r M a t r i x S p a r s e <S , T > * M T c o l ; S v a l ; / * On each p r o c e s s * / parVectorMap<T> * pmap = M->GetYMap () ; / * Get row number on each pro c * / T l s i z e = pmap->G e t L o c a l S i z e () ; s t d : : map<T, S> * d y n l o c ; s t d : : map<T, S > : : i t e r a t o r i t ; d y n l o c = M ->GetDynMatLoc () ; / * Get c o l i n d i c e s and v a l u e s * / f o r (T i = 0 ; i < l s i z e ; i ++){ f o r (i t = d y n l o c [i] . b e g i n () ; i t != d y n l o c [i] . end () ; ++i t) { c o l = i t -> f i r s t ; v a l = i t ->s e c o n d ; } } Chapter 6

 [PETSc Download] and [SLPEc Installation]. The download and installation of PETSc can be found: [SLEPc Download] and [SLEPc Installation].

6. 2

 2 Verifcation by Shifted Inverse Power Method 1. compile the file powerInverse.cpp by the command make This will generate an executable powerInverse.exe. 2. Suppose the given eigenvalues are stored in the file vector.txt by the pseudo-Matrix Matrix Vector format, run the verification script as below: #! / b i n / b a s h EXEC=./ p o w e r I n v e r s e . exe N=100 L=10 TEST TOL=0.00001 DEGREE=4

Figure 6 . 1 :

 61 Figure 6.1: Home Screen Capture

 SMG2S is an open source software published under the GNU Lesser General Public License v3.0. SMG2S can be redistributed and modified under the terms of this license.SMG2S is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SMG2S is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with SMG2S. If not, see ¡http://www.gnu.org/licenses/¿.

	1.3 CMake Options
	We use CMake to build, test and package SMG2S. If you do not have PETSc
	and SLEPc in your platform, please make sure the option below is OFF in
	CMakeLists.txt.
	o p t i o n (INSTALL TO USE " I n s t a l l SMG2S i n c l u d e f i l e s ? " OFF)
	1.4 Copyright and Licensing of SMG2S

 o n g i n t c a s e

	5.2 Interface to Python
	SMG2S uses SWIG to generate the wrapper of SMG2S to Python. Generate
	the shared library and install the python module of smg2s.
	#i n s t a l l o n l i n e from p y p i
	CC=mpicxx p i p i n s t a l l smg2s
	#b u l i d i n l o c a l
	cd . / i n t e r f a c e / python ;
	CC=mpicxx python s e t u p . py b u i l d e x t --i n p l a c e
	#or
	CC=mpicxx python s e t u p . py b u i l d
	#or
	CC=mpicxx python s e t u p . py i n s t a l l
	#run
	mpirun -np 2 python g e n e r a t e . py
	Before the utilization, make sure that mpi4py is installed.
	This is a little example of usage :
	struct parMatrixSparseSUFFIX ;
	/ * parVectorMap C wrapper * / from mpi4py import MPI
	import smg2s struct parVectorMapLongInt * newparVectorMapLongInt (void) ; import s y s
	/ * complex d o u b l e l o n g i n t * /
		s i z e = MPI .COMMWORLD. G e t s i z e ()
	struct parMatrixSparseComplexSUFFIX * newPar\ rank = MPI .COMMWORLD. Get rank () MatrixSparseSUFFIX (void) ; name = MPI . G e t p r o c e s s o r n a m e ()
	void ReleaseParMatrixSparseSUFFIX (struct \
	parMatrixSparseSUFFIX * * p p I n s t a n c e) ; s y s . s t d o u t . w r i t e (
	" H e l l o , World ! I am p r o c e s s %d o f %d on %s . \ n" void LOC MatViewSUFFIX (struct p a r M a t r i x \ SparseSUFFIX * m) ; % (rank , s i z e , name))
	void GetLocalSizeSUFFIX (struct p a r M a t r i x \ i f rank == 0 :
	SparseSUFFIX * m, print ('INFO]> S t a r t i n g . . . ') i n t 6 4 t * r s , i n t 6 4 t * c s) ;
	void Loc ConvertToCSRSUFFIX (struct p a r M a t r i x \ print ("INFO]> The MPI World S i z e i s %d" %s i z e)
	SparseComplexDoubleLongInt * m) ;
	#b a n d w i d t h f o r t h e l o w e r band o f i n i t i a l m a t r i x void Loc CSRGetRowsArraySizesSUFFIX (struct p a r M a t r i \ xSparseSUFFIX * m, i n t 6 4 t * s i z e , i n t 6 4 t * s i z e 2) ; lbandwidth = 3
	void Loc CSRGetRowsArraysSUFFIX (struct par \ #c r e a t e t h e n i l p o t e n t m a t r i x
	MatrixSparseSUFFIX * m, i n t 6 4 t s i z e 2 , i n t * * c o l s , double * * r e a l , double * * imag) ; i n t 6 4 t s i z e , i n t * * rows , \ n i l p = smg2s . N i l p o t e n c y I n t ()
	void smg2sSUFFIX (struct parMatrixSparseSUFFIX \ #s e t u p t h e n i l p o t e n t m a t r i x :
	* m,	i n t 6 4 t p r o b S i z e , struct N i l p o t e n c y L o n g I n t \ n i l p . NilpType1 (2 , 1 0)
	* n i l p ,	i n t 6 4 t lbandwidth , char * spectrum , MPI Comm comm) ;
	Mt = smg2s . p a r M a t r i x S p a r s e D o u b l e I n t ()
	#Generate Mt by SMG2S

#v e c t o r . t x t i s t h e f i l e t h a t s t o r e s t h e g i v e n \

Here, the probsize parameter represent the matrix size, nilp is the nilpotency matrix object that we have declared previously, lbandwidth is the bandwidth of lower-diagonal band. spectrum is the file path of spectra file, if spectrum is set as " ", SMG2S will use the mechanism inside to generate the spectral distribution. comm is the basic object used by MPI to determine which processes are involved in a communication.

The given spectra file is in pseudo-Matrix Market Vector format. For the complex eigenvalues, the given spectrum is stored in three columns, the first column is the coordinates, the second column is the real part of complex values, and the third column is the imaginary part of complex values. %%MatrixMarket matrix c o o r d i n a t e complex g e n e r a l 3 3 3 1 10 6 . 5 1 5 4 2 1 0 . 6 2 8 8 3 . 4 7 9 0 3 1 0 . 7 6 2 1 5 . 0 5 4 0 For the eigenvalues values, the given spectrum is stored in two columns, the first column is the coordinates, the second column is related values. %%MatrixMarket matrix c o o r d i n a t e complex g e n e r a l 3 3 1 10 2 1 0 . 6 2 8 8 3 1 0 . 7 6 2 1

Creation of Given Spectrum

In the directory ./verification/tests, we give an example to generate the file of given spectrum, which can be reused by the users to create their own values. This is a small C++ file named as vecgen.cpp.

If the users want to generate the eigenvalues in time without loading from local file, they can customize their eigenvalues generation by the function spec-Gen in the file ./verification/tests/specGen.h, and set the parameter spectrum of smg2s to be " ".

s p e c t r a l d i s t r i b u t i o n in l o c a l f i l e s y s t e m . Mt=smg2s . smg2sDoubleInt (1 0 , n i l p , lbandwidth , \ " v e c t o r . t x t " , MPI .COMMWORLD) Here are the example of Arnoldi, GMRES, and another Krylov method. You need to have Python2.X or Python3.X to run it. Moreover, UI uses some libraries to support a dynamic and intuitive graphical user interface, you can see the list of libraries. Normally, some of them are included in Python distribution. You can find below the list of necessary libraries of the UI.

Interface to PETSc

Interface to Trilinos/Teptra

• Modules which are bundled in the Python installation: Tkinter, re, sys, decimal ;

• Modules which need to be installed in addition to Python: NumPy & SciPy, Matplotlib, Pillow(PIL)

Install modules to Python 2.X: apt-g e t i n s t a l l python-tk python-imaging-tk p i p -m i n s t a l l P i l l o w python -mpip i n s t a l l -U p i p python -mpip i n s t a l l -U m a t p l o t l i b p i p i n s t a l l -U numpy s c i p y Install modules to Python 3.X: sudo apt-g e t i n s t a l l python3-tk python-imaging-tk p i p -m i n s t a l l P i l l o w python -mpip i n s t a l l -U p i p python -mpip i n s t a l l -U m a t p l o t l i b p i p i n s t a l l -U numpy s c i p y It will be generate with automatic lens scaling, but your can generate it with your own scales as Fig. 6.4.2:

How to use the GUI