\

SMG2S Manual v1.0
Xinzhe Wu

» To cite this version:

‘ Xinzhe Wu. SMG2S Manual v1.0. [Technical Report] Maison de la Simulation. 2018. hal-01874810

HAL Id: hal-01874810
https://hal.science/hal-01874810

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01874810
https://hal.archives-ouvertes.fr

SMG2S Manual

For SMG2S Release 1.0.1

Version 1.0

Xinzhe Wu

Maison de la Simulation, Gif-sur-Yvette, France

September 14, 2018

Copyright (©2018 smg2s.github.io ALL RIGHTS RESERVED. Report may
not be copied for commercial redistribution, republication, or dissemination
without the explicit permission.

Abstract

Iterative linear algebra methods are the important parts of the overall computing
time of applications in various fields since decades. Recent research related
to social networking, big data, machine learning and artificial intelligence has
increased the necessity for non-hermitian solvers associated with much larger
sparse matrices and graphs. The analysis of the iterative method behaviors for
such problems is complex, and it is necessary to evaluate their convergence to
solve extremely large non-Hermitian eigenvalue and linear problems on parallel
and/or distributed machines. This convergence depends on the properties of
spectra. Then, it is necessary to generate large matrices with known spectra
to benchmark the methods. These matrices should be non-Hermitian and non-
trivial, with very high dimension. A scalable parallel matrix generator SMG2S
that uses the user-defined spectrum to construct large-scale sparse matrices and
ensures their eigenvalues as the given ones with high accuracy is implemented
based on MPI and C++11. This report gives the manual of SMG2S.

Contents

Introduction

1.1 Getting Started Lo
1.2 Imstallation
1.3 CMake Options
1.4 Copyright and Licensing of SMG2S
1.5 Programming Language in SMG2S
1.6 Referencing SMG2S oL
1.7 Directory Structure o
1.8 List of SMG2S Contributors

Templated SMG2S Parallel Matrix and Vector

2.1 Parallel Vector o
2.1.1 Vector Map
2.1.2 Creating a Distributed Vector
2.1.3 Parallel Matrix L.
2.1.4 Creating a Distributed Matrix

Templated Nilpotent Matrix Object

3.1 Introduction
3.2 Different Types of Nilpotent Matrix
3.3 Creating a Nilpotent Matrix Object
3.4 Parameter Validation for Nilpotent Matrix

Generating Matrix with SMG2S

4.1 SMG2S Class v v i i e e e e e
4.2 Generation Workflow oL
4.3 Creation of Given Spectrum
4.4 Customize the Low Band of Initial Matrix

Interface to Other Languages/Libraries

5.1 Imterfaceto C
5.2 Interface to Python 0oL
5.3 Imterface to PETSc
5.4 Interface to Trilinos/Teptra
5.5 Create Your Inferface

[IENEEN BEN BEN PN IO NI E |

©o ©

Ne

10
12
13

14
14
15
15
15

16
16
16
17
18

6 Verification of Eigenvalues 24

6.1
6.2
6.3
6.4

Prerequisites Lo 24
Verifcation by Shifted Inverse Power Method 24
Script for result cleaning 25
Plot by Graphic User Interface 26
6.4.1 Prerequisites for GUL 26

6.4.2 Howtousethe GUI 26

Chapter 1

Introduction

1.1 Getting Started

SMG2S (Scalable Matrix Generator with Given Spectrum) [1, 2] is a software
which provides for generating the non-Hermitian Matrices with user-customized
eigenvalues. SMG2S is implemented in parallel based on MPI (Message Passing
Interface) and C++11 to support efficiently the generation of test matrices in
parallel on distributed memory platforms.

Iterative linear algebra methods are essential for the applications in various
fields. The analysis of the iterative method behaviors is complex, and it is
necessary to evaluate their convergence to solve extremely large non-Hermitian
eigenvalue and linear problems on parallel and/or distributed machines. This
convergence depends on the properties of spectra. Thus, we propose SMG2S to
generate large matrices with known spectra to benchmark these methods. The
generated matrices are non-Hermitian and non-trivial, with very high dimension.

The functionality proposed inside SMG2S can verify the ability of SMG2S
to keep the accuracy of a given spectrum. This function is based on the shift
inverse power method. SMG2S also gives a graphic user interface to compare
the given and final spectral distribution for the verification.

We will describe the following subset of the SMG2S.

e Parallel Vector and Matrix: this part presents the functions imple-
mented in SMG2S to establish parallel vector and matrix over distributed
memory platforms.

e Nilpotent Matrix Object: this part presents a special nilpotent matrix
object for the matrix generation procedure in SMG2S.

e Generating Matrix with prescribed eigenvalues: this part gives the
way to use SMG2S to generate required test matrices.

e Interface to Other Languages/Libraries: this part introduces the in-
terface of SMG2S to other languages and existing scientific computational
libraries such as PETSc and Trilinos.

e Verification of Eigenvalues of Generated Matrix: this part gives the
way to verify the accuracy of eigenvalues of generated matrices comparing

with given spectrum. A graphic user interface is also provided to facilitate
the comparison.

1.2 Installation

To obtain SMG2S, please follow the instructions at the SMG2S download page:
https://smg2s.github.io/download.html.
Prerequisites:

e C++ Compiler with c4+-+11 support;
e Cmake (version minimum 3.6);

e (Optional) PETSc and SLPEc are necessary for the verification of the
ability to keep the given spectrum.

In the main directory:

cmake . —DCMAKEINSTALL PREFIX=${INSTALL DIRECTORY}

The main.cpp will generate an exectutable smg2s.exe to demonstrate a min-
imum sample :

make

The main part of SMG2S is a collection of header files. Install the header
files into ${INSTALL_DIRECTORY}

make install

For testing the software in your platforms:

make test

The output of the test should be like:

Running tests ...

Test project /User/name/SMG2S

Start 1: Test_Size_10000_w_procl

1/4 Test #1: Test_Size_10000_w_procl .. Passed 1.20 sec
Start 2: Test_Size_20000_w_proc2

2/4 Test #2: Test_Size_20000_-w_proc2 .. Passed 1.22 sec
Start 3: Test_Size_10000_s_procl

3/4 Test #3: Test_Size_10000_s_procl .. Passed 1.20 sec
Start 4: Test_Size_10000_s_proc2

4/4 Test #4: Test_-Size_10000_.s_proc2 .. Passed 0.66 sec

100% tests passed, 0 tests failed out of 4

Total Test time (real) = 4.29 sec

1.3 CMake Options

We use CMake to build, test and package SMG2S. If you do not have PETSc
and SLEPc in your platform, please make sure the option below is OFF in
CMakeLists.txt.

option (INSTALL. TO_USE ”Install .SMG2S.include.files?” OFF)

1.4 Copyright and Licensing of SMG2S

SMG2S is an open source software published under the GNU Lesser General
Public License v3.0. SMG2S can be redistributed and modified under the terms
of this license.

SMG2S is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version. SMG2S is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details. You should have received
a copy of the GNU Lesser General Public License along with SMG2S. If not,
see jhttp://www.gnu.org/licenses/; .

1.5 Programming Language in SMG2S

SMG2S is a collection of templated header files written in C++. The wrappers
to C and Python codes are provided. The users of PETSc or Trilinos can directly
use SMG2S with the interfaces implemented inside.

1.6 Referencing SMG2S

Place cite these papers if you want to reference SMG2S.

e @article{galichergenerate, title={Generate Very Large Sparse Matrices
Starting from a Given Spectrum}, author={Galicher, Hervé and Boillod-
Cerneux, France and Petiton, Serge and Calvin, Christophe} }

e Q@inproceedings{wu2018parallel, title={ A Parallel Generator of Non-Hermitian
Matrices computed from Given Spectra}, author={Wu, Xinzhe and Pe-
titon, Serge and Lu, Yutong}, booktitle={ VECPAR 2018: 13th Interna-
tional Meeting on High Performance Computing for Computational Sci-
ence}, year={2018}}

1.7 Directory Structure
The directory structure of SMG2S is given as follows:

SMG2S
L parVector

tparVectorMap.h {implementation of distributed vector map
parVector.h {)implementation of distributed vector

| parMatrix
EMatrixCSR.h {implementation of serial CSR Matrix
parMatrixSparse.h {distributed sparse matrix
| smg2s
specGen.h {Function to provide given spectrum
smg2s.h ¢ implementation of smg2s generator
| utlis
MPI DataType.h
utlis.h
logo.h
| verification
powerlIverse.cpp {verfication impl based on SLEPc
UI {GUI for comparison based on SLEPc
tests
| interface
C {interface to C
PETSc {>interface to PETSc
Python {interface to Python
Trilinos <{)interface to Trilinos
| example

arnoldi
gmres
krylov
teptra

| config
L,config.h

1.8 List of SMG2S Contributors

This is the list of SMG2S contributors:

Xinzhe Wu main constributor xinzhe.wu@ed.univ-lillel.fr
Serge Petiton Supervisor serge.petiton@univ-lillel.fr
Quentin Petit | GUI Implementation (Intern) | quentin.petit@polyetch-lille.net

Chapter 2

Templated SMG2S Parallel
Matrix and Vector

2.1 Parallel Vector

The distributed vector inside SMG2S is implemented using the C++ program-
ming language and MPI. The parallel vector implementation is composed of two
main classes: parVector Map and parVector. parVectorMap class is a vector
index map which controls the partitioning and distribution over the processes,
and parVector is the parallel vector itself, which contains the actual distributed
data and the corresponding functions controlling the data.

2.1.1 Vector Map

The distribution of a set of integer labels (or elements) across the processes
is here called a parVectorMap. In SMG2S, it is implemented with the help
of std :: map, which maps the proc number and related integers. Basically,
parVector M ap handles the definition of global and local indices for the mapping
across the processes. Here we give some methods of parVectorMap < S >:

S Loc2Glob (S local_index);
//convert local index to global index;

S Glob2Loc (S global_index);
//convert local index to global indez;

int GetRank();
//Get proc index;

S GetLowerBound ();
//Get lower bound index for each proc;

S GetUpperBound ();
//Get upper bound index for each proc;

S GetLocalSize ();

10

//Get index number for each proc;

S GetGlobalSize ();
//Get total interger number for all procs.

2.1.2 Creating a Distributed Vector

A parallel vector parVector across the processes can be created with the help
of parVector Map. The entries of parVector are distributed over different pro-
cesses referring to the parVectorMap. parVector < T,S > is implemented
with the C++ template, with T the data type of entry, and S the data type of
index.

This is the constructor of parVector, with M PI_Comm ncomm the working
MPI communicator, Slbound and Subound respectively the lower and upper
bound of vector global indices on each proc.

/xconstructorx/
parVector (MPI.Comm ncomm, S lbound, S ubound);

Here we give some methods of parVector:

parVectorMap<S> xGetVecMap ();
//return the related parVectorMap of parVector;

S Loc2Glob (S local_index);
//convert local index to global index;

S Glob2Loc (S global_index);
//convert local index to global index;

int GetRank ();
//Get proc indez;

S GetLowerBound ();
//Get lower bound index for each proc;

S GetUpperBound ();
//Get upper bound index for each proc;

S GetLocalSize ();
//Get index number for each proc;

S GetGlobalSize ();
//Get total interger number for all procs;

T xGetArray ();
//Get the array containg the entries on each proc;

void SetValueLocal(S row, T value);
//insert value in the local index named row;

11

void SetValuesLocal(S nindex, S srows, T xvalues);
//insert array in the local indices named rows;

void SetValueGocal(S row, T value);
//insert value in the gocal index named row;

void SetValuesGocal(S nindex, S srows, T xvalues);
//insert array in the gocal indices named rows;

void SetTovalue (T value);
//Set the entries of parVector all to same given wvalue;

void VecAdd(parVector *v);
//Add another wvector v with same mapping;

void VecScale (T scale);
//Scaling the wvector;

T VecDot (parVector xv);
//vector dot product operation;

void ReadExtVec(std::string spectrum);
//read wvector from local file;

void VecView ();
//display the wvector;

void specGen(std::string spectrum);

//Generate/loal a special vector containing given spectrum

Here we give an example to generate a parVector by SMG2S:

int world_size;

int world_rank;

int span, lower_b, upper_b;

MPI_Comm_size (comm, &world_size);

MPI_Comm_rank (comm, &world_rank);

span = int(ceil (double(probSize)/double(world_size)));

if (world_.rank = world_size — 1){

lower_.b = world_rank x span;

upper_b = probSize — 1 + 1;
telse{

lower_b = world_rank % span;

upper.b = (world_-rank + 1) % span — 1 + 1;

}

parVector<T,S> xvec = new parVector<T,S>(\
comm, lower_b , upper_b);

12

vec—>SetTovalue (T val);

2.1.3 Parallel Matrix

The one-dimensional row-major parallel matrix parMatrizSparse in SMG2S
is distributed with the same parVectorMap of a given parVector. On each
process, the columns indices and the entries values are stored by a std :: map <
T,S > with S data type of indices and T data type of entries.

This is the constructor of parMatrizSparse:

/xconstructorx/
parMatrixSparse (parVector<T,S> xVec, parVector<T,S> *Vec);

Here we given some methods of the par MatrizSparse object:

parVectorMap<S> *GetYMap () ;
//return the matriz mapping of the columns;

MPI_Comm GetComm () ;
//Get current working MPI communicator;

std : :map<S,T> xGetDynMatLoc ();
//Get the map storing cols and entries on each proc;

void LOC_MatView ();
//display the parallel matrix

void Loc_SetValueLocal(S row, S col, T value);
//insert value in the local index row;

void Loc_SetValuesLocal(S nindex, S xrows, S xcols, \
T xvalues);
//insert array in the local index rows;

void SetValueGocal(S row, T value);
//insert value in the gocal index named row;

void SetValuesGocal (S nindex, S srows, T xvalues);
//insert array in the gocal indices named rows;

void Loc_SetValue(S row, S col, T value);
//Set the entriy (row, col) of parMatriz with value;

void Loc_SetDiagonal (parVector<T,S> xdiag);
//set the diagonal of matriz to a given vector;

void Loc_MatScale (T scale);
//Scaling the matriz;

13
void Loc.MatAXPY (parMatrixSparse<T,S> *X, T scale);
//AXPY operation ;

void Loc MatAYPX(parMatrixSparse<T,S> «X, T scale);
//AYPX operation;

void Loc_ZeroEntries ();
//Zeros all entries and keep the previous matriz pattern;

void MA(Nilpotency<S> nilp, parMatrixSparse<T,S> xprod);
//matriz multiple a special nilpotent matric;

void AM(Nilpotency<S> nilp, parMatrixSparse<T,S> xprod);
//special nilpotent matric multiple another matriz;

2.1.4 Creating a Distributed Matrix

The is an example of creating a distributed matrix with the mapping of parallel
vector:

/xlower_b and upper_b of each proc is givenx/

parVector<T,S> *xvec = new parVector<T,S>(\
comm, lower_b , upper_b);

parMatrixSparse<T,S> xA=new parMatrixSparse<T,S>(vec,vec);

Chapter 3

Templated Nilpotent
Matrix Object

3.1 Introduction
The nilpotent matrix is very important for the generation of test matrices with

given spectrum. Il can be defined by several parameters, the explicit implemen-
tation is not necessary.

Figure 3.1: Nilpotent Matrix

~
n

The three parameters defined a nilpotent matrix is listed as:

e dIagPostion: the distance of the off-diagonal to the diagonal, refering to
p in Fig. 3.1;

e length: the continuous one on the off-diagonal of nilpotent matrix, refer-
ing to d in Fig. 3.1;

e probSize: the number of row/column of nilpotent matrix, refering to n
in Fig. 3.1.

14

15

3.2 Different Types of Nilpotent Matrix

The different nilpotent matrix will influence the sparsity pattern of the final
generated matrix.

e NilpTypel: diagPostion = 2
e NilpType2: diagPostion = 3

e NilpType3: diagPostion > 3

3.3 Creating a Nilpotent Matrix Object

Nilpotency<int> nilp;

nilp . NilpTypel (length , probSize);
//

nilp . NilpType2(length , probSize);
//

nilp . NilpType3(diagPostion , length ,probSize);

3.4 Parameter Validation for Nilpotent Matrix
e NilpTypel: parameter length can be any integer value > 0;
e NilpType2: parameter length sould be even;

e NilpType3: validation of parameter length is complex. length should be
divisible by p.

Chapter 4

Generating Matrix with
SMG2S

4.1 SMG2S Class

The header file ./smg2s/smg2s.h implement the matrix generation method. It
is defined as:

template<typename T, typename S>
parMatrixSparse<T,S> xsmg2s (

S probSize

Nilpotency <S> nilp ,

S Ibandwidth ,

std::string spectrum,

MPLComm comm

)

Inside the definition, typename T is to define the size of matrix, and type-
name S is to define the scalar types of entries of matrix. We give the meaning
of the input parameter as below:

e S ProbSize: the size of matrix to generate;

e Nilpotency<S> nilp: the nilpotent matirx object for generation;

e S lbandwidth: the bandwidth of lower-diagonal band of initial matrix;
e std::string spectrum: the file path of spectra file;

e MPI_Comm comm: the working MPI communicator.

4.2 Generation Workflow

1. Include the head file

#include <smg2s/smg2s.h>

16

17

2. Generate the Nilpotent Matrix Object:

Nilpotency<int> nilp;
nilp . NilpTypel (length , probSize);

3. Create the parallel Sparse Matrix Object Mt:

parMatrixSparse<std :: complex<double>,int> *Mt;

4. Generate a new matrix by SMG2S:

MPI.Comm comm; //working MPI Communicator
Mt = smg2s<std :: complex<double>,int >(probSize, nilp
Ilbandwidth , spectrum , comm);

Here, the probsize parameter represent the matrix size, nilp is the nilpo-
tency matrix object that we have declared previously, Ibandwidth is the band-
width of lower-diagonal band. spectrum is the file path of spectra file, if
spectrum is set as ” ”, SMG2S will use the mechanism inside to generate
the spectral distribution. comm is the basic object used by MPI to determine
which processes are involved in a communication.

The given spectra file is in pseudo-Matrix Market Vector format. For
the complex eigenvalues, the given spectrum is stored in three columns, the first
column is the coordinates, the second column is the real part of complex values,
and the third column is the imaginary part of complex values.

%7MatrixMarket matrix coordinate complex general
333

1 10 6.5154

2 10.6288 3.4790

3 10.7621 5.0540

For the eigenvalues values, the given spectrum is stored in two columns, the
first column is the coordinates, the second column is related values.

%7 MatrixMarket matrix coordinate complex general
3 3

1 10

2 10.6288

3 10.7621

4.3 Creation of Given Spectrum

In the directory ./verification/tests, we give an example to generate the file of
given spectrum, which can be reused by the users to create their own values.
This is a small C++ file named as vecgen.cpp.

If the users want to generate the eigenvalues in time without loading from
local file, they can customize their eigenvalues generation by the function spec-
Gen in the file ./verification/tests/specGen.h, and set the parameter spectrum
of smg2s to be 7 7.

18

template<typename T, typename S>
void parVector<T,S>::specGen(std::string spectrum)

In this function, the eigenvalues are stored by the distributed vector text-
colorblueparVector. And the filling of values on this parVector can be done by
the method SetValueGlobal implemented in parVector, which takes the global
indices to set values.

4.4 Customize the Low Band of Initial Matrix

We know that the low band bandwidth of initial matrix can be set by the
parameter Ibandwidth of smg2s. Additionaly, the distribution of entries of initial
matrix can also be customized by the function matlnit provided by the file
./verification/tests/specGen.h. En default, these entries are filled in random.
The different mechanism to fill them will influence the sparsity of final generated
sparse matrix.

template<typename T, typename S>
void matInit (
parMatrixSparse<T,S> *Am,
parMatrixSparse<T,S> smatAop,

S probSize,

S lbandwidth

)

In this function, distributed matrix Am and matAop should be filled with the
same way. And these entries of matrix can be filled by the method Loc_SetValue
implemented in parMatrixSparse. Loc_SetValue uses the global indices of matrix
to set values.

Chapter 5

Interface to Other
Languages/Libraries

Until now, SMG2S provides interfaces to C, Python, PETSc and Trilinos.

5.1 Interface to C

SMG2S install command will generate a shared library libsmg2s.so (libsmg2s2c.dylib
on OS X platform) into ${INSTALL_DIRECTORY }/lib. It can be used to profit
the C wrapper of SMG2S.

The way to use:
1. Add this shared library to LD_LIBRARY _PATH:

export LD LIBRARY PATH=${INSTALL DIRECTORY}/lib

2. Include the header file:

#include <interface/C/c_wrapper.h>

3. create Nilpotency object :

struct Nilpotencylnt xn;
n = newNilpotencyInt ();
NilpTypel(n, 2, 10);

4. After that, you need to create the parallel Sparse Matrix Object Mt like
this :

struct parMatrixSparseRealDoublelnt xm;
m = newParMatrixSparseRealDoublelnt ();

5. Generate by SMG2S :
smg2sRealDoubleInt (m, 10, n, 3 ,”.” MPLCOMMWORLD);

6. Release Nilpotency Object and parMatrixSparse Object :

ReleaseNilpotencyInt(&n);
ReleaseParMatrixSparseRealDoublelnt (&m);

19

20

SMG2S provides the C interface to different data types. For the data type of
matrix size, it can be either int or longint; for the data type of matrix entries,
it can be either complex or real with single or double precision.

The Nilpotent Matrix object is implemented for both int and longint as
below:

struct Nilpotencylnt;
struct NilpotencyLonglnt;

The interface of C for parMatrixSparse Object and smg2s function can be
defined as below, SUFFIX can be replaced by one of the selected data types:

o ComplexDoubleLonglInt; e RealDoubleLonglInt;
e ComplexDoubleInt; e RealDoublelnt;
e ComplexSingleLonglInt; e RealSingleLonglInt;
e ComplexSinglelnt; e RealSignlelnt.

//long int case

struct parMatrixSparseSUFFIX;
/xparVectorMap C wrapperx/

struct parVectorMapLongInt #newparVectorMapLonglnt(void);
/xcomplex double long intx/

struct parMatrixSparseComplexSUFFIX xnewPar)\
MatrixSparseSUFFIX (void);

void ReleaseParMatrixSparseSUFFIX (struct \
parMatrixSparseSUFFIX s*sxpplnstance);

void LOC_MatViewSUFFIX (struct parMatrix)\
SparseSUFFIX s*m);

void GetLocalSizeSUFFIX (struct parMatrix\
SparseSUFFIX *m, __int64_t #rs, __int64_t xcs);

void Loc_ConvertToCSRSUFFIX (struct parMatrix)\
SparseComplexDoubleLongInt #m);

void Loc_.CSRGetRowsArraySizesSUFFIX (struct parMatri\
xSparseSUFFIX «m, __int64_t xsize ,__int64_t xsize2);

void Loc_.CSRGetRowsArraysSUFFIX (struct par)\
MatrixSparseSUFFIX *m, __int64_t size, int **xrows,\
__int64_t size2, int xxcols, double xxreal, double xximag);

void smg2sSUFFIX (struct parMatrixSparseSUFFIX \
#m, __-int64_-t probSize, struct NilpotencyLonglnt \
*nilp, _-_int64_t lbandwidth, char *spectrum , MPI.Comm comm);

21

5.2 Interface to Python

SMG2S uses SWIG to generate the wrapper of SMG2S to Python. Generate
the shared library and install the python module of smg2s.

#install online from pypi
CC=mpicxx pip install smg2s

#bulid in local

cd ./interface/python;

CC=mpicxx python setup.py build_ext —inplace
#or

CC=mpicxx python setup.py build

#or
CC=mpicxx python setup.py install

#run
mpirun —np 2 python generate.py

Before the utilization, make sure that mpi4py is installed.
This is a little example of usage :

from mpidpy import MPI
import smg2s
import sys

size = MPI.OOMMWORID. Get _size ()
rank = MPI.COMMWORID. Get_rank ()
name = MPI. Get_processor_name ()

sys.stdout . write (
”"Hello , .World! _.T_am_process %d.of %d._on_%s.\n"
% (rank, size , name))

if rank = 0:
print (’INFO.]>_Starting....’)
print ("INFO_]>_The_.MPI_World._Size._is %d” %size)

#bandwidth for the lower band of initial matriz
lbandwidth = 3

#create the nilpotent matriz
nilp = smg2s. NilpotencylInt ()

#setup the nilpotent matriz:
nilp . NilpTypel (2,10)

Mt = smg2s.parMatrixSparseDoublelnt ()

#Generate Mt by SMG2S
#vector.txt is the file that stores the given \

22

spectral distribution in local filesystem.
Mt=smg2s.smg2sDoublelnt (10, nilp , lbandwidth , \
"vector.txt”, MPI.COMMWORILD)

5.3 Interface to PETSc

SMG2S provides the interface to scientific computational softwares PETSc/SLEPc.
The way of Usage:
Include the header file:

#include <interface /PETSc/petsc_interface.h>

Create parMatrixSparse type matrix :

parMatrixSparse<std :: complex<double>,int> «Mt;

Restore this matrix into CSR format :

Mt—>Loc_ConvertToCSR () ;

Create PETSc MAT type :

MatCreate (PETSC.COMM WORLD, &A) ;

Convert to PETSc MAT format :
Create PETSc MAT type :

A = ConvertToPETSCMat (Mt) ;

Here are the example of Arnoldi, GMRES, and another Krylov method.

5.4 Interface to Trilinos/Teptra

SMG@G2S is able to convert its distributed to the CSR one-dimensional distributed
matrix defined by Teptra in Trilinos.

The way of usage:

Include header file

#include <interface/Trilinos/trilinos_interface.hpp>

Create parMatrixSparse type matrix :

parMatrixSparse<std :: complex<double>,int> xMt;

Create Trilinos/Teptra MAT type :

parMatrixSparse<std :: complex<double>,int> xMt;

Convert to Trilinos MAT format :

K = ConvertToTrilinosMat (Mt);

Here is a full example of Trilinos.

https://github.com/SMG2S/SMG2S/tree/master/example/arnoldi
https://github.com/SMG2S/SMG2S/tree/master/example/gmres
https://github.com/SMG2S/SMG2S/tree/master/example/krylov
https://github.com/SMG2S/SMG2S/tree/master/example/teptra

23

5.5 Create Your Inferface

On each process, the submatrix is stored by the std::map<T,S> provided by
C++, which can be gotten through the function Get DynM atLoc implemented
in the sparse matrix implementation. The column index and related entry value
can be gotten by the C++ iterator.

parMatrixSparse<S, T > «M

T col;
S val;

/*On each processx/
parVectorMap<T> spmap = M—>GetYMap () ;

/xGet row number on each procx/
T lsize = pmap—>GetLocalSize ();

std ::map<T, S> xdynloc;
std ::map<T, S>::iterator it;

dynloc = M=>GetDynMatLoc () ;
/xGet col indices and valuesx/
for(T i = 0; i < lsize; i++){

for (it = dynloc[i].begin(); it != dynloc[i].end(); ++it){
col = it—>first;
val = it —>second;

Chapter 6

Verification of Eigenvalues

SMG2S provides the functionality to verify the abilibity to keep given spectrum.
In the directory of ./verification/. The implementation of the functionality is
powerInverse.cpp.

6.1 Prerequisites

The verification method is implemented based on the shifted inverse method
proposed by PETSc/SLEPc. Before the starting of verification, it is necessary
to have the two on the platforms.

If not, the download and installation of PET'Sc can be found: [PETSc Down-
load] and [SLPEc Installation]. The download and installation of PETSc can
be found: [SLEPc Download] and [SLEPc Installation].

6.2 Verifcation by Shifted Inverse Power Method

1. compile the file powerInverse.cpp by the command

make

This will generate an executable powerlnverse.exe.
2. Suppose the given eigenvalues are stored in the file vector.txt by the
pseudo-Matrix Matrix Vector format, run the verification script as below:

#!/bin/bash
EXEC=./powerlInverse . exe
N=100

L=10

TEST_TOL=0.00001
DEGREE=4

LENGTH=$ (awk 'NR==2{print $1}’ vector.txt)
echo ”"Test_Eigenvalues_number_=_" $ {LENGTH}

for ((1=3;i<=${LENGTH}+2;i++))
do

24

https://www.mcs.anl.gov/petsc/download/index.html
https://www.mcs.anl.gov/petsc/download/index.html
https://www.mcs.anl.gov/petsc/documentation/installation.html
http://slepc.upv.es/download/
http://slepc.upv.es/documentation/instal.htm

25

real=%(awk 'NR=="8i {print $2}’ vector.txt)

imag=% (awk 'NR=="8i’{ print $3}’ vector.txt)

srun —n 1 ${EXEC} —n ${N} —1 ${L} —eps_monitor_conv \
—eps_power_shift _type constant —st_type sinvert \
—exact_value ${real}+${imag}i —test_tol ${TEST.TOL} \
—degree ${DEGREE}

done

Here we list the meaning of the critical parameters in the script above:

e N: the size of matrix to generate, which should be equal to the number of
given eigenvalues;

e L: the bandwidth of low part diagonal of matrix to generate;

e TEST_TOL: the tolerance to check if the accuracy of one eigenvalue can
be accepted or not;

e DEGREE: the continuous one for the nilpotency matrix.

6.3 Script for result cleaning

The result file generated during the verification can be cleaned into the pseudo-
Matrix Market Vector by the script below:

#!/bin/bash

grep "@>_The_eigenvalue” $1 > tmp. txt

awk ’'{print $5 7.7 §7 }’ tmp.txt > tmp2.txt

awk '{print substr($0, 1, length($0)—1)} tmp2.txt \
> tmp3d. txt

awk {print NR 7.” $0}’ tmp3.txt > tmp4.txt
NB=‘wc —1 tmp4.txt | awk '{print $1}’°
awk 'BEGIN{print ’$NB’ ”.” ’§NB’ ”_.” ’$NB’}{print}’ \

tmp4. txt > tmpd.txt

awk 'BEGIN{print "%%MatrixMarket_matrix_.coordinate.\
.real.general” }{print}’ tmp5.txt > $2

rm tmp.txt tmp2.txt tmp3.txt tmpd.txt tmpd.txt

Execution of this script:

./traitement .sh results.txt results_clean.txt

In this command, the 1st and 2nd arguments for the execution are separately
the initial results file and the final cleaned and formatted file.

26

6.4 Plot by Graphic User Interface

6.4.1 Prerequisites for GUI

You need to have Python2.X or Python3.X to run it. Moreover, Ul uses some
libraries to support a dynamic and intuitive graphical user interface, you can see
the list of libraries. Normally, some of them are included in Python distribution.
You can find below the list of necessary libraries of the UL

e Modules which are bundled in the Python installation: Tkinter, re, sys,
decimal ;

e Modules which need to be installed in addition to Python: NumPy &
SciPy, Matplotlib, Pillow(PIL)

Install modules to Python 2.X:

apt—get install python—tk python—imaging—tk
pip —m install Pillow

python —mpip install —U pip

python —mpip install —U matplotlib

pip install —U numpy scipy

Install modules to Python 3.X:

sudo apt—get install python3—tk python—imaging—tk
pip —m install Pillow

python —mpip install —U pip

python —mpip install —U matplotlib

pip install —U numpy scipy

6.4.2 How to use the GUI
To use the GUI:

python main.py

When you launch the program, a new windows opens like Fig. 6.4.2 :

The first step is to select the files which be display. When you have selected a
file, the button change in green color as Fig. 6.4.2 (Attention, the files imported
should be in the pseudo-Matrix Market vector format that we have talked):

After that, you can click on ”Display” to build and open the graphic on the
right side of the window. Click on ”New window” to open your graphic on a
new window. It’s possible to open as many windows as you want like Fig. 6.4.2:

It will be generate with automatic lens scaling, but your can generate it with
your own scales as Fig. 6.4.2:

Figure 6.1: Home Screen Capture

27

- SMG25 - Home Page
File Display Save Settings Help

Files
Select files for display your graph
Original file Final file

Select Select

Display & Save
Scales are automatically managed.

[Make with custom scale

Xmin : XMax :
ymin : ymax :

Display ‘ New window ‘

To save the chart with the quality selected

Save

Figure 6.2: Home Screen Capture After Selection

- SMG2S - Home Page

File Display Save Settings Help

Files
Select files for display your graph
original file Final file

Select Select
Display & Save

Scales are automatically managed.
[~ Make with custom scale

xmin : Xmax :
ymin : ymax :

Display ‘ New window |

To save the chart with the quality selected

Save

Figure 6.3: Home Screen Plot Capture

eoe SMG2S - Home Page
Files

Select files for display your graph

Original file Final file
Select Select 0.10
Display & Save

Scales are automatically managed.

Make with custom scale 0.05 1 P
i e @ }.
ymin : ymax :)

Display New window 0.001

To save the chart with the quality selected

Save S [

—0.05 4

-0.10

-0.10 —0.05 0.00 0.05 0.10

Quit

A €> A=

Figure 6.4: Home Screen Plot Capture with Lens Scaling

[JOX) SMG2S - Home Page
Files
Select files for display your graph

Original file Final file 0.03

Select Select e]

Display & Save .

0.02 . .

Scales are automatically managed.
Make with custom scale
xmin: -0.03 xmax: 0.03 0.01 1 L]
ymin : -0.03 ymax : 0.03 .

Display New window 0.00 4

To save the chart with the quality selected

Save —0.01 1

—0.02 4 .

—0.03

—0.03 —0.02 -0.01 0.00 0.01 0.02

Quit

€ HaQ=

0.03

Bibliography

[1] H. Galicher, F. Boillod-Cerneux, S. Petiton, and C. Calvin. Generate very
large sparse matrices starting from a given spectrum.

[2] X. Wu, S. Petiton, and Y. Lu. A parallel generator of non-hermitian matrices
computed from given spectra. In VECPAR 2018: 13th International Meeting
on High Performance Computing for Computational Science, 2018.

29

	Introduction
	Getting Started
	Installation
	CMake Options
	Copyright and Licensing of SMG2S
	Programming Language in SMG2S
	Referencing SMG2S
	Directory Structure
	List of SMG2S Contributors

	Templated SMG2S Parallel Matrix and Vector
	Parallel Vector
	Vector Map
	Creating a Distributed Vector
	Parallel Matrix
	Creating a Distributed Matrix

	Templated Nilpotent Matrix Object
	Introduction
	Different Types of Nilpotent Matrix
	Creating a Nilpotent Matrix Object
	Parameter Validation for Nilpotent Matrix

	Generating Matrix with SMG2S
	SMG2S Class
	Generation Workflow
	Creation of Given Spectrum
	Customize the Low Band of Initial Matrix

	Interface to Other Languages/Libraries
	Interface to C
	Interface to Python
	Interface to PETSc
	Interface to Trilinos/Teptra
	Create Your Inferface

	Verification of Eigenvalues
	Prerequisites
	Verifcation by Shifted Inverse Power Method
	Script for result cleaning
	Plot by Graphic User Interface
	Prerequisites for GUI
	How to use the GUI

