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Abstract—SPARQL is the standard query language used to
access RDF linked data sets available on the Web. However,
designing a SPARQL query can be a tedious task, even for
experienced users. This is often due to imperfect knowledge by
the user of the ontologies involved in the query. To overcome this
problem, a growing number of query editors offer autocomplete-
tion features. Such features are nevertheless limited and mostly
focused on typo checking.

In this context, our contribution is four-fold. First, we analyze
several autocompletion features proposed by the main editors,
highlighting the needs currently not taken into account while met
by a user community we work with, scientists. Second, we intro-
duce the first (to our knowledge) autocompletion approach able to
consider snippets (fragments of SPARQL query) based on queries
expressed by previous users, enriching the user experience. Third,
we introduce a usable, open and concrete solution able to consider
a large panel of SPARQL autocompletion features that we have
implemented in an editor. Last but not least, we demonstrate the
interest of our approach on real biomedical queries involving
services offered by the Wikidata collaborative knowledge base.

Index Terms—Autocompletion, SPARQL, unsupervised learn-
ing, hierarchical clustering, bioinformatics, Wikidata.

I. INTRODUCTION

The amount of linked data available on the Web is con-
stantly increasing. Querying such data is a crucial need to
exploit its wealth. When linked data is represented using the
RDF standard, SPARQL is the most popular query language.
However, writing a SPARQL query can be tedious, even for
experienced users. Reasons are numerous and include the
imperfect knowledge that users may have on the ontologies
involved in the query or the need to follow a syntax rather
complex to master.

To answer these problems, systems often propose interfaces
hiding the SPARQL query language: the user is asked to input
keywords, examples of expected results, or is proposed some
canned queries. The drawback of these approaches is two-
fold. First, users do not progress in learning the language
although the volume of available data and the number of
interesting applications constantly increase. Second, users are
limited in their search not only by the data structure (ontology)
supported by the interface but also and especially by the
functions supported by the interface. In other words, users
are limited in that they can ask only queries imagined by the
system developers.

The solution we provide allows users to exploit the full
power and expressiveness of the query language while guiding
them in the design of queries, by proposing a large panel of
autocompletion features.

The starting point of this paper is a two-year study that
we conducted with users of SPARQL editors. This study was
carried out as part of the use of the platform LinkedWiki
by various types of users, novice to expert, from various
disciplines (computer science, biology, chemistry, physics,
human and social sciences, etc.) designing queries [1]. The
goal of the platform LinkedWiki, also based on SPARQL, is
to simplify enriching and reusing the Web of data with RDF
semantics.

Some of the features we provide are already supported by
other query editors. The study highlighted the need for a
most useful feature for advanced users, namely autocompletion
by snippets, that is exploiting fragments of queries made by
previous users to complete the partial query already written by
the user. This is the topic of the present paper. Such a feature
is not considered by existing SPARQL editors [2]. A similar
one has been considered for other query language editors [3–7]
and more generally this has been studied in the context of data
exploration [8].

In this paper, we introduce the first (to our knowledge)
autocompletion by snippets for SPARQL. For this, we extract a
representation of subpatterns from previous queries (under the
form of ”linegraphs”) and construct a hierarchical clustering of
such subpatterns to generate snippets that are most compatible
with the portion of the query considered by the user. These
snippets are then suggested to the user as autocompletions,
making the editing process significantly simpler and quicker.

The remainder of the paper is organized as follows. Sec-
tion II introduces the context of our study and provides a
motivating example from the biomedical domain. Section III
introduces needs for autocompletion collected from users;
it also provides a panorama of the current autocompletion
features supported by SPARQL editors. Section IV introduces
SPARQLets-Finder, the first autocompletion approach based on
snippets. Section V evaluates our approach both quantitatively,
providing measures obtained on a large set of use cases and
qualitatively, based on the queries of interest introduced in
Section II.



II. CONTEXT

General context. Since 2015, we have been helping users
to write, share and discover new SPARQL queries using
two instances of the LinkedWiki platform [1]: one instance
dedicated to scientists and students from the Paris-Saclay
University1 and another instance available to anyone2. We
carried out a study of the user needs for autocompletion when
writing queries, by collecting during the last two years the
wishes of users, from novices to experts. More precisely, this
experiment has been performed with two types of users: 103
master students with various scientific backgrounds (computer
science, business administration, etc.) and various skills in
SPARQL, and 60 professionals from industry and academics
following training sessions in the Center for Data Science
of Paris-Saclay University. Most users were scientists from
various disciplines including astronomy, life sciences, and
social sciences, with little knowledge in computer science.

The approach presented in this paper can be used for the
completion of queries in arbitrary domains. The context of the
Center for Data Science turned to be appropriate to capture
this generality. To illustrate more precisely our purpose, we
will consider in the following a use case from the biomedical
domain.

Biomedical use case. The use case we consider takes place
in the context of personalized medicine and more precisely in
the study of the variability of the response of several anti-
cancer drugs depending on patients (that is, depending on
genetic mutations of, e.g., specific genes of patients, genetics
of their tumors, etc.). Here, the knowledge regarding drug
responses is scattered over hundreds of scientific articles
indexed in the PubMed repository (a public library of millions
of biomedical publications), many of which are referenced in
Wikidata.

While designing a query to find relevant information, the
user encounters various difficulties. To be able to find relevant
data, a SPARQL-educated physician would need a deep knowl-
edge of Wikidata underlying ontology, of the organization of
the information, and more generally at the exhaustive content
regarding drugs, gene-mutation relations and cross-references
to PubMed.

The physician first searches for diseases that are cancers,
and finds drugs used to treat cancer. Although this first
(sub)query is relatively simple, the physician is required
to know the structure of the Wikidata ontology (e.g., the
rdfs:subClassOf type), mostly a deep knowledge of Wiki-
data’s identifiers for drug, cancer (identified by wd:Q12078

in Wikidata), the predicate treats (identified by wdt:P2175),
etc.

Without any autocompletion feature it is unlikely that the
physician will succeed in writing the appropriate query.

The next part of the search should provide gene variants
associated with better response to a given drug, and references
regarding the provenance of the information.

1See https://io.datascience-paris-saclay.fr (version 2. last version)
2See http://linkedwiki.com (version 1.)

Again, without the help of any autocompletion feature, such
a query appears to be over-complicated, possibly beyond the
competence of the physician.

Interestingly, it is very likely that portions of the query have
already been asked by previous users, e.g., searching for the
provenance (references) associated to pieces of information are
likely to have been asked by previous users. Being suggested
to such query portions would greatly simplify the task of the
user.

More generally speaking, our experience with users is the
following: when designing a SPARQL query, the common
errors are, by order of importance, syntactic errors, unknown
prefixes, and imperfect knowledge of the ontologies involved
in the query. This last category of errors is made by all kinds
of users, from novice to expert.

We next briefly describe the tools that we think essential to
help the users to create a SPARQL query.

III. AUTOCOMPLETION FEATURES ANALYSIS

Recall that Linked Data is (to summarize) a method of
publishing structured data via Internet, such as data of Wiki-
data [9]. The data is represented as a graph. An arc of the
graph is a triple ”subject-predicate-object”. A SPARQL query
is based on graph patterns that are matched against this graph.

The SPARQL language names all its addresses using IRI
(Internationalized Resource Identifier): subject, predicate, ob-
ject, etc. In a query, users can write absolute IRIs (without
abbreviation) but they often prefer to use relative IRIs where
the prefix of the IRI is replaced by an abbreviation declared
before the text of the query. These abbreviations are named
prefixes (see Figure 1).

A SPARQL service is a service delivered by an RDF database
through the SPARQL protocol [10], responding to queries over
the database.

Autocompletion (in our context) is a feature of a SPARQL
editor [2] which, when requested by the user, proposes dif-
ferent ways of completing the portion of the query written so
far.

We next briefly present autocompletion features of which
our users expressed the need. For each, we specify the kind
of users requesting the feature (novice or expert).

Autocompletion using relative IRIs, via keywords.
This autocompletion of IRIs does not presuppose any
prior knowledge of the SPARQL service and the on-
tologies it contains. The user selects keywords, in the
language of her choice, to obtain a list of suggestions for
relative IRIs. It is then enough to choose one suggestion
so that the tool can insert it in the current request with the
definition of the prefix. This type of feature is requested
by both kinds of users.

Autocompletion by prefix declaration.
This autocompletion inserts declarations of prefixes not
explicitly specified by the user into a query. It responds to
a recurring need for users to reuse examples of queries
available on the Web in a new context where prefixes

2

https://io.datascience-paris-saclay.fr
http://linkedwiki.com


must be clarified. This feature is highly requested by all
kinds of users.

Autocompletion by template.
A template provides users with an example of query
structure to build faster a query. Generally, propositions of
templates are designed in advance, manually, by experts,
more particularly for novice users of the system.

Autocompletion by suggestion of snippets.
A snippet is a piece of reusable code proposed in order
to complete the current query. It can be seen as the pre-
diction of the future query fragment the user would write
to complete his query. This feature is highly demanded
by experienced users. It may also help novices designing
their first queries and getting familiar with the language.

Autocompletion in editors. We next consider SPARQL
editors discussed in [11] and several others. We limit our
attention to the eight editors that include at least one auto-
completion feature expected by our users, and that could be
tested using a Web navigator.

Results are summarized in Table I.
The two most well-known editors are Flint SPARQL Ed-

itor [12] and YASGUI [11]. Flint proposes query templates.
YASGUI aggregated several advanced features such as au-
tocompletion by prefix declaration with Prefix.cc API [13].
Gosparqled [14], that builds on YASGUI, also provides au-
tocompletion IRIs by keywords.

Another family of solutions comes from RDF databases
providers proposing single-point editors, i.e., editors dedicated
to a single SPARQL service. Such editors are often rather
basic. One exception is iSPARQL [15] where autocompletion
by template is provided (among many other functionalities).

Some other solutions are domain-based such as BioCar-
ian [16] providing templates specifically tuned to queries on
molecular biology.

Wikidata editor [17] not only offers templates but also au-
tocompletion using relative IRIs via keywords on the wikidata
database. Interestingly, Gosparqled [14] and Wikidata support
research by keywords in a completely different way. The
first does it via a SPARQL query with REGEX function that
is often too greedy when database is very large eventhough
but the function is available in any SPARQL service. The
second supports a specific API to search for Wikidata IRI via
keywords.

As for the feature autocompletion by snippets, we would like
to mention LODatio+ [18], that is not an editor but a search
engine able to find linked data sources relevant to query needs
on triple patterns related to a specific combination of RDF
types and/or properties. LODatio+ indexes different schemas
in a given knowledge base and proposes to add or remove
snippets of one triple pattern at a time in a query for searching
data. This feature is the one we found that is the closest to our
definition of autocompletion by snippets. However, it is very
limited in that it only suggests one single triple at a time.

In conclusion, these editors support some autocompletion
features, but in a limited way. None of them supports the

four kinds of autocompletion expected by our users. Most
importantly, completion by snippet is almost inexistent.

TABLE I
AUTOCOMPLETION FEATURES IN SPARQL EDITORS

Features Flin
t Edit

or
a

iSPA
RQL

b

LODati
o+
c

BioC
ari

an
d

Gos
pa

rql
ed
e

W
iki

da
ta

Que
ry
g

YASGUIh

Linked
W

iki

ed
ito

ri

Rel. IRI via keywords - - - - + + - +
Prefix declaration - - - - + - + +

Template + + + + - + - +
Snippets - - +j - - - - +

a http://bnb.data.bl.uk/flint-sparql Flint SPARQL Editor v1.0.4 [12]
b https://www.openlinksw.com/isparql OpenLink iSPARQL v2.9 [15]
c http://lodatio.informatik.uni-kiel.de LODatio+ (tested in may 2018) [18]
d http://www.biocarian.com BioCarian SPARQL editor (tested in may 2018) [16]
e http://scampi.github.io/gosparqled/ Gosparqled (tested in may 2018) [14]
g https://query.wikidata.org Wikidata Query (tested in may 2018) [17]
h http://doc.yasgui.org/ YASGUI v2.7.27 [11]
i https://io.datascience-paris-saclay.fr/exampleInsertUpdate.php LinkedWiki platform v2.0.0
j Only snippets of one triple pattern

In the paper, we introduce the LinkedWiki SPARQL editor
that implements the full set of autocompletion techniques
mentioned at the beginning of the section (the autocompletion
using relative IRIs, via keywords, requires the existence of an
adapted API that is provided by Wikidata).

The remainder of this paper is dedicated to the introduction
of SPARQLets-Finder, the new module of the LinkedWiki
editor, dedicated to the generation of snippets to users.

IV. ALGORITHM

In this section, we introduce the first (to our knowledge)
snippet-based autocompletion solution. We first extract a rep-
resentation of subpatterns present in previous queries (under
the form of ”linegraphs”). We then construct a hierarchical
clustering of the queries subpatterns. Finally, we generate
snippets that are most compatible with the portion of the query
proposed by the user so far, and resemble previous queries. We
start this section by giving an overview of the technique.

A. Overview

A SPARQL query is based on graph patterns that are matched
against the knowledge graph. Figure 1 shows a query that con-
tains a graph pattern. Queries are formed by combining smaller
patterns. The smallest graph pattern, the basic graph pattern
(BGP), is a set of triple patterns involving both variables and
constants. As a result, the graph structure representing a BGP
will have vertices denoting variables and constants.

In the SPARQL queries written by users, we observed a lot
of similarities between BGPs of queries of different topics.
This lead us to the idea of suggesting snippets to the users.
To discover these snippets, we use a hierarchical clustering
based on a similarity distance between BGPs. The use of such
a hierarchical clustering has been designed in the spirit of [19–
22].

The effectiveness of this method is clearly conditioned to
the quality of the similarity distance that is used. Defining
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1 PREFIX bd : <h t t p : / / www. b i g d a t a . com / r d f#>
2 PREFIX p : <h t t p : / / www. w i k i d a t a . o rg / prop />
3 PREFIX pq : <h t t p : / / www. w i k i d a t a . o rg / prop / q u a l i f i e r />
4 PREFIX pr : <h t t p : / / www. w i k i d a t a . o rg / prop / r e f e r e n c e />
5 PREFIX prov : <h t t p : / / www. w3 . org / ns / p rov#>
6 PREFIX ps : <h t t p : / / www. w i k i d a t a . o rg / prop / s t a t e m e n t />
7 PREFIX wd : <h t t p : / / www. w i k i d a t a . o rg / e n t i t y />
8 PREFIX wdt : <h t t p : / / www. w i k i d a t a . o rg / prop / d i r e c t />
9 PREFIX w i k i b a s e : <h t t p : / / w ik iba . s e / o n t o l o g y#>

10

11 SELECT DISTINCT
12 ? d i s e a s e L a b e l ? d r u g L a b e l
13 ? v a r i a n t L a b e l ? geneLabe l
14 ? d e t e r m i n a t i o n M e t h o d L a b e l ? r a t i n g L a b e l
15 ?pubMedID
16 WHERE {
17 ? d i s e a s e wdt : P31 wd : Q12136 .
18 ? d i s e a s e wdt : P279 wd : Q12078 .
19 ? drug wdt : P2175 ? d i s e a s e .
20

21 ? p r e d i c t o r ps : P3354 ? drug .
22 ? p r e d i c t o r pq : P4271 ? r a t i n g .
23 ? p r e d i c t o r pq : P459 ? d e t e r m i n a t i o n M e t h o d .
24

25 ? v a r i a n t p : P3354 ? p r e d i c t o r .
26 ? v a r i a n t wdt : P3433 ? gene .
27

28 ? p r e d i c t o r prov : wasDerivedFrom ? der ivedFrom .
29 ? de r ivedFrom pr : P248 ? s t a t e d I n .
30 ? s t a t e d I n wdt : P698 ?pubMedID .
31

32 SERVICE w i k i b a s e : l a b e l {
33 bd : s e r v i c e P a r a m w i k i b a s e : l a n g u a g e ” en , f r ” .
34 }
35 }
36 LIMIT 10

Declaration of prefixes

Form of results returns

Graph
pattern

Limit the number of results

SPARQL
query

Triple pattern
Triple pattern
Triple pattern

Triple pattern

Triple pattern
.
.
.
.

Triple pattern

A dot represent
a logical AND operator

1rt Subgraph pattern:
a BGP,

a basic graph pattern
(separated by the logical
AND operator, there are

11 triple patterns)

2d Subgraph pattern:
a BPG,

a basic graph pattern
(here there is only
one triple pattern)

Fig. 1. A SPARQL query is based around basic graph pattern matching and contains sets of triple patterns. Here, we use our example of query where we
removed all syntactic sugar to show clearly all the sequences of triple patterns in the graph pattern of the query.
See results of the query: https://io.datascience-paris-saclay.fr/query/Variants associated with positive treatment response to anti-cancer drug with provenance information.

a similarity distance between graph patterns is not an easy
task [23], which required from us lots of experiments.

Thus, in this paper, we describe two other contributions
necessary to our snippet-based autocompletion solution. The
first contribution is a method to highlight major features of
BGP (Section IV-B) to compute a similarity distance used to
compare patterns. The second is a BGP Hierarchical Clustering
algorithm, namely BGPHC (Section IV-C), that we use to
structure the common triple patterns found in queries over
our knowledge base. This hierarchy turns out to be useful to
find, given some BGPs present in the query proposed by a user,
nearest BGPs already known. We believe that the method could
be useful in other contexts as well, e.g., for building search
engines able to retrieve queries.

These two contributions are the keys to implement the work-
flow (Section IV-D) used to find SPARQL snippets adapted to
a partial query given as input.

In the next part, we explain how we compute a similarity
distance between BGPs of queries.

B. BGP common structure and distance measure

Among approaches to compare patterns of queries [23], we
see [24] as most interesting because it computes the similarity
as a function of the structural pattern while remaining agnostic
to the data context (i.e., agnostic to the ontology). As a result,

it allows addressing all kinds of services and data. We decided
to follow their technique by extracting BGP main features to
find common patterns between queries.

First experiments with that technique showed that it was not
satisfactory because of the uncontrolled uses of triple pattern
predicates. The predicates of type ”is a” (e.g., rdf:type or
wdt:P31) used in a majority of queries create similarities that
turn out to be meaningless. So, we adapted the method as
follows.

Linegraphs. Starting from a BGP, we construct a graph,
namely, a linegraph, that is a refined representation of the BGP
and enables capturing meaningful similarities. More precisely
the linegraph of a BGP G, noted LpGq, is a graph such that
each vertex of LpGq represents an arc of BGP; and two vertices
of LpGq are adjacent if and only if their corresponding arcs
share a common vertex of kind variable in the BGP G. Each
vertex n of the linegraph is labeled as follows:

‚ case 1: when n represents a predicate in the BGP G of
type ”is a” which is associated to a constant object then
the label of n is the concatenation of predicate label and
the object label of the BGP G.

‚ case 2: when n represents any other predicate p in the
BGP G then the label of n is the label of p.
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A.1. Extract sets of basic triple patterns (BGP) of all known SPARQL queries

(a)
?disease wdt:P31 wd:Q12136 .
?drug wdt:P2175 ?disease .
?disease wdt:P18 ?image .

?disease wdt:P31 wd:Q12136 .
?drug wdt:P2175 ?disease .
?predictor ps:P3354 ?drug .
?variant p:P3354 ?predictor .
?variant wdt:P3433 ?gene .
?predictor prov:wasDerivedFrom ?derivedFrom.
?derivedFrom pr:P248 ?statedIn .
?statedIn wdt:P698 ?pubMedID .

?disease wdt:P31 wd:Q12136 .
?drug wdt:P2175 ?disease .
?predictor ps:P3354 ?drug .
?variant p:P3354 ?predictor .
?variant wdt:P3433 ?gene .
?predictor pq:P4271 ?rating .
?predictor pq:P459 ?determinationMethod .

Graph patterns BGP1, BGP2 and BGP3, i.e., graphs of sets of triple patterns.

(b)
v1 a c1

v2 p2 v1

v1 p11 v16

(c)
v2 v1

v16

c1a
p11

p2

v3 a c1

v4 p2 v3

v5 p3 v4

v6 p4 v5

v6 p5 v7

v5 p6 v8

v8 p7 v9

v9 p8 v10

v4

v5 v6 v7

v8 v9 v10

v3 c1ap2
p3

p4 p5
p6

p7 p8

v12 a c1

v13 p2 v12

v14 p3 v13

v15 p4 v14

v15 p5 v16

v14 p9 v17

v14 p10 v18

v13

v14 v15 v16

v17 v18

v12 c1ap2
p3

p4 p5
p9

p10

A.2. Build linegraphs: L1, L2 and L3 of precedent BGPs

p2 t1

p11

l2

l1

l2
l1 l0

l0(d)
l0 “ subject-subject

l1 “ subject-object

l2 “ object-subject

l3 “ object-object

p2 t1

p3

p4 p5

p6

p7 p8

l2

l1l1

l2

l1

l2

l0

l0
l0 l0 l2

l1

l2

l1

l2

l1

p2 t1

p3

p4 p5

p9

p10

l2

l1l1

l2

l1

l2

l0

l0

l2 l1

l0 l0 l2
l1

l0
l0

l0

l0

Fig. 2. Illustration of processes A.1 and A.2 to build the linegraphs L1, L2 and L3 of their BGP BGP1, BGP2 and BGP3 extracted of queries q1,
q2 and q3.

As for the arcs, four types of arcs are considered to express
the four possible joins between two triple patterns in a BGP
sharing a common vertex (object or subject). We named
these joins: subject-subject, subject-object, object-subject and
object-object. An x-y (for x, y either subject or object, or
both) join is used when the vertex common between the two
triples is an ”x” for the first triple pattern, and a ”y” for the
second. Arcs are then labeled as follows: l0“subject-subject,
l1“subject-object, l2“object-subject, l3“object-object.

Illustration. We illustrate the concept of a BGP associated
with a set of triple patterns and its associated linegraph in Fig-
ure 2. In the first column of Figure 2, (a) provides three triple
patterns forming the basic graph pattern BGP1 of the query
q1. In (b), the variable ?disease in (a) has been associated
with v1, the predicate wdt:P31 with a, the object wd:Q12136
with c1. v2, v16, p2 and p11 are similarly constructed in graph
BGP1. (c) is the same basic graph pattern but represented
graphically. From (c), the linegraph (d) can be built from the
adjacencies between arcs: each predicate is transformed into
a vertex (e.g., the predicate wdt:P2175 is transformed into
p2). To deal with the specific case of predicates of type ”is
a” wdt:P31 and its constant wd:Q12136, we create a new
vertex t1 that represents the association of wdt:P31 with
wd:Q12136. Moreover with the BGP of (c) in (d), the arc
p2 Ñ t1 has the label l2 because it replaces the vertex v1

which is the object in the triple pattern of p2 and the subject
in the triple pattern of c1. Figure 2 provides other illustrations
of linegraphs of BGPs extracted from queries.

Linegraph BGP distance. We now describe the method
designed to capture the similarities between linegraphs. For
each linegraph, we keep track of the set of linegraph arcs
that it contains. Following [24], we designed a new distance
measure between BGPs based on the Jaccard distance: LBGPD
(for Linegraph BGP Distance) computes the similarity between
the corresponding linegraphs depending on their common (i.e.,
shared) arcs.

We next describe how we compute the Hierarchical Clus-
tering of BGPs that will provide an organized representation
of the common linegraphs.

C. BGPHC: BGP Hierarchical Clustering

A divisive hierarchical fuzzy clustering. To compute
snippets, we use a BGP Hierarchical Clustering, in short
BGPHC, in the spirit of the divisive hierarchical fuzzy clus-
tering of [22]. In the hierarchical clustering, each computed
cluster is a set of linegraphs that share arcs. Each cluster
is characterized by a set of common arcs. This defines the
hierarchy. The clustering is fuzzy because a given linegraph
may share arcs with different linegraphs, so may belong to
several clusters. Since the number of clusters in the result
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Fig. 3. An example of Basic Graph Pattern Hierarchical Clustering built (BGPHC) during the process A.3 from the three basic graph pattern BGP1, BGP2

and BGP3 of figure 2.

Algorithm 1 BuildBGPHC(Q): Φ
Input: Q is the set of all the known SPARQL queries
Output: Φ is the BGPHC of Q

1: BGP Ð EXTRACTBGPpQq, L Ð BUILDLINEGRAPHSpBGPq

2: Lc0 Ð ∅, L0 Ð L, LA
0 Ð ∅

Ź Create the tree with the root vertex. Each vertex is a 3-tuples.
3: Φ Ð new TreepTuple3pLc0, L0, L

A
0qq

4: v0 Ð ROOTpΦq

5: C Ð LINEGRAPHCLUSTERINGpL0, v0q Ź set of clusters
6: ADDCHILDRENpvroot, Cq

7: RECBUILDBGPHCpΦ, v0q

8: return Φ
9: procedure RECBUILDBGPHC(Φ, vp)

Ź vp P V current position in Φ
10: if CHILDRENpvpq ‰ ∅ then
11: for all vc P CHILDRENpvpq do
12: if |Lpvcq| ą 1 then
13: C Ð LINEGRAPHCLUSTERINGpLpvcq, vcq

14: ADDCHILDRENpvc, Cq

15: RECBUILDBGPHCpΦ, vcq

16: end if
17: end for
18: end if
19: end procedure

of BGPHC is unknown a priori, we use an unsupervised
clustering. Last, we follow a divisive method, that is, starting
with a single cluster containing all linegraphs, we recursively
split the clusters until completion. Such a divisive method
allows building the hierarchical clustering and the common
sub-linegraphs of BGPs from the most shared to less shared.

The recursive hierarchical clustering algorithm. Al-
gorithm 1 is a recursive clustering algorithm which finds
the (non empty) minimum common arc subgraphs necessary
to encompass a maximum number of linegraphs in each
computed cluster. In each cluster vi (each vertex of the cluster
structure), we name Lcpviq the common sublinegraphs, that is,
the subgraphs of the linegraphs sharing at least one arc.

The recursive clustering algorithm. Algorithm 2 com-
putes the clustering. Each clustering is computed from the
cluster computed at the previous level, noted vp. During the
computation of each current cluster, three data structures are
built (for optimization). They respectively store, for each vi,

‚ Lcpviq,
‚ LApviq the complement of Lpviq defined as follows

LApviq “ tL P Lpvpq Ď L | L R Lpviqu (1)
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A.1. Extract the BGPs
of all known queries

Known
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Fig. 4. Workflow of SPARQLets-Finder where A.1-3 builds a BGPPHC and B.1-4 calculate snippets for a query.

‚ Lpviq, the set of linegraphs sharing at least one arc with
a computed common linegraph Lcpviq.

The algorithm takes in Lpvpq, the set of linegraphs of
the cluster computed at the previous level. The algorithm
first computes the minimal number of (non empty) common
linegraphs, maximizing the number of clusters. Next, it finds
the minimum (non empty) common arc subgraphs necessary
to encompass a maximum of linegraphs in each found cluster.
The clustering takes in Lcpv0 Ñ vpq, the union of the common
linegraphs computed at the precedent level, from the root
vertex v0 to the precedent cluster computed vp:

Lcpv0 Ñ vxq “

vx
ď

y“v0

Lcpvyq (2)

The program computing Lcpv0 Ñ vpq will be reused in the
next section to compute snippets.

Illustration. In the BGPHC of Figure 3, the original set of
linegraphs, noted L, has three linegraphs. The starting point is
represented in (a) with all linegraphs in the same initial cluster
Lpv0q. In (b), the common subgraphs in a cluster Lcpviq have
been computed and are represented. In (c), the final clusters
are represented. In this example, each final cluster is composed
of only one single linegraph.

We next illustrate how to use BGPHC and the LBGPD
measure to suggest SPARQL snippets, using a workflow that
we call SPARQLets.

D. SPARQLets-Finder

SPARQLets-Finder sequences operations in a workflow, de-
scribed in Figure 4 to compute snippets to help a user write
a query. We start with illustrating the process of snippets
construction and explaining how they are found by BGPHC.

In B.1 of Figure 5, the first step, BGP0 is extracted from the
query being designed as input. The BGP is selected depending
on the focus position in the query editor. We use an ANTLR4
parser to extract it in B.1. and also in step A.1. to extract
all BGPs of the queries in the knowledge base. We chose to
develop our own parser for the official SPARQL grammar [10]
to parse even in presence of errors in the (partial) query
submitted.

In B.2., the linegraph of the input BGP is computed, noted
LBGP0 “ LpBGP0q.

In B.3., Algorithm 3 on the directed tree of BGPHC is used
to detect snippets. Each path between a vertex and the root
constitutes a potential linegraph to build one snippet.

Algorithm 2 LinegraphClustering(L, vp): C
1: C Ð ∅

Ź Compute the number of clusters
2: for all L P L do
3: addInACluster Ð FALSE
4: ∆L Ð LzLcpv0 Ñ vpq Ź remove precedent Lc

5: if (∆L ‰ ∅) then
6: for all C P C do
7: dJ ÐJδ(LcpCq,∆L)
8: if dJ ă 1 then
9: L1

c Ð LcpCq X ∆L
10: L1

Ð LpCq Y tLu

11: UPDATEpC, Tuple3pL1
c, L

1, LA
pCqqq

12: addInACluster Ð true
13: else
14: L1A

Ð LA
pCq Y tLu

15: UPDATEpC, Tuple3pLcpCq, LpCq, L1A
qq

16: end if
17: end for
18: if not addInACluster then
19: ADDNEWCLUSTERpC, Tuple3p∆L, tLu,∅qq

20: end if
21: end if
22: end for

Ź Compute the definitive clusters
23: for all L P L do
24: ∆L Ð LzLcpv0 Ñ vpq

25: if (∆L ‰ ∅) then
26: for all C P C do
27: if L R pLA

pCq Y LpCqq then
28: dJ ÐJδ(LcpCq,∆L)
29: if dJ ă 1 then
30: L1

c Ð LcpCq X ∆L
31: L1

Ð LpCq Y tLu

32: UPDATEpC, Tuple3pL1
c, L

1, LA
pCqqq

33: else
34: L1A

Ð LA
pCq Y tLu

35: UPDATEpC, Tuple3pL1
cpCq, L1

pCq, L1A
qq

36: end if
37: end if
38: end for
39: end if
40: end for
41: return C
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In input, a SPARQL query:
SELECT *

WHERE {
?disease wdt:P31 wd:Q12136 .

?drug wdt:P2175 ?disease .|

}

B.1. Extract current basic graph pattern: BGP0

v1 a c1

v2 p2 vv3

v2 v1 c1ap2

B.2. Build linegraph LBGP0
“ LpBGP0q p2 t1

l2

l1

B.3. Search linegraphs of snippets

Where dJi “ JaccardδpLcpv0 Ñ viq,LBGP0q

v0

v1

v2

v3

v4 v5

dJ1 ď dJ0

dJ2 ą dJ1 dJ3 ą dJ1

Do not go further after v3.
The collection of snippets stops

after the first divergence.

Linegraphs found:
Lcpv0 Ñ v2q

p2 t1

p11

l2

l1

l2
l1 l0

l0

Lcpv0 Ñ v3q

p2 t1

p3

p4 p5

l2

l1l1

l2

l1

l2

l0

l0

B.4. Build snippets

Substract with LBGP0 in input and reverse to a BGP:
Lsnippet1 “ Lcpv0 Ñ v2qzLBGP0

p2 t1

p11

l2
l1 l0

l0

BGPsnippet1

v1 a c1

v1 p11 v2

v3 p2 v1

Lsnippet2 “ Lcpv0 Ñ v3qzLBGP0

p2

p3

p4 p5

l1

l2

l1

l2

l0

l0

BGPsnippet2

v1 p2 v2

v3 p3 v1

v4 p4 v3

v4 p5 v5

Remove duplicate properties, change labels of variables
and reorganize triples:
Snippet1
?disease wdt:P18 ?image .
Snippet2
?drug wdt:P2175 ?medicalConditionTreated .
?var4 p:P3354 ?positiveTherapeuticPredictorv1 .
?var4 wdt:P3433 ?biologicalVariantOf .
?positiveTherapeuticPredictorv1 ps:P3354 ?drug .

In output, the selected snippet by the user, here Snippet2,
is inserted in the initial BGP0, resulting in BGPres.
It remains for the user to improve this new query and test it:
?disease wdt:P31 wd:Q12136 .
?drug wdt:P2175 ?disease .
?drug wdt:P2175 ?medicalConditionTreated.
?var4 ?variant p:P3354 ?positiveTherapeuticPredictorv1.
?var4 ?variant wdt:P3433 ?biologicalVariantOf .
?positiveTherapeuticPredictorv1 ps:P3354 ?drug .

Fig. 5. Illustration of processes B.1-4 to calculate snippets in function the
BGPHC build with Q “ tq1, q2, q3u in Figure 3 and the set BGP0 of triple
patterns extracted of a query q R Q.

To select these paths in the tree representation of the
clustering, we use the Jaccard distance between LBGP0 and
Lcpv0 Ñ viq defined in the previous section. With these
distance values from the root v0 in the BGPHC, we walk from
vertex to vertex vi as long as the similarity increases between
the LBGP0

and Lcpv0 Ñ viq. When the similarity decreases,
the research in the tree is blocked and the destination vertices
are collected. From the set of collected vertices Vs, the
set of snippet linegraphs Ls is then computed (line 17 of
Algorithm 3).

We select the top-five from the resulting set of snippet
linegraphs based on their similarity with LBGP0

(Line 6 of
Algorithm 3). We arbitrarily limit the number of snippets to
five to reduce the computation time needed to generate the
snippets in B.4.

In B.4., the last step of this workflow, we convert the
selected linegraphs of snippets into a list of BGPs.

At this stage, we already dispose of readable snippets. Some
postprocessing is used to make them more human readable.

Algorithm 3 SearchSnippets(BGP0,Φ,K): S
Input: BGP0 of a SPARQL query, Φ the BGPHC computed by the

Algo 1 and K the knowledge on the SPARQL service of the
query to build the names of the variables.

Output: S set of suggested snippets.
Ź Jδ(La,Lb) is the Jaccard distance between La and Lb

Ź dJi “Jδ(Lcpv0 Ñ viq,LBGP0 ) and dJi P r0..1s

1: LBGP0 Ð LpBGP0q

2: v0 Ð ROOTpΦq Ź We start with the root
3: Ls Ð ∅ Ź To start, Ls is empty
4: dJ0 Ð 1 Ź Jδ(Lcpv0 Ñ v0q,LBGP0 )“ Jδ(∅,LBGP0 )“ 1
5: RECSSLpLBGP0 , Ls,Φ, v0, dJ0q

6: xLs Ð argmin
LsPL1

sĎLs,|L1
s|ď5

sortpJδpLs,LBGP0qq

7: S Ð BuildSnippetpxLs, BGP0,Kq Ź Convert L to BGP
8: return S
9: procedure RECSSL(LBGP0 , Ls,Φ, vp, dJ )

10: Vchilds Ð CHILDRENpΦ, vpq

11: if Vchilds ‰ ∅ then
12: for all vi P Vchilds do
13: dJi ÐJδ(Lcpv0 Ñ viq,LBGP0 )
14: if dJi ď dJ then
15: RECSSLpLBGP0 , Ls,Φ, vi, dJiq

16: else if dJi ą dJ then
17: Lsnippet Ð Lcpv0 Ñ viqzLBGP0

18: Ls Ð Ls Y tTuple2pdJi,Lsnippetqu

19: end if
20: end for
21: else
22: if dJ ă 1 and dJ ­“ 0 then
23: Ls Ð Ls Y tTuple2pdJ ,Lsnippetqu

24: end if
25: end if
26: end procedure

The next section presents an evaluation of this approach,
both quantitatively and qualitatively (evaluation by scientists).
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Fig. 6. We deployed two approaches in our LinkedWiki SPARQL editor to do a quantitative evaluation.
During a query writing, a real user can see and chose one snippet of two different approaches: to left,
SPARQLets-Finder and to right, ”Full-text search”.
See the editor with this query: https://io.datascience-paris-saclay.fr/exampleInsertUpdate.php?ex id=573&action=copy
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Fig. 7. Comparison between SPARQLets-
Finder and ”Full-text search”.

V. EVALUATION

In this section, we evaluate our approach both quantitatively
and qualitatively. Remind that our approach aims at helping
users design a query without requiring any knowledge of the
ontologies involved in the query.

At the time of the evaluation, the knowledge base included
1400 BGPs extracted from 580 SPARQL queries written by
humans, among which about 100 dealt with biology and
biomedecine. The quantitative evaluation provides a rough
measure of the effectiveness of the approach. Furthermore,
the qualitative evaluation demonstrates the benefits that users
can obtain from it.

A. Quantitative evaluation

We compare our technique to an alternative technique
already provided by a number of database engines, notably
SQL engines, under different names such as ”match with query
expansion” or ”like” [25]. We call it here ”full-text search”.
To capture it, in the workflow of Figure 4, we replaced Steps
B.2. and B.3. by such a full-text search.

The two techniques are deployed in the SPARQL editor. This
allows comparing the snippets produced by each. Figure 6
illustrates the suggestion of snippets that appears when a user
clicks on the light bulb icon. Each column in the pop-up

contains snippets provided by one technique. To avoid bias,
the position of the column for SPARQLets-Finder is chosen
randomly.

Tests with real users. At the time of the evaluation
(2018/09/12) with real users (about 134 query sessions),
we could measure that users selected much more often
SPARQLets-Finder than ”full-text search” (see Figure 7).

Synthetic tests. To confirm this trend, we considered syn-
thetic tests. For a particular test,

‚ the expected result BGPres is a BGP chosen randomly
in the knowledge base, and

‚ the input BGP0 is obtained by removing one or more
triple patterns from BGPres in the last position.

For comparing the snippets proposed by the two approaches
to the expected results we search for the closer snippet
to BGPres. To do this, we use the Levenshtein similarity
measure because this is the measure we tried that seemed to
best capture the result expected by humans.

In the experiments, SPARQLets-Finder proved to be better
in a large majority of cases. An exception is when the input
BGP consists of a single triple pattern, where they both behave
poorly. We intend to enrich SPARQLets-Finder to overcome the
difficulty.
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Results are presented in Figure 7 for 1700 tests with BGPs
including at least two triple patterns. They confirm the results
obtained with human users at a smaller scale. Ongoing work
on quantitative evaluation includes considering several users
simultaneously, assessing the ability of our approach to scale.

In the next section, we demonstrate the ability of
SPARQLets-Finder to actually help scientists design their
queries.

B. Qualitative

For the qualitative evaluation, we return to the running
example. We report the reactions of clinicians using the
system.

With only limited knowledge of the organization of the
data, they are now enabled to query Wikidata, the burden of
writing SPARQL queries being reduced by the autocompletion.
They appreciate the support in the management of the prefixes
(lines 1 to 9 on Figure 1) and the call to the the Wikidata
label services (lines 32 to 34 on Figure 1). The ability to
search properties and IRI using keywords also simplifies their
task in constructing queries: for example, for the identification
of the IRI of cancer (lines 13 to 14 on Figure 6), as well
as the property treats between drugs and cancer (line 16 on
Figure 6). Finally, the snippets turn out to be very helpful for
the construction of the two most complex parts of the query:
the search for positive predictors for the response (lines 18
to 23 on Figure 6), and the search for the provenance from
the biomedical literature (Snippet to left in the Figure 6). In
both cases, the snippets suggest structures that are already
constructed and helps clinicians construct their own queries
if the proposition does not already answer their need.

Figure 6 provides a snapshot where the user is provided
with two snippets by SPARQLets-Finder (left-hand side) and
two by the ”full-text search” method. The snippets provided
by SPARQLets-Finder are particularly relevant for the user.

To obtain the same advantages in other topics as well,
scientists simply need to share their queries. In the experiment
we presented here, only 100 queries sufficed. The effort thus
remains reasonable.

VI. CONCLUSION

In this paper, we have considered the problem of guiding
scientists in designing SPARQL queries, making it possible
to exploit the full richness of the RDF linked open data.
In particular, we have focused in identifying the user needs
in terms of autocompletion features and we have provided
solutions to these needs.

More precisely, our contribution is four-fold. First, we have
collected needs on autocompletion from a large set of users
and we have drawn a panorama of the current autocompletion
features provided by the main SPARQL editors to answer these
needs. Second, to answer the need expressed by users, we
have introduced the first (to our knowledge) autocompletion
approach based on snippets, able to provide users with com-
pletions of their query based on previous similar queries.
Third, we have provided an evaluation of our approach both

quantitatively, providing measures obtained on a large set of
use cases, and qualitatively, based on biomedical queries. We
have demonstrated that the snippets provided were particularly
relevant for the user to design a new query and the effort
required to learn how to use our solution remained reasonable.

Future work is planned on several directions.
First, we want to allow SPARQLets-Finder to deal with

very small queries, i.e., with BGP consisting of a single triple
pattern. The difficulty is that the linegraph for the BGP for
a single triple pattern is meaningless. To do so, we need to
introduce a new form of rankings for common sub-BGPs.

Second, we want to optimize SPARQLets-Finder. On the
one hand, for each autocompletion requires several seconds
to deliver a snippet, we are working in making it faster. On
the other hand, we also want to introduce personalization
in SPARQLets-Finder. For a particular user, we can use, for
instance, her previous queries, her level of expertise, and her
level of confidence to some collaborators. Information on the
queries known by the system, such as the domain, could reduce
the set of queries to consider and, at the same time, speed the
evaluation and improve the quality of the results.

Last, we intend to extend this work to better handle feder-
ated queries. This implies considering the SPARQL services’s
features of BGPs and thus, the relationships between the graphs
patterns of different services within the same query. Once this
step will be performed, we will be able to refine the design
of snippets focusing in the ontology schemas used by the
services.

ACKNOWLEDGMENT

This work is supported by the Center for Data Science and
funded by the IDEX Paris-Saclay (ANR-11-IDEX-0003-02)
and by the CNRS Mastodon Project QCM-BioChem.

REFERENCES

[1] K. Rafes and C. Germain, “A platform for scientific data
sharing,” in BDA, 2015.

[2] K. Rafes, S. Cohen-Boulakia, and S. Abiteboul, “Une
autocomplétion générique de sparql dans un contexte
multi-services,” in BDA, 2017.

[3] M. L. Guilly, J.-M. Petit, and V.-M. Scuturici, “Sql
query completion for data exploration,” arXiv preprint
arXiv:1802.02872, 2018.

[4] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu,
“Snipsuggest: Context-aware autocompletion for sql,”
Proceedings of the VLDB Endowment, vol. 4, no. 1, pp.
22–33, 2010.

[5] S. Abiteboul, Y. Amsterdamer, T. Milo, and P. Senellart,
“Auto-completion learning for xml,” in Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data. ACM, 2012, pp. 669–672.

[6] J. Fan, G. Li, and L. Zhou, “Interactive sql query sugges-
tion: Making databases user-friendly,” in Data Engineer-
ing (ICDE), 2011 IEEE 27th International Conference
on. IEEE, 2011, pp. 351–362.

10



[7] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query by
output,” in Proceedings of the 2009 ACM SIGMOD In-
ternational Conference on Management of data. ACM,
2009, pp. 535–548.

[8] S. Idreos, O. Papaemmanouil, and S. Chaudhuri,
“Overview of data exploration techniques,” in Proceed-
ings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data. ACM, 2015, pp. 277–281.

[9] A. Bielefeldt, J. Gonsior, and M. Krtzsch, “Practical
linked data access via sparql: The case of wikidata,”
in Workshop on Linked Data on the Web (LDOW),
2018. [Online]. Available: http://ceur-ws.org/Vol-2073/
#article-03

[10] W3C SPARQL Working Group, “Recommendations of
the W3C: SPARQL 1.1 (Protocol and RDF Query Lan-
guage),” March 2013.

[11] L. Rietveld and R. Hoekstra, “The yasgui family of sparql
clients,” Semantic Web, vol. 8, no. 3, pp. 373–383, 2017.

[12] TSO (The Stationery Office), “Flint SPARQL editor
released into semantic web community,” 2011.
[Online]. Available: http://www.tso.co.uk/news/2011/07/
flint-sparql-editor-released-semantic-web-community

[13] DERI, NUI Galway, “Prefix.cc: namespace lookup
for RDF developers,” 2010. [Online]. Available: http:
//prefix.cc/about

[14] S. Campinas, “Live sparql auto-completion,” in
Proceedings of the 2014 International Conference
on Posters & Demonstrations Track-Volume 1272.
CEUR-WS. org, 2014, pp. 477–480. [Online]. Available:
http://scampi.github.io/gosparqled

[15] OpenLink, “OpenLink iSPARQL,” 2011. [Online].
Available: https://www.openlinksw.com/isparql

[16] N. Zaki and C. Tennakoon, “Biocarian: search engine
for exploratory searches in heterogeneous biological
databases,” BMC bioinformatics, vol. 18, no. 1, p. 435,
2017.

[17] Wikimedia, “Wikidata Query,” 2018. [Online]. Available:
https://query.wikidata.org

[18] T. Gottron, A. Scherp, B. Krayer, and A. Peters, “Loda-
tio: using a schema-level index to support users infinding
relevant sources of linked data,” in Proceedings of the
seventh international conference on Knowledge capture.
ACM, 2013, pp. 105–108.

[19] M. Held and J. M. Buhmann, “Unsupervised on-line
learning of decision trees for hierarchical data analysis,”
in Advances in neural information processing systems,
1998, pp. 514–520.

[20] D. Boley, “A scalable hierarchical algorithm for unsu-
pervised clustering,” in Data Mining for Scientific and
Engineering Applications. Springer, 2001, pp. 383–400.

[21] S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gaz-
zaniga, “Cluster selection in divisive clustering algo-
rithms,” in Proceedings of the 2002 SIAM International
Conference on Data Mining. SIAM, 2002, pp. 299–314.

[22] J. Basak and R. Krishnapuram, “Interpretable hierarchi-
cal clustering by constructing an unsupervised decision

tree,” IEEE transactions on knowledge and data engi-
neering, vol. 17, no. 1, pp. 121–132, 2005.

[23] R. Q. Dividino and G. Gröner, “Which of the following
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