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Abstract

The size of publicly available data in cognitive neuro-imaging has in-
creased a lot in recent years, thanks to strong research and community
efforts. Exploiting this wealth of data demands new methods to turn the
heterogeneous cognitive information held in different task-fMRI studies
into common—universal—cognitive models. In this paper, we pool data
from large fMRI repositories to predict psychological conditions from sta-
tistical brain maps across different studies and subjects. We leverage
advances in deep learning, intermediate representations and multi-task
learning to learn universal interpretable low-dimensional representations
of brain images, usable for predicting psychological stimuli in all input
studies. The method improves decoding performance for 80% of studies,
by permitting cognitive information to flow from every study to the oth-
ers: it notably gives a strong performance boost when decoding studies of
small size. The trained low-dimensional representation—task-optimized
networks—is interpretable as a set of basis cognitive dimensions relevant
to meaningful categories of cognitive stimuli. Our approach opens new
ways of extracting information from brain maps, overcoming the low power
of typical fMRI studies.

1 Introduction

Cognitive neuro-imaging uses functional brain imaging to provide information
on the brain structures underlying mental processes. The field is accumulat-
ing neural activity responses to specific psychological manipulations—tasks or
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stimuli. The diversity of studies that probe different mental processes gives a
big picture on cognition1. Yet, most individual studies suffer from a low sta-
tistical power2. To address this issue, large-scale projects have been collecting
data from many subjects3,4. They must however focus on a small number of
cognitive tasks due to practical aspects. In contrast, establishing broad mod-
els of cognition demands data from varied cognitive tasks5. In this paper, we
pool data across many task-fMRI studies to increase both cognitive coverage
and statistical power of decoding models. Critically, our approach bypasses the
need of an overarching cognition theory to find commonalities between mental
manipulations across studies.

Characterizing the functions of given brain structures requires to analyse
brain responses across many cognitive paradigms. As pioneered by Poldrack
et al.6, this functional selectivity can be obtained in a data-driven fashion by
a decoding model that predicts mental processes from brain activity. In such a
large-scale decoding setting, covering a broader set of cognitive paradigms gives
a more precise functional description of each brain structure. Bearing this in
mind, text-based meta-analyzes from the literature capture a broad view of cog-
nitive paradigms1, but are limited in their spatial resolution7. Open repositories
of brain functional images hold the promise of very broad decoding directly at
the resolution of the images8,9. This endeavor needs new methods to enable
decoding across studies without an explicit correspondence in the mental pro-
cesses that they manipulate. We address this by adapting tools from multi-task
learning10,11 and deep learning12,13 to extract distributed brain structures which
ground decoding across studies. We show that these structures provide universal
priors of functional mapping and gather information across paradigms.

An important challenge is to build a model that generalizes in measurable
ways to new cognitive paradigms. This is fundamentally difficult as each cogni-
tive study frames a particular question and resorts to specific task oppositions
that seldom have any exact counterpart in other studies14. In particular, the
typical outcome of a cognitive fMRI study is a set of contrast brain maps, each
of which corresponds to an elementary psychological manipulation, often unique
to a given protocol. Working with pooled contrast maps requires to circumvent
the undocumented nature of protocols’ relationships. For this, labeling common
aspects of psychological manipulations across studies has been proposed to build
decoders that can describe aspects of unseen paradigms15,16. This annotation
strategy is however difficult to scale to a large set of studies as it requires ex-
pert knowledge on each study. Current cognitive ontologies17 that decompose
psychological manipulations into mental process are also limited18.

We develop multi-study decoding models that rely on the original contrasts
and their labels in each study. Instead of relabeling data into a common ontol-
ogy, we let common cognitive dimensions be extracted from data. Our guiding
hypothesis is that activation maps may be accurately decomposed into latent
atomic components that form the neural building blocks underlying cognitive
processes19. We capture such latent decomposition as the intermediate repre-
sentations of a linear neural network. These interpretable representations are
supported by trained spatial brain networks, associated with common aspects
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Figure 1: We perform inter-subject decoding using a shared three-layer model
trained on multiple studies. An initial layer projects the input images from
all studies onto functional networks learned on resting-state data. Then, a
second layer combines the functional networks loadings into common meaningful
cognitive subspaces that are used to perform decoding for each study in a third
layer. The second and third layers are trained jointly, fostering transfer learning
across studies.

of psychological manipulations across studies. Our approach overcomes the
limitations of single-study cognitive subtraction models18. It quantitatively im-
proves decoding performance for a vast majority of studies, which shows that
the functional information acquired across many studies can help decoding un-
seen paradigms. In particular, the method gives a stronger boost in statistical
power to studies with a small number of subjects.

2 Results

2.1 Method overview: a deep linear model

First, we briefly describe our approach to multi-study inter-subject decoding
(the full technical description is available in appendix A). The approach has
three main components, summarized in Fig. 1: aggregating many fMRI studies,
training a deep linear model, and reducing this model to extract interpretable
intermediate representations. Building upon the increasing availability of pub-
lic task-fMRI data, we gather statistical maps from many task studies, along
with rest-fMRI data from large repositories, to serve as training data for our
predictive model (Fig. 1a). Statistical maps are obtained by standard analy-
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sis, computing z-statistics maps for either base conditions, or for contrasts of
interest when available. The 35 studies we use provide 40,000 contrast maps.

We cast inter-subject decoding as a machine-learning classification problem.
Namely, we associate each brain activity contrast map to a predicted contrast
class, chosen among the contrasts of the map’s study. For this, we propose
a linear classification model featuring three layers of transformation (Fig. 1b).
This architecture reflects our working hypothesis: cognition can be represented
on basic functions distributed spatially in the brain. The first layer projects
contrast maps onto 512 functional units learned from resting-state data. The
second layer performs dimension reduction and outputs an embedding of the
brain activity into 128 features that are common across studies. The embedded
data from each study are then classified into their respective contrast class using
a study-specific classification output from the third layer, in a setting akin to
multi-task learning20.

With this layered model, the study-specific decoding is performed on a
shared universal low-dimensional brain representation. This representation is
made of the product of the second layer with the first layer: a linear combina-
tion of functional modules identified from resting state. The second layer and
the third layer are jointly extracted from the task-fMRI data using regularized
stochastic optimization21,22—the shared brain representation is optimized si-
multaneously with the third layer that provides decoding for every study. As
we will show, projecting data onto this representation improves across-subject
predictive accuracy, removing confounds while preserving the cognitive signal.

Finally, we perform a linear transformation of the second and third layers
to express the corresponding dimension reduction on an interpretable small set
of stable functional modules (Fig. 1c). For this, we use non-negative sparse
decompositions23 of an ensemble of models trained with different stochastic
seeds. Together, the first two layers project input data onto multi-study task-
optimized networks (MSTONs). These networks capture a general multi-study
representation of the cognitive signal contained in statistical maps.

2.2 Data and performance metrics

We apply our method on a set of 35 publicly available task-fMRI studies, listed
in Table 1; a few are acquired on cohorts of hundreds of subjects (e.g., HCP,
CamCan, LA5C), but most of them feature more common sample sizes of 10 to
20 subjects. These studies use different experimental paradigms, though most
of those recruit related aspects of cognition (e.g., motor, attention, judgement
tasks, object recognition). We measure decoding accuracy on left-out subjects
for each study, and compare the scores obtained by our model to results obtained
by simpler baseline decoders, that classify contrast maps separately for each
study, and directly from voxels. To analyse the impact of our method on the
prediction accuracy specifically for each contrast, we also report the balanced-
accuracy for each predicted class. Details are reported in appendix C.
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Figure 2: Performing joint training improves the performance of inter-subject
decoding for most studies (a). Overall, decoding from task-optimized net-
works leads to a mean improvement accuracy of 5.8%; improvement is skewed
across studies (b). Studies of typical size strongly benefit (d) from trans-
fer learning, whereas little information is gained for larger or easier to de-
code studies (c). Error bars calculated over 20 random data half-split.
?(c) shows per-contrast balanced accuracy (50% chance level), whereas per-
study classification accuracy is used everywhere else.

2.3 Improved decoding performance

Fig. 2 summarizes our quantitative results. For 28 out of the 35 task-fMRI
studies that we consider, our MSTON-based decoder brings a significant im-
provement in prediction accuracy (Fig. 2a). It improves accuracy by 17% for
the top studies, with a mean gain of 5.8% (80% experiments with net increase,
4.8% median gain) across studies and cross-validation splits (Fig. 2b). By min-
imizing a joint objective that combines training losses from every study, we
extract a second-layer representation that is efficient for many study-specific
decoding tasks; the second layer parameters therefore incorporate information
from all studies; the joint objective further permits information transfer among
the many classification heads of the third layer—predictive accuracy is improved
thanks to transfer learning. Although we have not specified how experiments
are related from a cognitive point of view, our quantitative results show that
these relations can be learned during training to improve decoding performance.

Studies with diverse cognitive focus benefit from using multi-study train-
ing. Among the highest accuracy gains, we find cognitive control (stop-signal),
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Figure 3: Training a MSTON decoder increases decoding accuracy for many
studies (see Fig. 2a). Gains are higher as we reduce the number of training
subjects in target studies—pooling multiple studies is especially useful to decode
studies performed on small cohorts. Error bars calculated over 20 random data
half-splits.

classification studies, and localizer-like protocols. Our corpus contains many of
such studies; as a result, multi-study decoding has access to many more samples
to gather information on the associated cognitive networks. The activation of
these networks is better captured, thereby leading to the observed improvement.
In contrast, for a few studies, among which HCP and LA5C, we observe a slight
negative transfer effect. This is not surprising—as HCP holds 900 subjects, it
may not benefit from the aggregation of much smaller studies; LA5C focuses on
higher-level cognitive processes with limited counterparts in the other studies,
which prevents effective transfer.

Fig. 2b shows that simply projecting data onto resting-state functional net-
works instead of using our three-layer model does not significantly improve de-
coding, although the net accuracy gain varies from study to study. Appending
a further supervised dimension reduction is thus necessary to improve overall
decoding accuracy. Functional contrasts that are either easy or very hard to
decode do not benefit much from multi-study training, whereas classes whose
balanced-accuracy is around 80% experience the highest decoding improvement
(Fig. 2c). Fig. 2d shows that the benefit of multi-study training is higher for
smaller studies, confirming that out method boosts their inter-subject decoding
performance.

On Fig. 3, we vary the number of training subjects in target studies, and
compare the performance of different decoders. We observe that the smaller the
training size, the larger the performance gain imputable to multi-study training.
Transfer learning in inter-subject decoding is thus more efficient for small cohort
studies (e.g., 16 subjects), that still constitute the essential of publicly available
task-fMRI data.
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Figure 4: Visualization of some of task-optimized networks. Our approach
allows to learn networks that are important for inter-subject decoding across
studies. These networks, individually focal and collectively well spread across
the cortex, are readily associated with the cognitive tasks that they contribute
to predict. We display a selection of these networks, named with the salient
anatomical brain region they recruit, along with a word-cloud representation of
the stimuli whose likelihood increases with the network activation.

2.4 Extracted multi-study networks

The second and third layers of our model identify a subspace of the brain images
onto which projecting helps decoding. These subspaces prove remarkably stable
across runs (see section A.6). Performing non-negative matrix factorization
over the parameters of the second layer across multiple runs finds interpretable
directions in a consensus subspace. In voxel space, these directions form multi-
study task-optimized networks (MSTONs), which constitute the extracted low-
dimensional representation of input contrasts.
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We outline the contours of the extracted MSTONs in Fig. 4a. The networks
almost cover the entire cortex, an expected consequence of the broad coverage
of cognition of the studies we gathered. Task-optimized networks must indeed
capture information to predict 545 different cognitive classes, implemented in
very diverse brain localizations. Brain regions that are systematically recruited
in task-fMRI protocols, e.g., motor cortex, auditory cortex, and primary visual
cortex, are over-segmented by MSTON, i.e., they appear in several different
networks. As capturing information in these regions is crucial for decoding
many contrasts in our corpus, the model dedicates a large part of its represen-
tation capability to it. As decoding requires comparing distributed activation,
MSTON are non-connected networks, as outlined in Fig. 4b. For instance, both
parahippocampal gyri appear together in the yellow network.

Most importantly, Fig. 4b-c show that extracted MSTON capture cognitive
information. Every network plays a significant role to classify a small subset of
contrasts. We represent with word-clouds these contrasts’ names, as specified
in the original studies (Fig. 4c). MSTON networks capture both low-level and
high-level cognitive signal. At a lower level, it identifies the primary visual
cortex, associated with contrasts such as checkerboard stimuli, and both hand
motor cortices, associated with various tasks demanding motor functions. At a
higher level, it identifies the left DLPFC and the IPS in a single network, used
to decode tasks related to calculation and comparison. It successfully delineates
the language network and the right posterior insula, important in decoding tasks
involving music24. Several networks found involve regions of the brains recruited
by wide range of tasks, such as the anterior insula and the ACC, a part of the
salience network.

2.5 Impact of multi-study training on classification maps

To better understand how multi-study training and layered architecture im-
prove decoding performance, we compare classification maps obtained using
our model to standard decoder maps in Fig. 5. Those are simple to obtain, as
our model remains a linear classifier from voxels to classes. For contrasts with
significant accuracy gains, the classification maps are less noisy and more focal.
They single out determinant regions more clearly, e.g., the fusiform face area
(FFA, row 1) in classification maps for the face-vs-house contrast, or the left
motor cortex in maps (row 2) predicting pumping action in BART tasks25. The
language network is typically better delineated by our model (row 3), and so
is the posterior insula in music-related contrasts (row 4). These improvements
are due to two aspects: First, projecting onto a lower dimension subspace has
a denoising effects on contrast maps, that is already at play when projecting
onto simple resting-state functional networks. Second, using multi-study task-
optimized networks contributes to finding sharper images. Our method slightly
decreases performance for a small fraction of contrasts, such as maps associated
with vertical checkerboard (row 5), a condition well localized and easy to de-
code. Our model renders them more distributed, an unfortunate consequence
of multi-study training.
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Figure 5: Classification maps obtained from multi-study training of decoding
models are smoother and more focal than when decoding from voxels. Relevant
brain regions are often better underlined.

In Supplementary Fig. 7, we compare the correlation between the 545 classi-
fication maps obtained using a multi-study decoder and using simple functional
networks decoders. Classification maps learned using task-optimized networks
are more correlated on average, and hierarchical clustering reveals a sharper
correlation structure. This structure is a consequence of information transfer
between decoding tasks, and partly explains the increase in decoding accuracy.
In a dual perspective, we can plot the transformation of input contrast maps
defined by the projection on task-optimized networks (Supplementary Fig. 8).
Projected data are more focal, i.e., spatial variations that are unlikely to be
related to cognition are smoothed. This offers a new angle for understanding
quantitative results (Fig. 2), as this smoothing allows decoders to generalize
better across subjects than when classifying raw input directly.

3 Discussion

Our results outline the power of training multi-layer linear models to decode
brain functional images across studies. Such a strategy brings many benefits.
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First, in practice, our approach provides a universal way to improve the accu-
racy of decoding in a newly acquired dataset. Many task-fMRI experiments
are performed on groups of less than 30 subjects. In this regime, it is highly
likely that decoding performance improves when aggregating existing studies
to the new one using a multi-study model as proposed. As the repositories
of publicly available data are progressively getting normalized and accessible,
multi-study training provides an easy-to-deploy upgrade over simple decoders.
We validated our model in a quantitative way, measuring predictive accuracy on
left-out subjects. Improvements are also qualitative, as the interpretation of de-
coding maps is made easier (Fig. 5). Pooling subjects across studies effectively
increases the training size of our model, as advocated by Poldrack et al.26. This
increases the statistical power of cognitive modelling, and brings an answer to
the reproducibility challenge outlined by Button et al.2.

Our design choices were driven by the recent successes of deep non-linear
models in computer vision and medical imaging. We were not able to increase
performance by departing from linear models: introducing non linearities in our
models leads to a drastic increase of overfitting and provides no improvement on
left-out accuracy. On the other hand, we have shown that pooling many fMRI
data sources allows to learn deeper models, although those remain linear. Stick-
ing to linear models has the further advantage of allowing easy interpretation of
decoding models. Techniques issued from the deep learning communities prove
very useful to train models that generalize well across subjects: using dropout
regularization21 and advanced stochastic gradient techniques22 proves essential
for successful transfer learning and good generalization performance.

Departing from the traditional convex models used for brain decoding makes
model interpretation challenging. For this reason, inspired by computer vision
work27, we transformed trained models (see section A.6) to uncover interpretable
cognitive networks that capture information relevant for many decoding tasks.
The predictive performance of these networks (Fig. 2 and Supplementary Fig. 6)
provides quantitative support for the assumption that the human brain is struc-
tured in various basic networks. While extracting a universal basis of cognition
is beyond the scope of any single fMRI study, training a joint predictive model on
multiple studies finds meaningful approximations of atomic cognitive functions
(Fig. 4). This is a step forward to define cognitive processes in a quantitative
manner, which remains a fundamental challenge in psychology8,28.

Multi-study decoding provides a path towards knowledge consolidation in
functional neuro-imaging: our multi-layer model can be further improved by
increasing the size of the training corpus. Gathering more task-fMRI data using
systematic pipelines should help outlining better task-optimized networks, as
they will have to extract the signal needed for decoding more diverse tasks.
Increasing standardization29 and data sharing26 in neuroimaging will facilitate
aggregating bigger corpora. To that end, we have released easy-to-use decoding
pipelines and pre-trained models at the address http://cogspaces.github.io.
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Appendix

The appendix is structured as follow: in the first section, we formalize the
learning setting and method, after describing decoding baselines. In the second
section, we perform supportive experiments to explain the observed results, and
discuss various alternatives for the model, to further support modelling choices.
Finally, we provide reproduction details, along with data and software notes.
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Notations. We denote scalars, vectors and matrices using lower-case, bold
lower-case and bold upper-case letters, e.g., x, x and X. We denote the elements
of X by xi,j and its rows by xi. We write xj a value that is specific to study
number j. We denote x̄ a value built from an ensemble of value (xs)s. Finally,
we write [l] the set of integers ranging from 1 to l.

14



A Detailed methods

We describe in mathematical terms the multi-layer decoder at the center of our
method and provide supporting experiments. We start by formalizing the joint
objective loss and the model training process.

A.1 Inter-subject decoding setting

We consider N task functional MRI studies (detailed in section C.3), on which
we perform inter-subject decoding. In study number j, nj subjects are made
to perform one (or sometimes several) tasks. Acquired BOLD time-series are
registered to a common template using non-linear registration, after motion and
slice-timing corrections. BOLD time-series are then fed to a standard analysis
pipeline, which fits a linear model relating the design matrix of each experiment
to the signal in every voxel. We use the nistats library1 for this purpose. From
the obtained beta maps, we compute z-statistics maps, either associated with
each of the base conditions (stimulus or task) of the experiments, or with con-
trasts defined by the study’s authors. In both cases, z-maps are labeled with
a number 1 ≤ k ≤ cj that corresponds to k-th contrast/base condition (called
contrast in the following). Overall, this produced a set of z-maps (xji )i∈[cjnj ]
living in Rp, where p is the number of voxels, associated with a sequence of
contrast (kji )i∈[cjnj ]. Inter-subject decoding proposes a model f jθ : Rp → [1, cj ]

that predicts contrast from z-maps, i.e., k̂ji , f jθ (xji ), where θ is learned from
training data, and the performance of the model is assessed on left-out subjects.

A.2 Baseline voxel-space decoder

Baseline decoders are linear classifier models defined separately for each study
j, which take full brain images as input. For every input map xi in Rp, we
compute the logits li in Rc as

li(W , b) , Wxi + b,

where W ∈ Rc×p and b ∈ Rc are the parameters of the linear model to be
learned for study j—we drop the superscript j in this paragraph and the next
for simplicity. Logits are transformed into a classification probability vector
using the softmax operator. At test time, we predict the label corresponding to
the maximal logit, i.e., ŷi = argmax1≤y≤c li,y. The model is trained on the data
(xi, yi)i∈[n] by minimizing the `22 regularized multinomial classification problem

min
W∈Rc×p

b∈Rc

− 1

n

n∑
i=1

(
li,yi(W , b) + log(

c∑
k=1

exp li,k(W , b))
)

+ λ‖W ‖2F , (1)

where ‖ · ‖2F is the Frobenius norm, that computes ‖W ‖2F ,
∑c,p
i,j=1 w

2
i,j .

1nistats.github.io
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A.3 Baseline dimension reduced decoder

A variant of the voxel-based decoders is obtained by introducing a first-layer di-
mension reduction learned from resting-state data. This amounts to computing

li(V , b,D) , V Dxi + b,

where V in Rc×k forms the classifying weights of the model, and the matrix D
in Rk×p is assigned during training to functional networks learned on resting-
state data, as detailed in section A.5. Multiplying input data by D projects
statistical images onto meaningful resting-state components, in an attempt to
improve classification performance and reduce computation cost, akin to the
methods proposed in Smith et al.30, Yeo et al.31. The model is trained by
solving the convex objective (1) separately for each study, replacing W by V
in Rc×k:

min
V ∈Rc×k

b∈Rc

− 1

n

n∑
i=1

(
li,yi(V , b,D) + log(

c∑
k=1

exp li,k(V , b,D))
)

+ λ‖V ‖2F . (2)

Our results (Fig. 2c) show that decoding from functional networks is not
significantly better than decoding from voxels directly. For both baselines, the
parameter λ is found by half-split cross-validation. Training is performed using
a L-BFGS solver32. We use non standardized maps (xi)i as input as we observed
that standardization hinders performance.

A.4 Three-layer model description

Our three-layer model adds a second shared linear layer in between the projec-
tion on functional networks and the classification models. We still have

lji (W
j , bj) , W jxji + bj ,

for every z-map i and study j. However, we introduce a coupling between the
various parameters (W j)j∈[N ] of each study: they should decompose on on
common basis LD, where L is estimated from the whole corpus of data, and D
is the resting-state dictionary presented above. Formally, we assume that there
exist a matrix L in Rl×k with l < k < p, and a set of matrices (U j)j∈[N ] so that
for all j ∈ [N ], the classification weights of (1) writes

W j , U jLD, where U j ∈ Rc
j×l. (3)

The matrix D corresponds to the first-layer weights pictured in Fig. 1, L to
the second-layer weights, and (U j , bj)j to the various classification heads of the
third layer. In this work, we choose k ≈ 512 and l = 128. While D remains fixed,
the second-layer matrix L and the N classification heads (U j)j∈[N ] are jointly
learned during training, a necessary step toward improving decoding accuracy.
The “shared-layer” parameterization (3) is a common approach in multi-task
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learning10,11, and should allow transfer learning between decoding tasks, under
certain conditions. In our setting, both the data distribution from the different
studies and the classification task associated with each study differ—this is a
particular case of inductive transfer learning2, described by Pan & Yang20.

Without refinement nor regularization, we seek a local minimizer of the
following non-convex objective function, which combines the classification ob-
jectives (1) from all studies, with parameter sharing:

min
L∈Rl×k

(Uj ,bj)j

−
N∑
j=1

(nj)β

nj

nj∑
i=1

(
lji,yi(U

j , bj ,L)− log(

cj∑
k=1

exp lji,k(U j , bj ,L))
)
, (4)

where the dependence on D is left implicit. The scalar β in [0, 1] is a parame-
ter that regulates the importance of each study in the joint objective, that we
further discuss in section B.5. We solve the problem (4) using stochastic opti-
mization. Namely, at each iteration, we compute an unbiased estimate of the
objective (4) and its gradient with respect to the model parameters, in order to
perform a stochastic gradient step. For this, we randomly choose the study j
with a probability proportional to (nj)β , and consider a mini-batch of z-maps
(xji )j∈B that we use to compute the unbiased objective estimate

− 1

B

n∑
i=1

−
(
lji,ki log(

c∑
k=1

exp lji,k)
)
, (5)

from which we compute gradients with respect to L, U j and bj .
We observe that minimizing (4) leads to strong overfitting and low perfor-

mance on left-out data, with performance similar to fitting (1) without regular-
ization, separately for each study. Adding `2 regularization to the second and
third layer weights gives little benefit, as we discuss in section B.2.3. On the
other hand, introducing Dropout21 during training alleviates the overfitting is-
sue and allows transfer learning to occur. Dropout is a stochastic regularization
method that prevents the weights from each layer to co-adapt by perturbating
them with multiplicative noise during training. It ensures that the information
is well spread across coefficients rows and columns33. In our case, this favors
transfer learning, as it ensures that no single row of L, or in plain words no task-
optimized network, becomes dedicated to a single study. We further compare
the different methods that we can use to foster transfer of information between
studies in section B.2.

We use the variational flavor of Dropout34 to make the dropout rate for
every study adaptive. This slightly improves performance compared to binary
Dropout: every decoding task requires a different level of regularization, depend-
ing on the size of the study and the hardness of the task, and it is beneficial to
estimate it from data. In details, during training, at every iteration, for every in-
put sample i of a mini-batch from study j, we randomly draw two multiplicative

2This case is less studied than the classical multi-task setting where input data are single-
source but learning tasks are multiple.
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noise matrices

MD = Diag([bD,t]t∈[k]), M j
L = Diag([bL,t]t∈[l]),

where bD,t ∼ N (1, α) and bL,t ∼ N (1, αj), with α fixed and αj estimated from
data.3 We then compute the noisy logits

lji , U jM j
LLMDDxji + bj ,

and use these to compute the loss (5), to which we add a regularization term
that regulates the learning of αj , introduced by Molchanov et al.35. We compute
the gradient with respect to L, U j , bj using the local reparametrization trick34.
We refer to Molchanov et al.35 for more details on variational Dropout and a
Bayesian grounding of this approach.

Optimization is performed using Adam22, a flavor of stochastic gradient de-
scent that depends less on the step-size. We use batch normalization36 between
the second and third layer, as it slightly improves performance—it reduces po-
tential negative transfer learning—and training speed.

A.5 Resting-state data

As mentioned above, we use resting-state data to compute the first-layer weights
D in Rk×p, where k = 512. We consider data from the HCP900 release, and
stack all records to obtain a data matrix X in Rn×p. We then use an online
solver37 to solve the sparse non-negative matrix factorization problem

A,D , argmin
D∈C,A∈Rk×n

‖X −AD‖2F + λ‖A‖2F , (6)

where the constraint C =
{
D ∈ Rk×p,D ≥ 0, ‖dj‖1 ≤ 1∀ j ∈ [k]

}
enforces every

dictionary component to live in the simplex of Rp, ensuring sparsity and non-
negativity of the functional networks. The sparsity level is chosen so that the
functional networks D cover the whole brain with as little overlap as possible.

Second-layer initialization. To initialize the weights of the second layer,
we learn a smaller dictionary Dl in Rl×p as in (6), where l = 128. We then
compute the initial weights Ll so that Dl ≈ LlD using least-square regres-
sion. This way, applying the first two layers initially amount to projecting data
onto l = 128 larger functional networks Dl, which is a reasonable prior for re-
ducing the dimension of brain statistical maps. Using this resting-state based
initialization slightly improves performance, as we discuss in section B.3.

Grey matter restriction. To help interpreting the obtained model, we found
it helpful to remove from D the fraction (9%) of the functional networks com-
ponents located in the white matter and the cerebrospinal fluid areas, turning
k = 512 into k = 465. We discuss the effect of this restriction in section B.3.2.

3This Gaussian Dropout has a similar behavior to the more commonly used binary Dropout
with parameter p = α

α+1
.
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A.6 Model introspection with ensembling

Given any invertible matrix M in Rl×l, the non-regularized version of the ob-
jective (4) is left invariant when transforming L into ML and each U j into
U jM−1. This prevents us from interpreting the coefficients of L at the end of
the training procedure, and to retrieve relevant networks by reading the weights
of the second weight. The only aspect of L that remains unchanged after a linear
parameter transformation is its span. Dropout regularization, which favors the
canonical directions in matrix space21, should break this symmetry, but does
not help to uncover meaningful directions in the span of L in practice.

On the other hand, we found that this span was remarkably stable across
runs on the same data, whether when varying initialization or simply the order in
which data are streamed during stochastic gradient descent. More precisely, we
trained our model 100 times with different seeds, and concatenated the weights
(Lr)r of the second-layer into a big matrix L̄. We performed a SVD on this
matrix, and observed that the first l = 128 components captured 98% of the
variance of L̄ when using the same initialization but different streaming order,
and 96% when also using a different random initialization. Despite the many
local minima that objective (4) admits, the span of L thus remains close to
some reference span that we can extract with a matrix factorization method.

The above remark suggested the following ensemble method. We run the
learning algorithm r = 100 times, and store the weights (Lr)r of the second
layer for each run, along with the average matrices and biases

W̄ j =
1

r

r∑
N=1

U j
sLs b̄j =

1

r

r∑
N=1

bjr, ∀ j ∈ [N ],

that combine the second and third-layer weights and biases for each study j and
run N , and average them across runs. We then stack the second-layer weights
(Lr)r into a fat matrix L̃ ∈ Rl r×k on which we perform sparse non-negative
matrix factorization. Namely, we compute L̄ ∈ Rl×k, the new weight matrix for
the second layer, solving

L̄ , argmin
L∈C

min
K∈Rl r×l

1

2
‖L̃−KL‖2F + λ‖K‖2F ,

where C =
{
L ∈ Rl×k,L ≥ 0, ‖lj‖1 ≤ 1∀ j ∈ [l]

}
and λ regulates the sparsity of

L̄—performance little depends on λ provided it leads to finding L̄D with more
than 50% non-zero voxels (section C.1). Finally, we compute new weights Ū j

for all the classification heads of the third layer, so that W̄ j ≈ Ū jL̄, from a
least-square point of view, for each study j. The new model is then formed of
parameters D, L̄, (Ū j , b̄j)j∈[N ]. In plain words, we obtain sparse non-negative
second-layer weights L̄, and define from these weights a new model that is as
close as possible to the ensemble of all learned models

{
D,Ls, (U

j
s , b

j
s)j
}
N∈[r]

.

The rows of L̄ are now interpretable separately, as the non-negative and
sparse constraints have broken the inherent parameter invariance of the original
model. The rows of L̄ hold the coefficients for combining resting-state networks
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held in D into l multi-study task-optimized networks L̄D in Rl×p. We initialize
the sparse NMF algorithm with the weights Ll computed in section A.5, to inject
a small prior regarding final MSTON distribution: before running NMF, those
are set to LlD ≈Dl, i.e., are close to large resting-state functional networks.

We observed that directly enforcing negativity/sparsity over L during the
training of the model led to a strong loss in accuracy. Finding a consensus
model through a post-hoc ensembling transformation thus proves to be the right
solution for obtaining both performance improvement and interpretability.

B Discussion on the model design

In this section, we discuss various choices made for designing our model and
training procedures. To this end, we perform diverse quantitative and qualita-
tive comparisons of model variants.

B.1 Understanding the role of task-optimized networks

We first propose several measurements and experiments that allow to better
understand how the dimension reduction performed by projecting on multi-
study task-optimized networks brings quantitative improvements in decoding.

B.1.1 Performance of separately trained networks

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

2nd layer trained
on N - 1 studies
3rd layer trained
on target study

2nd + 3rd layer
trained on
N studies jointly

Variant

Voxel

Main
model

Figure 6: Quantitative improvement linked to training the model on the join
objective (4), versus improvement linked to transfer in the second-layer only.
Box plots calculated over 20 random data half-split and all studies.

We argue that using the joint objective (4) improves decoding performance
because the data from every study influences the model weights in both the
second layer and all components of the third layer. This can be measured as
follows. We compare the performance of learning task-optimized networks on
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all studies but a target one, before using the second layer as a fixed dimension
reduction for fitting a decoder from the target (unobserved) study. Using this
technique, information transfer from the corpus to the new study can only be
imputed to the fact that the second layer has captured a dimension reduction
for brain images that is efficient for decoding in general. In other words, the task
optimized networks learned on N - 1 studies form a universal prior of cognition
that generalizes to new paradigms.

We observe in Fig. 6 that decoding cognitive processes from externally
learned MSTON indeed performs better than decoding from voxels (3.7% mean
accuracy gain, 67% experiments with net increase4). On the other hand, it
performs worse than training a low-dimensional representation of brain images
using all studies, including the target one, during training (1.9% mean accuracy
gain, 75% experiments with net increase). This can only be explained by the
fact that joint objective also fosters transfer between the classification heads of
the third layer during training.

B.1.2 Distance between classification maps

We explore how the model induces structure among classification maps, which
partially explains how transfer learning operates. In Fig. 7, we compare cor-
relation between classification maps obtained with our model and the baseline
decoder. The absolute correlation between classification maps within and across
studies is higher on average. This is because the whole classification matrix is
low-rank and influenced by the many studies we consider—the classification
maps of our model are supported by networks relevant for cognition. As a
consequence, it is easier to cluster maps into meaningful groups using hierar-
chical clustering based on cosine distances. For instance, we outline inter-study
groups of maps related to left-motor functions, or calculation tasks. Hierarchi-
cal clustering on baseline maps is less successful: the associated dendrogram is
less structured, and the distortion introduced by clusters is higher (as suggested
by the smaller cophenetic coefficient). Clusters are harder to identify, due to
a smaller contrast in the correlation matrix. Multi-study training thus acts as
a regularizer, by forcing maps from each study to be more correlated to maps
from other studies.

B.1.3 Effect of brain-map dimension reduction

In a dual perspective, we study the effect of the reduction induced by reducing
the dimension of the input data with the first two linear layers. We set M = L̄D
in Rl×p to hold the task-optimized networks on each row, and compute, for all
input statistical map x in Rp, the projection of x onto span(M), namely

xproj = MT (MMT )−1Mx ∈ Rp.
4Due the fact that half-split folds are overlapping and performance betweens studies are

interacting, model comparison experiments are not independent. This suggests to report the
amount of advantageous model comparisons instead of classical null hypothesis testing, that
assumes independence of trials.
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Figure 7: Cosine distances between classification maps, obtained with our
multi-study decoder (top) and with decoders learned separately (bottom), clus-
tered using average-linkage hierarchical clustering. The classification maps ob-
tained when decoding from task-optimized networks are more easily clustered
into cognitive-meaningful groups using hierarchical clustering—the cophenetic
coefficient of the top clustering is thus higher.

xproj is thus a denoised, low-dimensional representation of the brain map x, held
in the span of the l multi-study task-optimized networks held in matrix M . We
compare different maps x to their projection xproj in Figure 8.
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L RFace vs house
Haxby et al.63

B-accuracy: 99.4%
B-acc. gain: +6.9%

Contrast label

L RPumps vs control
Schonberg et al.25

B-accuracy: 73.1%
B-acc. gain: +5.6%

L R
Language vs sound

Pinel et al.69

B-accuracy: 76.6%
B-acc. gain: +4.6%

L R
Complex vs simple music

Cauvet et al.54

B-accuracy: 75.5%
B-acc. gain: +0.8%

L RVertical checkerboard
Papadopoulos O. et al.68

B-accuracy: 95.5%
B-acc. gain: -1.0%

x = 25, z = -12

Contrast label

Input data transformation

Raw z-map

x = -44, z = 53

x = -54, z = -8

x = -52, z = 42

y = -96, z = 16

Figure 8: In a dual perspective to Fig. 5, the representation of input data on
task-optimized networks is simpler and therefore easier to classify.

B.2 How to induce transfer learning ?

We now discuss the various way in which we can foster information sharing
across studies in training our multi-layer model.

B.2.1 The need for objective coupling

Without modification nor constraint on the second layer output size l, we cannot
expect to observe any transfer learning by solving the joint objective (4). Indeed,

in the general case where we allow l ≥ c ,
∑N
j=1 c

j , we let (Ṽ j , bj)j be the

unique solutions of the N non-regularized convex problems (2). We let Ṽ ∈ Rc×k
be the vertical concatenation of (V j)j . We then form the matrices

L =

[
Ṽ

 ∈ Rl−c×k

]
∈ Rl×k and

U
1

...
UN

 ,
[
Ic ∈ Rc×c, ∈ Rl−c×l

]
, (8)

where Ic is the identity matrix of Rc×c. L is thus split into row-blocks (Ṽ j)j ,
dedicated to and learned on single studies. It follows from elementary consid-
erations that the matrices (L, (U j , bj)j) form a global minimizer of (4), that is
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formed from the solutions of the separated problems (2). It is therefore possible
to find solutions of (4) for which no transfer occurs. Two modifications of the
objective (4) allows to enforce transfer: Dropout regularization and low-rank
constraints, that we present and compare.

B.2.2 Dropout as a transfer incentive

First, as presented in appendix A, we can use Dropout between the second layer
weight L and the third layer head weights U j . Dropout prevents constructions
of block-separated solution of objective (4) similar to the one proposed in (8).
Indeed, every reduced sample LDxji fed to the third layer classification head j
can see any of his features corrupted by multiplicative noise ML during training.
This pushes the model to capture information relevant for all studies in every
activation of the second layer. In other word, the projection performed on
any task-optimized network lhD, for h ∈ [l] should be relevant for decoding
every study. This fosters transfer learning as L carry multi-study aggregated
information at the end of training, unlike in (8).

B.2.3 Transfer through low-rank constraints/penalty

A second approach to transfer is to force the matrices

V ,

V
1

...
V N

 ,

U
1

...
UN

L,

formed of the parameters of the joint objective (4) to be low-rank. In this case,
the subspace of Rc×k in which V evolves is strictly smaller than Rc×k, and we
cannot always find a global minimum of the joint objective (4) formed with the
solutions Ṽ of the separate objectives (2), as we did in the construction (8). As
a consequence, the data from studies truly influence the solutions (L, (U j , bj)j)

of (4), and transfer is theoretically possible.
The low-rank property may be enforced in two ways. First, we may set it

as a hard constraint, setting l < c in the joint objective (4). This is in practice
what we do when selecting l = 128, as c = 545 in our experiments.

Alternatively, following Srebro et al.38, we may resort to a convex objective
function parameterized by V in Rc×k, that penalizes the rank of V . We learn
V j in Rcj×k for all study j in [N ] solving the joint objective

min
(V j ,bj)j

−
N∑
j=1

(nj)β

nj

nj∑
i=1

(
lji,yi(V

j , bj)− log(

cj∑
k=1

exp lji,k(V j , bj))
)

+ λ
∥∥∥[V 1> . . .V N>

]∥∥∥
?
, (9)

where ‖V ‖? is the nuclear norm of V , defined as
∑min(c,k)
i=1 σi(V ), where (σi(V ))i

are the singular values of V . The nuclear norm is a convex proxy for the rank of
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matrix V . As a consequence, the rank of the solution decreases from min(c, k)
to 0 as λ increases. The objective (9) is solvable using proximal methods, e.g.,
FISTA39. However, these methods become unpractical when c becomes large—
it requires to perform a c × c singular value decomposition at each iteration.
Fortunately, there exists a non-convex objective40, amenable to stochastic gra-
dient descent41, that includes the solution of (9) as a minimizer. It is obtained
by setting l = max(x, k) and adding `22 penalties to the objective (4):

min
L∈Rl×k

(Uj ,bj)j

−
N∑
j=1

(nj)β

nj

nj∑
i=1

(
lji,yi(U

j , bj ,L)− log(

cj∑
k=1

exp lji,k(U j , bj ,L))
)

+
λ

2

(
‖L‖2F +

N∑
j=1

‖U j‖2F
)
, where U j ∈ Rc

j×l ∀ j ∈ [N ].

We solve this objective using Adam, similarly to the main method. It is possible
to continue using Dropout in between the first and second layer while enforc-
ing V to be low-rank—this can then be understood as a regularization technique
through feature noising42.

B.2.4 Empirical comparison of transfer penalties

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Transfer via 2
regularization

Transfer via 2
regularization +
hard rank constr.

Transfer via
Dropout +
hard rank constr.

Variant

Voxel

Main
model

Figure 9: Quantitative comparison of transfer inducing regularization: dropout
with hard-rank constraints outperforms `2 regularization with and without hard-
rank constraints. Box plots calculated over 20 random data half-split and all
studies.

Both the dropout and low-rank approaches are a priori competitive to foster
transfer learning. Our final method uses a combination of both, as it enforces a
hard low-rank constraint and uses dropout. This choice was motivated by the
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experiment summarized in Fig. 9. We compare three regularization variants,
measuring the improvement due to hard low-rank constraints and the difference
between dropout and `2. The three estimators use input dropout (p = 0.25),
while dropout between layer 2 and 3 is initialized to p = 0.75 when used.5 We
observe that forcing V to be low-rank is beneficial (0.7% mean accuracy gain,
72% experiments with net increase), and that dropout regularization performs
significantly better than low-rank inducing `2 penalties (2.7% mean accuracy
gain, 79% experiments with net increase). This justifies using dropout and
hard-rank constraints for regularization.

B.3 Interpretability incentives

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Random init.
No consensus

Resting-state init.
No consensus

Random init.
Consensus model

Resting-state init.
Consensus model

Variant

Voxel

Main
model

Figure 10: Quantitative improvement linked to ensembling and resting-state
initialization in the method. Box plots calculated over 20 random data half-
split and all studies.

A core feature of our approach is model interpretability. Three aspects
allow to find cognitive meaningful task-optimized networks. First, the initial
first layer, learned on resting-state data, coarsens the resolution of networks
in a way adapted to typical brain signals. Second, we compute a consensus
model, so that the task-optimized network loadings held in L are non-negative

5 The `2 accuracy gain is an upper-bound of its actual performance when λ is set with
cross-validation, as we take the highest performing λ on the test sets. Symmetrically, we may
slightly improve results by setting dropout rates using cross-validation—we choose not to to
avoid the fragility of cross-validation in neuro-imaging43.
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Figure 11: Without interpretability refinements (a), resting-state based ini-
tialization (b) and grey matter components selection (c), some task-optimized
networks may be hard to interpret/ not relevant from a cognitive perspective.

and interpretable. Third, we initialize the second-layer weights so that LinitD
corresponds to resting-state functional networks Dl, coarser than D. This ini-
tialization is used both during the training phase and the consensus phase.
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B.3.1 Consensus model and resting-state initialization

In Fig. 10, we measure the quantitative effects of the two later factors on de-
coder accuracy. Learning a consensus model using sparse NMF is crucial for
finding interpretable direction in the span of L. Without this refinement, the
directions we obtain are similar to the one displayed in Fig. 11a, and are less
interpretable. Both the consensus phase and the resting-state initialization con-
tributes positively to the model decoding performance (0.6% mean accuracy
gain, 66% experiments with net increase). We attribute this improvement to
an ensembling effect similar to the benefits of bagging44, as the final model
summarizes 100 training runs on the same data, with different random seeds,
and to the fact that resting-state networks form a good prior for task-optimized
network.

Qualitatively, we show examples of three components found without resting-
state initialization in Fig. 11b. Two of those are scattered networks, which cap-
ture various connected components whose co-occurrence is not interpretable:
those components are likely artifacts due to random initialization. Using resting-
state initialization finds such networks much less frequently. It remains interest-
ing to note that most of the components found without resting-state based prior
bear cognitive meaning, similar to the third components displayed in Fig. 11b.

B.3.2 Effect of selecting grey-matter components

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Decoding from
all-brain
func. networks

Grey matter
func. networks

Variant

Voxel

Main
model

Figure 12: Working with functional networks located in the grey matter only
do not have a significant impact on performance. Box plots calculated over 20
random data half-split and all studies.

We project data onto a subset of 465 out of 512 functional networks learned
on HCP resting-state data, selecting the networks that intersect with an anatom-
ical grey-matter mask. This avoids finding MSTON that are distributed or
formed with non grey-matter regions. In Fig. 11c, we show that without those
precautions, our model finds networks located in the white matter and the
cerebro-spinal fluid zones. Quantitatively (Fig. 12), as expected, performing
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classification from grey-matter components only brings a non-significant perfor-
mance loss (0.03% median accuracy gain).

B.4 Effect of variational Dropout and batch normalization

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
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Adaptive Dropout
and batch norm.

Variant
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Figure 13: Batch normalization and adaptive variational dropout both have a
beneficial impact on classification accuracy of the final learned decoder. Box
plots calculated over 20 random data half-split and all studies.

We introduced variational dropout and batch normalization in the training
procedure of our algorithm. Fig. 13 shows that it is indeed beneficial. Varia-
tional Dropout brings a mean accuracy gain of 0.7% (64% experiments with net
increase) compared to binary Dropout; batch normalization benefit is smaller
but positive (0.1% mean accuracy gain, 55% experiments with net increase),
and allows faster training—in line with its original purpose36.

B.5 Effect of study weights

Our model learns the second and third layer weights by solving

min
L∈Rl×k

(Uj ,bj)j

−
N∑
j=1

(nj)β

nj

nj∑
i=1

(
lji,yi(U

j , bj ,L)− log(

cj∑
k=1

exp lji,k(U j , bj ,L))
)
,

in which the many studies can be given various weights. At one extreme, we
may consider that all studies of the corpus should be weighted the same, which
amounts to setting β = 0 in (4). At the opposite, we can consider that each
brain map from each study should have the same importance, which amounts
to setting β = 1. As Fig. 14b shows, it is beneficial to set an intermediary
β, typically β = 0.6. On the one hand, we want to give the smallest study of
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Figure 14: Impact of changing the study weight in the joint objective. Giving
more weight (β → 1) to large studies prevent negative transfer learning bu may
reduce overall performance. Small studies should not be given too much weight
(β → 0), as this voids the benefits of jointly training over bigger studies. An
intermediary β = 0.6 gives the best performances. Error bars calculated over
20 random data half-split and all studies.

our corpus a non negligible importance; on the other hand, we want the large
studies to remain more weighted than the smaller ones, as they should provide
more accurate information. Our reweighting amounts to giving every study j
an “effective sample size”

njeff =

N∑
i=1

ni
nj
β∑N

i=1 n
iβ
,

that is larger than the true sample size for smaller studies and smaller for larger
studies. We observe on Fig. 14a that the negative transfer learning endured by
large-study decoders such as HCP and LA5C reduces as these studies are given
more weight (β → 1). On the other hand, the performance on small datasets
slightly reduces for β > 0.6. It also reduces for low β, hinting at the importance
of using large studies for improving small studies decoding.

We thus have provided justifications for all the technical design choices made
in training our decoding model: regularization, joint training, training refine-
ments, choice of study weights.

C Data corpus and reproduction

In this last section, we detail our experiment pipeline, the numerical parameters
needed for reproducing this study, and the sources from which we obtained our
corpus of studies.

C.1 Software and parameters

We used nilearn45 and scikit-learn46 in our experiment pipelines, the stochastic
solver from Mensch et al.37 to learn resting state dictionaries and PyTorch47 for
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model design and training. A Python package6 is available for reproducibility
and reuse. It provides the multi-scale resting-state dictionaries extracted from
HCP, as those are costly to learn.

General cross-validation scheme. For every validation experiment and
comparison, we perform 20 half-split of all data. Namely, we consider half
of the subjects of every study for training, and test the decoder on the other
half. As two studies48 share subjects, we also ensure that no single subject
appears in both the training and the test sets across studies.

Baseline parameter selection. We cross validate the λ parameter for the
baseline multinomial regression classifiers, on a grid

{10i, i = {−3,−2,−1, 0, 1, 2, 3}}.

Dropout rate. We use a dropout rate of p = 0.25 in between the first and
second layer and initialize study-specific dropout rates with p = 0.75 in between
the second-layer and third-layer classification heads (i.e., we set α = p

1−p in

variational Dropout).

Resting-state dictionaries. We obtain the 512-components and 128 com-
ponents resting-state dictionaries by choosing λ on a grid

{10i, i = {−5,−4,−3,−2,−1, 0, 1}},

so to obtain components that cover the whole brain with minimal overlapping.

Consensus phase. We run the training procedure 100 times with different
random seeds. We set λ = 10−4, so as to obtain 80% sparsity. Higher sparsity
leads to a slight decrease in performance, lower sparsity is softer on symmetry
breaking, which may reduce interpretability. This parameter has little influence
as long as the sparsity remains higher than 50%.

C.2 Validation metrics

We used two metrics to measure the performance of our models. To compare
per-study decoding accuracy, we use the multi-class accuracy, defined as

aj =
#{i ∈ [cjnj ], ŷji = yji }

cjnj
,

for study j, where (ŷji )i∈[cjnj ] and (yji )i∈[cjnj ] encodes the predicted and ground-
truth contrasts, respectively. Box plots presented in Fig. 2 and Fig. 9–12 reports
the median and 25%, 75% quantiles of

{ajr − ajr(0), j ∈ [1, . . . , N ], r ∈ [1, 2, · · · , 20]},
6cogspaces.github.io
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where r is the half-split run index and ajr(0) is the accuracy obtained for study
j and run r using the baseline method.

We use balanced accuracy to measure the performance relative to a single
contrast y ∈ [1, . . . , cj ]. It corresponds to the average of 1) the proportion of
z-maps being correctly classified into y and 2) the proportion of z-maps being
correctly classified into other classes. This metric has the advantage of being
comparable across studies, as its chance level is always 50% no matter the
number of contrasts in the study. We recall that the balanced accuracy biy for

study j and contrast y in [1, . . . , cj ] is defined as

bjy ,
1

2

( nj

#{i ∈ [1, 2, . . . , cjnj ], ŷji = y}
+

nj(cj − 1)

#{i ∈ [1, 2, . . . , cjnj ], ŷji 6= y}
)
.

C.3 Task-fMRI studies

Table 1 recapitulates the various studies used in our corpus and provide their
sources. The names corresponds to the ones used in Fig. 2.
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Task name Source study # subjects # contrasts

Cross-language repetition priming Alvarez et al.49 13 17
High-level math Amalric & Dehaene50 30 31

Classification learning Aron et al.51 17 7
Stop-signal Aron et al.52 15 12

The Human Connectome Project Barch et al.53 787 23
Constit. struct. of sent. & music Hara et al.24, Cauvet54 35 19

BART, stop-signal, emotion Cohen55 24 23
Auditory & Visual Oddball Collier et al.56 17 8
Sentence/music complexity Devauchelle et al.57 40 25

Simon task Kelly & Milham58 7 8
Word & object processing Duncan et al.59 49 6

Weather prediction Foerde et al.60 14 14
Spatio-temporal judgement Gauthier et al.61 11 30

Spatio-temporal judgement (retake) Gauthier et al.61 13 23
Motor task & word/verb generation Gorgolewski et al.62 10 11

Visual object recognition Haxby et al.63 6 13
Face recognition Henson et al.64 16 5

Plain or mirror-reversed text Jimura et al.65 14 9
Arithmetic & saccades Knops et al.66 19 26

False belief Moran et al.67 36 7
Brainomics localizer Papadopoulos Orfanos et al.68 94 19

Localizer Pinel et al.69 78 30
Twin localizer Pinel & Dehaene70 65 34
UCLA LA5C Poldrack et al.71 191 24

Classif. learning & reversal Poldrack et al.72 13 3
Stop-signal & classification Rizk-Jackson et al.48 8 11

Stop-signal & classification (retake) Rizk-Jackson et al.48 8 11
Balloon Analog Risk-taking Schonberg et al.25 16 12

CamCan audio-visual Shafto et al.73 605 5
Mixed-gambles Tom et al.74 16 4

Incidental encoding Uncapher et al.75 18 26
Compression Vagharchakian et al.76 16 14

Emotion regulation Wager et al.77 34 26
Stop-signal w/ spoken & manual resp. Xue et al.78 20 6

Rhyme judgment Xue & Poldrack79 13 3

Gathered data 2368 545

Table 1: Studies used in our corpus.
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