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Abstract

In this paper we provide a new approach to tackle the Principal-Agent Risk-Sharing problem

using optimal stochastic control technics. Our analysis relies on an optimal decomposition of the

expected utility of the Principal in terms of the reservation utility of the Agent. In particular,

this allows us to derive the Borch rule as a necessary optimality condition for this decomposition

to hold, which sheds a new light on this economic concept. As a by-product, this approach

provides a class of risk-sharing plans that satisfy the Borch rule; class to which the optimal plan

belongs.

Keywords : Principal Agent problem; Risk-Sharing; Borch rule; Reverse Hölder inequality;
Optimal Contracting Theory.

1 Introduction

Many economic situations in the framework of optimal contracting or incentive policy design can
be gathered under the Principal-Agent formulation, where an Agent is asked to perform an action
on behalf of a Principal in exchange for a wage. A huge part of the literature is dedicated to situ-
ations where the Principal and the Agent do not have access to the same information such as the
Moral Hazard problem. To measure the impact of the asymmetry of information, it is enlightening
to compare the optimal contract with the optimal Risk-Sharing rule where the Principal dictates
the Agent’s actions and guarantees a reservation utility to him. The Risk-Sharing problem is often
thought to be easier than the Moral Hazard one since a classical methodology whose main ingredient
is the Borch rule (which has been introduced by Borch in [1] in a reinsurance setting) is available in
most simple models. However, the derivation of this rule (in the context of the Principal-Agent for-
mulation) is generally obtained through an optimisation problem which is a much stronger version
of the original one. Incidentally, both problems share the same solution in spite of their intrinsic
differences (we will elaborate on this point below).

In this paper, we provide a purely stochastic control theory approach to tackle the Risk-Sharing
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Principal-Agent problem (without any use of an alternative a priori ill-posed optimisation formu-
lation), and derive the Borch rule as an optimality condition for an optimal decomposition of the
utility of the Principal in terms of the reservation utility of the Agent. Before presenting our anal-
ysis we briefly sketch in the next paragraph, the classical methodology for obtaining the optimal
Risk-Sharing plan.

As described in Chapter 2 of [3], we study the case of a Principal wanting to delegate a task
to an Agent through a bilateral one-shot relationship, regulated through a legally enforced and
binding contract. Consider the simple one-period risk sharing problem between a Principal who
owns a firm (or a portfolio) whose wealth at maturity t = 1 is subject to uncertainty, and an Agent
to whom a wage is offered in exchange for a participation to the firm. More precisely, in order to
reduce his exposure to uncertainty, the Principal hires the Agent at time t = 0 in a take-it-or-leave-it
contract in which (if accepted) the Agent is asked to produce an effort a ≥ 0 at time t = 0 in return
for the payment of a wage W at time t = 1. The wealth of the Agent then becomes Xa at time
t = 1 with

Xa = x0 + a+B,

where x0 is the initial wealth at time t = 0 and B is a standard Gaussian random variable modelling
the stochastic exposure of the Principal. Note that in this simple model, we assume that the Prin-
cipal fully observes both the outcome Xa (at time t = 1) and the action a of the Agent, meaning
that the Principal actually dictates this action to the Agent. 1

To model the cost of effort for the Agent, we introduce a function κ defined on R+ and chosen
to be strictly convex, continuous, non-decreasing and such that its first derivative is inversible (the
reason for these hypotheses will become clear in Section 2). A simple example of such a function
is the quadratic cost function which, for a fixed constant K > 0, is defined for any x in R+ as

κ(x) = K
|x|2

2 .

As specified earlier, the contract (which from now will be modelled by the pair (action,wage)=
(a,W )) is a take-it-or-leave-it contract that will be accepted by the Agent if a Participation Con-
straint (PC) condition (or reservation utility constraint) given below is satisfied :

E [UA (W − κ(a))] ≥ UA(y0), (1.1)

where : UA stands for the utility function of the Agent, κ models the quadratic cost of effort for the
Agent as described above, and y0 ≥ 0 represents the level of requirement for the Agent to accept
the contract.

Hence, the Risk-Sharing problem (which is nothing else than the design of an optimal contract
by the Principal) simply writes as :

sup
(a,W ) subject to (1.1)

E [UP (X
a −W )] , (1.2)

where UP is the utility function of the Principal. We choose to work with exponential utility
functions both for the Principal and the Agent with respective relative risk aversion coefficients
γP > 0 and γA > 0,

UP (x) := − exp(−γPx), UA(x) := − exp(−γAx), x ∈ R.

1A typical example of such a situation is when the Agent is the Principal himself, meaning that as a manager

of the firm, the Principal decides his level of work and the salary he pays himself for it. Note that as the Principal

decides of the action of the agent, this action must be a positive effort in the firm as a < 0 would mean that the

Agent would sabotage the firm, which of course does not make any sense.
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Now that a simple context of the Risk-Sharing problem (1.2) has been recalled we move to its
resolution. A classical way of tackling it, lies in a rewriting as :

sup
(a,W )

{E [UP (X
a −W )] + λ (E [UA (W − κ(a))]− UA(y0))} , (1.3)

where λ > 0 is a Lagrange multiplier. A very tempting method consists in maximising inside the
expectation, by introducing a Lagrangian L

L(a,W ) := UP (X
a −W ) + λ (UA (W − κ(a)) − UA(y0))

and considering the problem
sup
(a,W )

L(a,W ). (1.4)

A first order optimality condition in the W variable immediately gives that :

U ′
P (X

a∗ −W ∗)

U ′
A (W ∗ − κ(a))

= λ, (1.5)

where (a∗,W ∗) is the optimal contract (if it exists).

Relation (1.5) is known as the Borch rule and was introduced by Karl Borch in a reinsurance
context ([1]). Indeed, as a step away from the classical actuarial models used at the time to design
insurance contracts, Karl Borch tackled the optimal reinsurance problem using tools from game
theory. He considered that both parties (insurer and reinsurer) were risk-averse and used a risk
sharing setting, stating in [2]: "Reinsurance contracts are based on complete confidence between
both parties. If one party has information that may be relevant in the estimation of the probability
distributions, it is considered as fraud, or breach of faith, if he does not make this information
available to the other party." One key result from his works on the reinsurance problem is this
so-called Borch rule which, from the economic point of view, states that the marginal utilities of
the Principal and of the Agent are proportional for the optimal contract when in a Risk-Sharing
situation.

This feature is well-known in the Economic literature. But if we look at it mathematically, it seems
less transparent. Indeed, whilst the Lagrange multiplier λ in both formulations (1.3) and (1.4) agree,
in (1.3) it is by nature deterministic (as we maximise expectations) whereas in (1.4) we optimise for
any possible outcomes of the contingent claim B making λ dependent of these outcomes (roughly
speaking λ is a function of B). The same comments apply to the effort a. Indeed, by the nature
of the problem, the Principal imposes an acceptable effort at time t = 0 to the Agent, so a is a
positive number independent of the outcomes of B. But the maximisation problem (1.4) does not
take into account this constraint and could possibly lead to an optimal effort a∗ which could non-
trivially depend on B. This fact is indeed well-known as a measurability issue and justifies theory
of stochastic optimal control as in general maximising an expectation and maximising inside an
expectation do not lead to the same optima. However, in this very particular case, both problems
coincide. Indeed, a first order optimality condition in a on the Lagrangian L together with the
Borch rule (1.5) gives that a∗ = argsupx∈R+

(x− κ(x)) is the optimal effort. For the quadratic

effort function mentioned above, we obtain a∗ = 1
K . And then, the Borch rule again imposes the

optimal contract W ∗ to be affine in the optimal wealth that is :

W ∗ =
γP

γA + γP
Xa∗ + β∗, (1.6)

where β∗ is an explicit constant depending on the parameters of the model, i.e. x0, y0, γP , γA and
κ. Note that the form of the optimal wage in (1.6) is exactly a Risk-Sharing rule as the Agent
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gets a fraction of the wealth of the firm plus a fixed premium β∗ which ensures the participation
constraint (1.1) to be in force.

As previously mentioned, we aim in this paper to provide a new approach for obtaining the Borch
rule in the context of the Risk-Sharing problem (with exponential utilities) and for deriving the
optimal plan. Our contribution lies in a new interpretation of the Borch rule as an optimality
condition for the original problem (1.2) without using the a priori ill-posed auxiliary formulation
(1.4). More precisely, it comes as a condition to optimally decompose the utility of the Principal
in terms of the one of the Agent, and is mathematically a geometric relation linked to the reverse
Hölder inequality. Note that we find that a family of affine contracts enjoys the geometric property
and that the optimal contract is the one which minimises the fixed salary β.

We proceed as follows. First in Section 2, we describe the Principal-Agent model in continuous
time that we consider. Our main results and our approach are given in Section 3. Finally, we collect
the proofs of our results in Section 5.

2 The continuous time risk-sharing model

We now specify the model under interest which is a a continuous-time version of the simple one
introduced in the previous section. More precisely we consider one Principal and one Agent. The
Principal will provide a unique cash flow (wage) W at maturity (denoted T ) to the Agent and
requires in exchange an action a = (at)t∈[0,T ] (that is completely monitored by the Principal) con-
tinuously in time according to the random fluctuations of the wealth of the firm. A contract will
thus be a pair (Wage,Action)= (W,a). The rigorous demonstration of our results calls for a pre-
cise mathematical framework that we give below. In particular we will impose some integrability
conditions on admissible contracts that might seem at first glance a bit artificial. Hopefully, the
optimal contract that we will derive (and that coincides with the one presented in with the classical
economic literature) belongs to this class.

We start with the probabilistic structure that is required to define the random fluctuations of
the wealth of the Principal. Let (Ω,F ,P) be a probability space on which a Brownian motion
B := (Bt)t∈[0,T ] is defined with its natural and completed filtration F := (Ft)t∈[0,T ]. We denote by
E[·] the expectation with respect to the probability measure P.

The Agent will be asked to perform an action a continuously in time, according to the performances
of the firm. Hence we introduce the set P of F-predictable stochastic processes a = (at)t∈[0,T ] and
the set of actions is given as :

H2 :=

{
a = (at)t∈[0,T ] ∈ P, s.t. E

[
exp

(
q

∫ T

0
|at|

2dt

)]
< +∞, ∀q > 0

}
.

As we will work with exponential preferences for the Agent and the Principal, we require so-called
"exponential moments" on the actions and wages. As mentioned previously, this is a technical
assumption. Given a in H2, the wealth of the principal at any intermediate t between 0 and the
maturity T is given by :

Xa
t = x0 +

∫ t

0
asds +Bt, t ∈ [0, T ], P− a.s., (2.1)

where x0 ∈ R is a fixed real number. For any action a in H2, we set FXa
:= (FXa

t )t∈[0,T ] the natural

filtration generated by Xa. In particular, we are interested in the set of FXa

T -measurable random
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variables which provides the natural set for the wage W paid by the Principal to the Agent. More
precisely, we set2

W := {FT − measurable random variables W, E[exp(q W )] < +∞, ∀q ∈ R
∗} .

Once again, the fact that we ask for so-called finite exponential moments of any (positive, respec-
tively negative) order for the action (respectively for the wage) is purely technical. As we will see,
the optimal contract will satisfy these technical assumptions.

As mentioned in the introduction, to model the cost of effort for the Agent we introduce a function
κ defined on R+ and chosen to be strictly convex, continuous, non-decreasing and such that its first
derivative is inversible. The reason for these hypotheses is the fact that the Legendre transform of
this function is key in the problem’s resolution. We denote it as κ̃ and recall that it is defined by
the relation

κ̃(p) = sup
x∈R+

(px− κ(x)) , for any p ≥ 0.

We now define
κ∗(p) = argsupx∈R+

(px− κ(x)) , for any p ≥ 0,

and a quick computation tells us that

∀p ∈ R+, κ∗(p) = (κ′)−1(p) ≥ 0.

Two values will appear many times during the paper:

κ∗(1) = (κ′)−1(1) and κ̃(1) = (κ′)−1(1)− κ
(
(κ′)−1(1)

)
.

A simple example of such a function, that we mentioned in the introduction, is the quadratic

cost function which, for a fixed constant K > 0, is defined for any x in R+ as κ(x) = K
|x|2

2 . Using
the above formulae, we know that for this function

κ∗(1) =
1

K
and κ̃(1) =

1

2K
.

Finally we define the set of admissible contracts :

C := {(W,a), W ∈ W, a ∈ H2} .

As explained in the introduction, the Agent will accept a contract (W,a) in C if and only if the
following participation participation constraint (PC) is satisfied :

E

[
UA

(
W −

∫ T

0
κ(at)dt

)]
≥ UA(y0), (2.2)

where : y0 is a given real number, κ : R+ → R models the cost of effort for the agent and is as
discussed above, and UA(x) := − exp(−γA)(x) with γA > 0 the risk aversion parameter for the
Agent. From now on we assume that parameters (y, γA) are fixed. With these notations at hand,
we can state the Principal’s problem which writes down in term of a classical Risk-Sharing problem
as follows:

sup
(W,a)∈CPC

E [UP (Xa
T −W )] , (2.3)

where UP (x) := − exp(−γPx) with γP > 0 fixed and where

CPC := {(W,a) ∈ C, (2.2) is in force}

is the set of admissible contracts satisfying the participation constraint (2.2) (we will refer to these
contracts as acceptable contracts or acceptable Risk-Sharing plans).

2
R

∗
:= R \ {0}
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3 Main results

In this section we present our approach to tackle the Risk-Sharing problem (2.3) which relies on a
decomposition of the expected utility of the Principal in terms of the one of the Agent. In particular,
we derive the Borch rule as an optimal way for performing this decomposition. We first give in the
section below a bound on the utility of the Principal and then derive the Borch rule which comes
as a necessary condition to attain this bound.

3.1 Obtaining an upper bound for the expected utility associated to any ac-

ceptable contract

Throughout this section we fix an acceptable contract (W,a) in CPC . Our goal in this section is to
give an upper bound on the expected utility of the Principal. The main idea is to make appear the
PC (2.2) in this quantity. We proceed in several steps.

Step 1 : expressing the utility of the Principal in terms of the one of the Agent
and the reserve Hölder inequality

In a first step, we express the (expected) utility of the Principal in terms of the one of the Agent.
We have :

E [UP (Xa
T −W )]

= E

[
UP

(
Xa

T −

∫ T

0
κ(at)dt

)
× exp

(
γP

(
W −

∫ T

0
κ(at)dt

))]

= E


UP

(
Xa

T −

∫ T

0
κ(at)dt

)
×

∣∣∣∣UA

(
W −

∫ T

0
κ(at)dt

)∣∣∣∣
−

γP
γA


 . (3.1)

We want to exploit the PC as its stands, that is in expectation. To get at least an upper bound of
this quantity where the left hand side of (2.2) (that is the expected utility relative to the Agent)
appears, we need some kind of Hölder inequality. However the classical Hölder inequality cannot
be applied for two reasons : first the exponent −γP

γA
of the utility of the Agent is negative; and then

the negativity of the mapping UP calls for the use of a Hölder inequality in the reverse direction.
These two features are taken into account in the so-called Reverse Hölder inequality which can be
seen as a counterpart to the classical Hölder inequality. For more clarity we recall this result below
in its general form.

Proposition 3.1 (Reverse Hölder inequality). Let p ∈ (1,+∞]. Let F and G be two random
variables such that G 6= 0, P-a.s.. Then :

(i) The reverse Hölder inequality holds, that is,

E[|F ×G|] ≥ E

[
|F |

1

p

]p
× E

[
|G|

−1

p−1

]−p+1
.

(ii) in addition, the inequality is an equality, that is,

E[|F ×G|] = E

[
|F |

1

p

]p
× E

[
|G|

−1

p−1

]−p+1

if and only if there exists some constant (that is non-random) α ≥ 0 such that |F | = α|G|
− p

p−1 .
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We will come back to the equality case given in Item (ii) later on, but at the minute we focus
on the first one to proceed with our analysis. More precisely, let :

F := UP

(
Xa

T −

∫ T

0
κ(at)dt

)
, G :=

∣∣∣∣UA

(
W −

∫ T

0
κ(at)dt

)∣∣∣∣
−

γP
γA

. (3.2)

Note naturally, that these two random variables depend on the contract (W,a) under interest.

We wish to apply (i) of Proposition 3.1 to F and G with some exponent p that we calibrate so

that |G|−
1

p−1 =
∣∣∣UA

(
W −

∫ T
0 κ(at)dt

)∣∣∣; which immediately gives p = 1 + γP
γA

= γA+γP
γA

> 1. We

thus immediately obtain:

E

[
|F |

1

p

]
= E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γP +γA


 ,

E

[
|G|

−1

p−1

]
= −E

[
UA

(
C −

∫ T

0
κ(at)dt

)]
.

Applying (i) of Proposition 3.1 to F and G with this particular choice of p in Relation (3.1) gives

E [UP (Xa
T −W )]

= −E [|FG|]

≤ E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γA+γP




γA+γP
γA

× E

[
UA

(
W −

∫ T

0
κ(at)dt

)]− γP
γA

. (3.3)

Step 2 : use of the PC (2.2)

From (3.3), the PC (2.2) gives

E [UP (Xa
T −W )] ≤ UA(y0)

−
γP
γA × E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γA+γP




γA+γP
γA

. (3.4)

Step 3 : optimisation in a

From here, we obtain an upper bound for the utility of the Principal which is free of W but
which still depends on a. We thus perform an optimisation in a which will provide a candidate
for the optimal effort. This result (whose proof is postponed to Section 5.1) is presented in the
following proposition.

Proposition 3.2. For any (W,a) in CPC it holds that :

E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γA+γP




γA+γP
γA

≥ exp (−γPx0) exp

(
TγP

(
−κ̃(1) +

γPγA

2(γA + γP )

))
, (3.5)

and thus

E [UP (Xa
T −W )] ≤ UP (x0 − y0) exp

(
γPT

(
−κ̃(1) +

γP γA

2(γA + γP )

))
. (3.6)
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In addition

E



∣∣∣∣UP

(
Xa∗

T −

∫ T

0
κ(a∗t )dt

)∣∣∣∣

γA
γA+γP




γA+γP
γA

= exp (−γPx0) exp

(
γPT

(
−κ̃(1) +

γPγA

2(γA + γP )

))
, (3.7)

where a∗t := κ∗(1) for any t in [0, T ].

3.2 A revisit of the Borch rule and derivation of the optimal Risk-Sharing plan

We have obtained as the right-hand side of (3.6) an upper bound for the utility of the Principal for
any acceptable contract. Now we would like to examine which are the contracts that attain this
bound. The bound has been derived using three successive estimates : the first one is the reverse
Hölder inequality (Step 1 above); the second is just the use of the PC (2.2) (Step 2); and finally the
last one is to impose the constant action a∗t = κ∗(1) (for any t in [0, T ]) to the Agent.

We start by examining for which contract Inequality (3.3) is indeed an equality. In fact, a nec-
essary and sufficient condition for this to happen is given in the classical statement of the reverse
Hölder inequality as Part (ii) of Proposition 3.1. It states that for a contract (W,a), inequality in
(3.3) is an equality if and only if the utilities of the Principal and the Agent to some well-chosen
powers (which are given by the random variables F and G in (3.1)) are equal up to a positive
deterministic constant. Rewriting this expression, we recover the Borch rule as follows :

Theorem 3.1 (Borch rule). The inequality (3.3) is an equality for a contract (W,a) in C if and
only if there exists a positive constant α such that :

U ′
P (Xa

T −W )

U ′
A

(
W −

∫ T
0 κ(at)dt

) = α, P− a.s.. (3.8)

The main ideas behind the proof (which is a rewriting of Condition (ii) of Proposition 3.1 in our
setting) have already been discussed above. The reader can find the details in Section 5.2. We make
several remarks on this result.

Remark 3.1. Note first that in Borch’s original approach ([1]), the Borch rule appears as a nec-
essary optimality condition for a Pareto optimal Risk-Sharing plan in a reinsurance framework. In
the classical Principal-Agent formulation (as recalled in the introduction), it comes as a necessary
"compatibility" condition which guarantees that the Lagrange multipliers in problems (1.3) and (1.4)
are the same and, in particular, that they are deterministic. In our approach, the Borch rule comes
as some sort of geometric necessary condition which allows one to optimally "extract" the PC in its
expectation form from the expectation of the utility of the Principal.

Remark 3.2. The Borch rule above characterises the "optimal" contracts in some way. However
note that it is valid for any contract in C and not necessarily in CPC . In other words, at this stage
we do not require the PC (2.2) to be satisfied. This will come in a second stage that we describe in
the next section.

3.3 From the Borch rule to the optimal contract

As in the classical approach described in the introduction, the Borch rule is a central ingredient in
deriving the optimal contract. From the previous section we know that if we consider a contract
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(W,a) that enjoys the Borch rule (3.8) then we have that

E [UP (Xa
T −W )]

= E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γA+γP




γA+γP
γA

× E

[
UA

(
W −

∫ T

0
κ(at)dt

)]− γP
γA

,

and that

E [UP (Xa
T −W )]

≤ UA(y0)
−

γP
γA × E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γA+γP




γA+γP
γA

,

with an equality if the PC is bound by the contract. Finally, we know from Relations (3.5), (3.6)
and (3.7) that choosing at = a∗t = κ∗(1) (for any t in [0, T ]) gives

E

[
UP

(
Xa∗

T −W
)]

≤ UP (x0 − y0) exp

(
γPT

(
−κ̃(1) +

γP γA

2(γA + γP )

))
,

with equality if and only if there exists a contract of the form (W,a∗) that binds the PC (2.2). This
brings us to the following question : "Can we find a wage W such that the contract (W,a∗) satisfies
the Borch rule (3.8) and that satisfies the PC (2.2); and eventually that binds it ?" If yes , this
contract will be an optimal Risk-Sharing plan. This is the purpose of the last result of the paper.

Theorem 3.2. We set

β∗ :=
TγA|γP |

2

2|γA + γP |2
+ y0 + Tκ(κ∗(1))−

γP

γA + γP
(x0 + Tκ∗(1)) .

(i) Let (W,a∗) in C be an acceptable contract. Then, this contract satisfies the Borch rule (3.8)
if and only if there exists β ∈ R such that

W =
γP

γA + γP
Xa∗

T + β.

In addition, such a contract satisfies the PC (2.2) (in other words it belongs to CPC) if and
only if β ≥ β∗.

(ii) The contract (W ∗, a∗) is optimal for the problem (2.3) with

W ∗ =
γP

γA + γP
Xa∗

T + β∗.

Once again we postpone the proof to Section 5.3.

Remark 3.3. Note that the optimal Risk-Sharing rule is to give the proportion γP
γA+γP

of wealth
to the Agent plus the smallest fixed premium β∗ which makes the contract acceptable for the Agent
(that is such that the PC (2.2) is satisfied). However our approach allows us to find that not only
the optimal affine contract satisfies the Borch rule.
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4 The case of a risk neutral Principal

We have considered the case of a Principal and an Agent who are risk averse. However, an important
case in the literature consists in a risk neutral Principal and a risk averse Agent. More precisely,
the problem (2.3)-(2.2) becomes :

sup
(W,a)∈CPC

E [Xa
T −W ] , (4.1)

where we use the same notations as previously (in particular the PC (2.2) is in force for the Agent
with utility function UA(x) = − exp(−γAx)). Since our approach relies on the exponential structure
of functions UP and UA, we cannot carry it directly in the risk neutral case. However, as it is well-
known, the risk neutral framework can be seen as a limit case with formally γP = 0 by rescaling
the mapping UP to become ŨP (x) := − exp(−γP x)−1

γP
and by letting γP go to 0. Hence, we can use

our approach with ŨP and UA to derive the optimal contract for a risk neutral Principal.

Consider a contract (W,a) that satisfies the (PC). Then by Lemma 5.1 (in Section 5.4),

E [Xa
T −W ] = E

[
lim
γP→0

ŨP (X
a
T −W )

]

= lim
γP→0

E

[
ŨP (X

a
T −W )

]

= lim
γP→0

γ−1
P (E[UP (X

a
T −W )] + 1)

≤ lim
γP→0

γ−1
P

(
E[UP (X

a∗
T −W ∗)] + 1

)
,

according to (ii) of Theorem 3.2. Using the explicit computation (5.1), we have that

E [Xa
T −W ] = E

[
lim
γP→0

ŨP (X
a
T −W )

]

≤ lim
γP→0

γ−1
P

(
UP (x0 − y0) exp

(
γPT

(
−κ̃(1) +

γP γA

2(γA + γP )

))
+ 1

)

= lim
γP→0

−
exp

(
γAγ2

PT
2(γA+γP ))

)
exp (−γP (x0 − y0 + T κ̃(1))) − 1

γP

= x0 − y0 + T κ̃(1).

So we have given the upper bound x0 − y0 + T κ̃(1) to the value problem of the Risk Neutral
Principal. An explicit computation gives that this upper bound can be attained by choosing the
contract (a∗RN ,W ∗

RN ) with

a∗RN = κ∗(1) and W ∗
RN = y0 + Tκ(κ∗(1)),

which is formally the optimal contract found in in Theorem 3.2 with γP = 0.

So as it is well-known, the Risk Sharing problem with a Risk Averse principal extends to the
Risk Neutral principal by choosing the optimal wage to be a pure premium allowing the PC. This
has economic meaning : the Principal is neutral to risk and is thus willing to give a fixed wage to
his Agent regardless of the performance of the output process.

5 Proofs

In this section we collect the proofs of the technical results we made use of to proceed with our
analysis.

10



5.1 Proof of Proposition 3.2

Our objective is to give an upper bound independent of a of the right hand side of Inequality (3.4).
We have

E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γA+γP




= E


exp

(
−γP

(
Xa

T −

∫ T

0
κ(at)dt

)) γA
γA+γP




= E


exp

(
−γP

(
x0 +

∫ T

0
(at − κ(at)) dt+BT

)) γA
γA+γP




= exp

(
−

γP γA

γA + γP
x0

)
E

[
exp

(
−

γPγA

γA + γP
BT −

T

2

|γP γA|
2

|γA + γP |2

)
exp

(∫ T

0
Φ(at)dt

)]
,

where

c 7→ Φ(c) := −
γP γA

γA + γP
(c− κ(c)) +

|γP γA|
2

2|γA + γP |2
.

Note that the mapping Φ is convex on R+, and letting a∗ := κ∗(1),

Φ(c) ≥ Φ(a∗) =
γP γA

γA + γP

(
−κ̃(1) +

γP γA

2(γA + γP )

)
, ∀c ≥ 0.

So,

E



∣∣∣∣UP

(
Xa

T −

∫ T

0
κ(at)dt

)∣∣∣∣

γA
γP+γA




≥ exp

(
−

γP γA

γA + γP
x0

)
exp

(
TγP γA

γA + γP

(
−κ̃(1) +

γPγA

2(γA + γP )

))
,

as E

[
exp

(
− γP γA

γA+γP
BT − T

2
|γP γA|2

|γA+γP |2

)]
= 1 since BT is a centered Gaussian random variable with

variance T . Plugging this expression in Inequality (3.4) gives the result.

5.2 Proof of the Borch rule : Theorem 3.1

By (ii) of Proposition 3.1, Inequality (3.3) is an equality if and only the contract (W,a) is such that
there exists a positive constant α such that the random variables F and G defined in (3.2) enjoys :

|F | = α|G|
− p

p−1 .

By definition of F , G and p = γA+γP
γA

this condition reads as :

exp
(
−γP

(
Xa

T −
∫ T
0 κ(at)dt

))

exp
(
−(γA + γP )

(
W −

∫ T
0 κ(at)dt

)) = α.

Thus

α =
exp (−γP (Xa

T −W ))

exp
(
−γA

(
W −

∫ T
0 κ(at)dt

))

11



=
U ′
P (Xa

T −W )

U ′
A

(
W −

∫ T
0 κ(at)dt

) ×
γA

γP
,

which is the result by changing α to α γP
γA

.

5.3 Proof of Theorem 3.2

We start with an intermediate technical result, namely that any affine contract of the form (W,a∗)
with

W = ρXa∗
T + β,

with ρ ≥ 0 and β in R is in C. In other words the technical integrability conditions of an admissible
contract are satisfied. Obviously, as a∗ is deterministic and constant, a∗ belongs to H2. To prove
that W belongs to W (whose definition is given in Section 2), as β is a constant we only need to
prove that ρXa∗

T belongs to W. Let q in R
∗. By definition, Xa∗

T = x0 + Tκ∗(1) +BT , where BT is
a centered Gaussian random variable with variance T . Hence

E

[
exp(q ρXa∗

T )
]
= exp (qρ (x0 + Tκ∗(1)))E [exp(qρBT )]

= exp (qρ (x0 + Tκ∗(1))) exp

(
T |qρ|2

2

)
< +∞.

With this result at hand, we now prove Statement (i). Let (W,a∗) be a contract in C that satisfies
the Borch rule (3.8). Then, there exists a positive constant α such that

U ′
P (Xa

T −W )

U ′
A

(
W −

∫ T
0 κ(at)dt

) = α, P− a.s..

Hence since a∗ is deterministic, the quantity exp(W (γA + γP ) − γPX
a∗
T ) is deterministic. In other

words the random quantities in the exponential must vanish, which means that there exists a con-
stant β such that W = γP

γA+γP
Xa∗

T + β. Conversely, a direct computation proves that any contract
of this form satisfies the Borch rule (3.8).

In addition let (W,a∗) of the form W = γP
γA+γP

Xa∗
T + β with β some constant. Then using that

a∗t = κ∗(1) for any t, this contract satisfies the PC (2.2) if and only if :

E

[
exp

(
−γA

(
γP

γA + γP
Xa∗

T + β

))]
≤ exp (−γA (y0 + Tκ(κ∗(1)))) .

Since Xa∗
T = x0 +

T
κ +BT , we have that :

E

[
exp

(
−γA

(
γP

γA + γP
Xa∗

T + β

))]
≤ exp (−γA (y0 + Tκ(κ∗(1))))

⇔ E

[
exp

(
−

γAγP

γA + γP
BT

)]
≤ exp

(
−γA

(
y0 + Tκ(κ∗(1)) − β −

γP

γA + γP
(x0 + Tκ∗(1))

))

⇔ exp

(
T |γAγP |

2

2|γA + γP |2

)
≤ exp

(
−γA

(
y0 + Tκ(κ∗(1)) − β −

γP

γA + γP
(x0 + Tκ∗(1))

))
,

since BT is a centered Gaussian random variable with variance T . So the PC is satisfied for this
contract if and only if

β ≥
TγA|γP |

2

2|γA + γP |2
+ y0 + Tκ(κ∗(1))−

γP

γA + γP
(x0 + Tκ∗(1)) = β∗.
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We turn to Point (ii). The previous computations prove that for β = β∗ the PC (2.2) is bound.
Hence the contract (W ∗, a∗) with the wage W ∗ = γP

γA+γP
Xa∗

T +β∗ satisfies the Borch rule and binds
the PC (and the action is a∗) so by the considerations of Section 3 it is the optimal contract, or put
it differently we have that

E

[
UP

(
Xa∗

T −W ∗
)]

= UP (x0 − y0) exp

(
γPT

(
−κ̃(1) +

γP γA

2(γA + γP )

))
, (5.1)

so the upper bound given by the right-hand side (3.6) is attained.

Remark 5.1. The optimum binds the participation constraint. Indeed when choosing β∗ in such
a way as to reach the lower bound, we are led to choose the smallest β such that the participation
constraint holds and this means choosing β such that the constraint holds in equality, i.e.

E

[
exp

(
−γA

(
W ∗ −

∫ T

0
κ(a∗)dt

))]
= exp(−γAy).

This makes sense from an economic point of view: without the constraint, the Principal would
probably want the Agent to work as much as possible for as little as possible so any global optimum
would not satisfy the participation constraint. The optimum for our problem therefore binds the PC.

5.4 A technical lemma

Lemma 5.1. Let (a,W ) be an admissible contract in C. The sequence of random variables(
ŨP (X

a
T −W )

)
0<γP<1

is uniformly integrable. And so :

E [Xa
T −W ] = E

[
lim
γP→0

ŨP (X
a
T −W )

]
= lim

γP→0
E

[
ŨP (X

a
T −W )

]
.

Proof. The second part of the statement is a consequence of the uniform integrability (UI) and of
the fact that the identity mapping is the limit (as γP goes to 0) of ŨP . So we focus on the UI
property and apply de la Vallée-Poussin criterion. We have :

sup
0<γP<1

E

[
|ŨP (X

a
T −W )|2

]

= γ−2
P sup

0<γP<1
E
[
| exp(−γP (X

a
T −W ))− 1|2

]

= sup
0<γP<1

E
[
|X̄|2| exp(−γP X̄)|2

]
,

where X̄ is a random point between 0 and Xa
T − W (using mean value theorem). By Cauchy-

Schwarz’s inequality we have,

sup
0<γP<1

E

[
|ŨP (X

a
T −W )|2

]

≤ E
[
|X̄ |4

]1/2
sup

0<γP<1
E
[
exp(−4γP X̄)

]1/2
.

As |X̄| ≤ |Xa
T −W |, P-a.s., we have that E

[
|X̄|4

]
< +∞. Regarding the second term,

sup
0<γP<1

E
[
exp(−4γP X̄)

]

≤ sup
0<γP<1

(
P
[
X̄ ≥ 0

]
+ E

[
exp(−4γP X̄)1X̄<0

])

≤ 1 + E
[
exp(−4RX̄)1X̄<0

]

≤ 1 + E [exp(4R|Xa
T −W |)] < +∞.
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6 Conclusion

This paper uses the Reverse Hölder inequality to derive a new approach to the Risk-Sharing
Principal-Agent problem. Through a specific decomposition of the Principal’s expected utility
(that relies of the multiplicative property of exponential utility functions) we are able to extract
the participation constraint in its expectation form. We are then able to to compute the optimal
risk-sharing plan whilst also making the Borch rule appear. During this reasoning, we actually show
that a whole class of risk-sharing plans satisfies the Borch rule. The optimal plan amongst this class
is the one which binds the Agent’s participation constraint.
We note that this new approach gives a new meaning to the Borch rule: it appears as some sort of
geometric condition allowing us to extract the PC in its expectation form from the expectation of
the utility of the Principal.
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