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Abstract—This paper proposes a novel approach called Se-
mantic Visual Odometry (SemVO) which incorporates class-level
consistency priors into the problem of 6-DoF Visual Odometry.
Dense class-level labels are learnt for each pixel of the image
using a CNN trained for semantic segmentation. A semantic
error is formulated penalising the sum of squared differences
(SSD) on class-level feature maps extracted from the decoder of
a RefineNet. It will be shown how the proposed approach allows
dense RGB-D camera tracking using solely a semantic error
term. SemVO is evaluated on the ScanNet dataset and the results
demonstrate how the number of classes affects performance.
Results are also provided showing how best to fuse the new error
function with classic dense photometric and geometric methods.
Finally, it is demonstrated that SemVO improves over standard
approaches for large camera motion applications.

I. INTRODUCTION

Visual Odometry (VO), or visual ego-motion estimation,
is the problem of determining the pose of a camera purely
from vision. This technique is a key building block of modern
SLAM (Simultaneous Localisation and Mapping) systems.

In recent years, Deep Convolutional Neural Networks
(DCNN) have largely dominated most computer vision prob-
lems including perception tasks: image classification [1], ob-
ject detection [2], semantic segmentation [3]–[5] ; and more
recently even geometric tasks: dense depth estimation from
single image [6], optical flow [6], relocalisation [7]. Recently,
learning-based approaches have been applied to monocular VO
by predicting the dense depth map from single image to re-
trieve the structure of the scene, reducing the problem to RGB-
D image alignment. However, these methods were mainly
benchmarked on constrained images from the KITTI dataset.

This paper focuses on building a semantic RGB-D VO for
indoor environments. Even if some works have developed
RGB-D VO based on semantic primitives such as points and
line segments [8], planes [9] or objects [10], in this work, it is
proposed to solve the problem of 6-DoF (degrees of freedom)
ego-motion estimation by directly exploiting the high-level
perceptual information learned by a CNN trained for semantic
segmentation using a traditional dense geometric RGB-D VO.

The main contributions are threefold: 1) the 6-DoF camera
pose estimation is reformulated using a novel semantic-only
term, 2) the semantic SSD error is formulated on class-level
feature maps from the decoder of a RefineNet and 3) it
is shown how to best fuse the benefits of a semantic-only
term with standard photometric and geometric terms for large
camera motion applications.

The remainder of this paper is organised as follows. Sec-
tion II reviews related work. A semantic error term is defined
and a novel method is proposed for semantic-only dense RGB-
D tracking in Section III. Fusing traditional joint photometric
and geometric approaches with this semantic-only formulation
is described in Section IV, followed by experimental results
in Section V. Conclusions are drawn in Section VI.

II. RELATED WORK

A. Geometric RGB-D VO

Since low cost consumer colour and depth cameras
(RGB-D) have been developed, their ability to provide reason-
ably accurate dense depth measurements makes them a good
substitute to traditional stereo cameras for indoor applications.

Visual odometry (VO) has found much of its initial work
grounded in geometric feature-based extraction and represen-
tations of the world [11], since they are sparse techniques
which lend to computational efficiency.

With the advent of greater computing power, direct dense
VO approaches have been proposed which purport to be more
accurate and robust than sparse feature-based ones. These
methods exploit all the pixels (dense) in the raw images
(direct) and can be parallelisable for real-time operation. A
first dense direct approach was proposed in [12] to use the
dense stereo depth map to generate warped images and min-
imise the direct photometric error between intensity images for
visual odometry and key-frame mapping. With the subsequent
advent of commercial projective light RGB-D sensors, this
approach was re-employed as seen in [13] and [14]. Similarly,
Newcombe et al. [15] implemented KinectFusion, a depth-
only frame-to-model tracking algorithm based on Iterative
Closest Point (ICP). Tykkälä et al. [16] built upon these works
and proposed a direct ICP bi-objective cost function which
jointly minimises the photometric error and the geometric error
balanced by a scaling factor λ.

B. Data-driven VO

In recent years, there has been a growing body of literature
regarding data-driven VO, or learning-based VO, that formu-
lates visual odometry as an end-to-end learning problem to
regress relative camera poses. These approaches have made
significant progress thanks to the ability of DCNN to cope
with challenging environments. Kendall et al. [7] presented ex-
tensive work on PoseNet, a CNN-based camera re-localisation



approach that regresses the absolute 6-DoF pose of a camera
in outdoor environments.

A series of works have also tackled end-to-end VO.
Melekhov et al. [17] estimated the relative camera motion
between unconstrained images pairs with a siamese CNN.
Wang et al. [18] extend previous works encapsulating a CNN
with stacked image pairs as input in a Recurrent Neural Net-
work (RNN) that implicitly models sequential dynamics and
relations. Ummenhofer et al. [6] proposed a stacked encoder-
decoder network called DeMoN and exploit the natural regu-
larisation of multi task learning for estimating simultaneously
the camera’s ego-motion, depth image, surface normals and
optical flow. All methods so far require the ground-truth cam-
era poses for conducting the supervised training. This suggests
the need of an external motion tracking system or labelling
images by SfM, which is expensive and labour-intensive.

By formulating a loss function to maximise photometric
consistency between consecutive frames, the works of [19]–
[21] implemented a view synthesis self-supervised training
strategy for ego-motion and depth estimation. In SfM-Net [19],
the authors proposed a modular framework that can be trained
with various degrees of supervision using optional ground-
truth camera motion or depth map. Unlike [19], [20] whose
approaches are devised mainly for depth estimation and the
authors give little attention to the performances on VO tasks,
UnDeepVO [21] resolves difficult scale estimation problem by
using stereo image pairs at training time. The loss function
enforces both spatial geometric consistency between left-
right pairs and also temporal geometric consistency between
two consecutive monocular images. Their results seem quite
promising even if the most accurate visual odometry approach
on the KITTI odometry benchmark leader board1 remains a
direct stereo VO method.

Nevertheless, except for [6], all these methods produce a
one shot camera motion estimate based on knowledge gained
from a training set that cannot generalise to cover all possible
variations present in any VO problem. Instead of replacing
the motion estimator with a deep network, Peretroukhin and
Kelly [22] use a Deep Pose Correction network (DPC-Net) to
learn difficult-to-model corrections to a sparse stereo VO.

C. Geometric RGB-D VO with learned features

While data-driven methods struggle to attain the same
performance as geometric VO, the authors believe there is
still room for improving dense geometric VO with the repre-
sentational power of deep networks.

The work most closely related to the present paper is by
Czarnowski et al. [23]. This work also aims at developing
a dense visual tracking approach based on a CNN image
representation. Their system, however, differs in that it only
tracks pure rotational motion and proposes to use multi-
scale CNN features within a coarse-to-fine feature-based ap-
proach. Their rotation tracking results demonstrate robustness
to varying lighting conditions and their pyramid of features

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php

(semantic texture) reached real-time performance using a GPU
implementation to compute the image alignment on 15% of
the 4227 feature maps in VGG16.

Compared to this work, the approach proposed here is
significantly different since the aim is to perform full 6-DoF
camera pose tracking (VO) using only high-level semantic seg-
mentation classes rather than intermediary encoder features,
all within a dense VO approach that takes advantage of recent
advances in the field of dense CNN segmentation. Using class-
level dense segmentation allows to decrease the computational
cost, while still taking advantage a compact summary of all the
intermediary encoder information. For example, using class-
level semantics decreases the computational cost down to a
single feature map alignment per pyramid level (typ. NP = 3)
for the proposed approach while the semantic texture requires
2 · 64 to 3 · 512 for each pyramid level in a coarse to fine
scheme.

III. SEMANTIC-ONLY RGB-D TRACKING

This section will first describe the proposed semantic-only
RGB-D tracking based on class-level feature maps extracted
from the decoder of a CNN trained for semantic segmentation.

A. Direct motion estimation framework

Consider a calibrated RGB-D sensor with a colour
brightness function I :Ω→R+; (p) 7→I(p), a depth func-
tion D :Ω→R+; (p) 7→D(p) where Ω=[1, n]× [1,m]⊂R2.
(p1,p2, . . . ,pnm)>∈Rnm×2⊂Ω are pixel locations within
the image of dimension n×m.
Similar to normal images, a feature map Fc of the ordered
set of class-level feature maps F is defined as a function:
Fc :Ω

s→R; (p) 7→Fc(p) where Ωs=[1, n/2s]×[1,m/2s]⊂R2

at scale s∈N+. The label prediction is also defined as a
function ̂̀:Ωs→[1;C]; (p) 7→ ̂̀(p)=argmax({Fc(p)}c=1..C).

The pose of the camera is represented as the homogeneous
pose matrix T (x)∈R4×4 which depends on a minimal param-
eterisation of 6 parameters defined here as the linear and an-
gular velocity x=[υ, ω]>∈R6, respectively. The homogeneous
transformation matrix can be decomposed into rotational and
translational components T(x)=(R(x), t(x))∈SE(3). The
relationship between both is given by the exponential map
as T(x)=e[x]∧ , with the operator [·]∧ defined as:

[x]∧=

[
[ω]× υ
0 0

]
(1)

where [·]× is the skew symmetric matrix operator.
Direct motion estimation is formulated as a minimization

problem of solely a semantic cost function. Considering that
all semantic errors eS i are assumed independent and iden-
tically distributed (i.i.d.) and that the semantic errors are
modelled as a Gaussian distribution, the estimation of the
camera motion T̂(x) between a reference set of feature maps
F∗ and a current set F is obtained via a standard non-linear
least-squares problem:

argmin
x

∥∥∥F∗−F
(
w
(
T̂(x),p∗))︸ ︷︷ ︸

eS(x)

∥∥∥2 (2)



The superscript ∗ denotes reference measurements. The 3D
points Pi=

[
Xi Yi Zi

]>∈R3 are computed by back-projection

Pi=π−1(pi)=K−1pi D(pi) (3)
where K∈R3×3 is the intrinsic camera matrix and pi∈R3 are
the homogeneous pixel coordinates obtained by projection as

pi=π(Pi)=1/Zi.KPi (4)
The inverse warping function w(·) projects the reference 3D
points P∗

i transformed by T(x) onto the current frame at the
warped pixel coordinates pw

i =w(T(x),p∗
i ) (equ. 5).

pw
i =π

(
R(x)π−1(p∗

i )+t(x)
)

(5)
The closest feature map’s value is found by bilinear interpo-
lation of the current feature maps F at pw

i .

B. Semantic-only image alignment

The pose estimate T̂ is computed at each iteration and is
updated incrementally by a pose increment T(x) following
an inverse compositional [24] update rule T̂←T̂T(x) and the
semantic error in (equ. 2) becomes:

eS i,c(x)=F∗
i,c

(
w
(
T(x),p∗

i )
))
−Fi,c

(
w
(
T̂,p∗

i

))
(6)

The cost function (equ. 6) is linearised and minimized
around x=0 using a first order Taylor expansion. This leads
to a closed form solution:

x=−H−1b ; H=JS(0)
>
JS(0) ; b=JS(0)

>
eS(0) (7)

where JS represents the stacked Jacobian matrix obtained by
derivation of the stacked semantic error eS for all pixels nm
through all C classes (or feature maps):

eS i,c(0) =F∗
i,c−Fi,c

(
w(T̂,p∗

i )
)

JS i,c(0) =∇F∗
i,c

∂w(T(x),p∗
i )

∂x

∣∣∣
x=0

(8)

The semantic Jacobian JS(0) is calculated once for all itera-
tions.

Two error function variants have been considered:
1) Minimisation across all class scores:

H=
nm∑
i

C∑
c
JS i,c(0)

>
JS i,c(0)

b =
nm∑
i

C∑
c
JS i,c(0)

>
eS i,c(0)

(9)

In the first variant, it is assumed that the classification-score of
a pixel to each class must contribute to the minimisation (i.e.
each pixel has C scores). This means that not only will the
score of the best class be used for pose estimation, but also, the
score of the other classes that have been considered. In doing
so this allows to account indirectly for the uncertainty when,
for example, all classes have a similar score or alternatively
when only one class has a high score. In order to define a
valid error criterion on this basis, it is necessary to define
an error function that is locally convex and which has zero
error at the minimum. It is assumed here that the semantic
feature scores of each pixel are invariant across different
poses. This is similar to the Lambertian hypothesis formulated
by photometric-based tracking, however, it obviously depends
on the invariance of the classifier. This hypothesis has been

verified experimentally under the small motion assumption and
future work would be dedicated to developing pose-invariant
scoring. Computationally, however, this dense approach leads
to C ·NP alignments of class-level feature maps.

2) Minimisation using the best class:

H=
nm∑
i

JS i, ̂̀∗i (0)>JS i, ̂̀∗i (0)
b =

nm∑
i

JS i, ̂̀∗i (0)>eS i, ̂̀∗i (0)
(10)

where ̂̀∗i is the label prediction for the pixel i of the reference
image. In the second variant, for a given pixel, only one
score, from which the label is predicted, contributes to the
minimisation. The invariance of the class label across various
viewpoints is maintained as long as the classifier succeeds. An
advantage of this approach is that it allows to pre-calculate the
semantic error eS and the semantic Jacobian JS for class c
only at pixels i such that c = ̂̀∗

i . This approach leads to
the alignment of a single class-level feature map per pyramid
level (NP) and is much more efficient that the first variant.

C. Feature maps selection

The semantic segmentation component has shown to pro-
vide relatively consistent label predictions ̂̀across challenging
conditions including intra- and inter-class variations, difficult
lighting conditions and even viewpoint variations. Subse-
quently, the non-trivial assumption that class-level feature
maps Fc are viewpoint-invariant is clear, yet dependent on
the performance and subsequent validation of the classifier.
Considering that the activation functions of RefineNet are
ReLU , one can expect the score maps Fc and, to a lesser
extent, the semantic errors eS , to have bigger values for some
classes. This would naturally result in favouring the most
confident classes over others.

In practice, semantic image alignment is performed with
either with the scores (before softmax) of class-level feature
maps (Fig. 1b) or with binary masks (Fig. 1d) which are a
one-hot conversion of label predictions (Fig. 1c).
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Fig. 1: Semantic segmentation network architecture and an
insight into the C class-level feature maps (orange) from the
decoder (yellow), the label predictions (purple) and the corre-
sponding binary prediction masks. Best viewed with colours.



Class-level feature maps (aka score maps), are extracted
from the decoder of a RGB-RefineNet-101 [5]. RefineNet
is considered as the current state-of-the-art neural network
for semantic segmentation of RGB images. The encoder uses
ResNets (here a ResNet-101) and the decoder is an improved
version of basic multi-scale skip connections [4] called multi-
path refinement module that heavily relies on residual connec-
tions with identity mappings [1]. We do not use expensive
post-processing steps except a multi-scale evaluation (MSc
eval). However, label smoothing by CRF [25] would certainly
be beneficial. The predictions are refined to a final resolution
of 1/4, although they can be obtained at finer resolution using
bilinear upsampling. Finally, the score maps are cropped with
a border of 8 pixels in order to remove border effects in the
CNN predictions.

RGB-RefineNet-101 was trained on NYUDv2 dataset [26]
for a C-class semantic segmentation task. The NYUDv2
dataset consists of 1449 RGB-D images of size 640x480
showing indoor scenes. The standard training/test split is used
with 795/654 images respectively. It was assumed that the
number of classes C and their definitions could be fine-tuned
as an extra hyperparameter of the proposed method.

D. Semantic coarse to fine pyramid

The iterative semantic image alignment method is embedded
in a coarse to fine multi-resolution pyramid scheme. This
approach is commonly used by image alignment techniques
to speed up the convergence and increase the size of the
convergence domain. In the present context, the pyramid is
computed on the semantic segmentation image instead of the
input RGB image. Before alignment, a Gaussian pyramid of
down-sampled versions of the semantic image is computed.
Then, the optimisation proceeds by performing a number of
iterations at each level, starting at the coarsest level of the
pyramid to obtain an initial pose estimate before refining
this estimate by propagating it down the pyramid levels until
reaching the original image resolution.

IV. HYBRID SEMANTIC RGB-D TRACKING

A. Semantic tri-objective direct ICP

Inspired by [16], a tri-objective cost function is proposed
to simultaneously minimise a semantic-only error eS (equ. 6),
a photometric error eI (equ. 12) and a geometric error eG
(equ. 13) in order to draw advantages from each:

argmin
x

λ2
S ‖eS‖

2
+λ2

I ‖eI‖
2
+‖eG‖2 (11)

The photometric error eI is defined as in [13]:

eIi
(x)=I∗i

(
w
(
T(x),p∗

i

))
−Ii

(
w
(
T̂,p∗

i

))
(12)

and the geometric error eG as a point-to-plane ICP error with
projective data association [27]:

eGi(x)=
(
R̂R(x)N∗

i

)> (
Pm

i −Π3T̂T(x)P∗
i

)
(13)

where Π3=[1,0]∈R3×4 is the projection matrix, N∗
i ∈R3 are

the reference surface normals computed for each homogeneous
3D point P∗

i ∈R4 using a local cross product on the image grid.

The closest image intensity is found by bilinear interpolation
of the current intensity function I at pw

i . The closest 3D point
Pm

i is obtained by linearly interpolating the current depth map
D at pw

i and back-projecting it.
The non-linear least-squares tri-objective error

e=[λSeS λIeI eG ]
> is iteratively minimised using a Gauss-

Newton approach (equ. 7) where J=[λSJS λIJI JG ]
>.

JI is the Jacobian matrix of the photometric error eI
calculated once for all iterations like JS (equ. 8) and JG is
the standard point-to-plane ICP Jacobian matrix, calculated
at each iteration.

B. Selection of scaling factors

Most hybrid approaches require scaling factors (here λS
and λI), either heuristic or automatic, which weight the
contribution of the different errors. Two strategies have been
selected here:

1) a constant λ fine-tuned empirically.
2) an adaptive λ inspired by [28] that varies using a sigmoid

function which favours the semantic error eS far from
the solution and the photometric error eI close to the
minimum. Our experiments have shown that it is best to
maintain the geometric error eG all along.

(a) reference (∗) colour image (b) reference (∗) predictions
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V. EXPERIMENTS

To show the effectiveness of the proposed approach, exper-
iments have been carried out on the public ScanNet dataset
[29] in order to firstly assess the quality of the semantic
segmentation (Sec. V-A) and secondly fine-tune and evaluate
the semantic image alignment for different parameter settings
(Sec. V-B). This dataset contains various indoor environments
captured with hand-held RGB-D sensors. For convenience, the
full size resolution is set at 640×480 by down-sampling Scan-
Net’s 1296×968 grayscale images using bicubic interpolation.

ScanNet. The ScanNet dataset [29] provides registered
RGB-D images, ground-truth labels and computed camera
poses estimated by a Structure from Motion (SfM) algorithm.
The dataset provides 1513 sequences and 2.5M images with
labels obtained by manually labeling 3D reconstructed meshes.
The sequences acquired in this dataset benefit from a rich
semantic environment, similar to the NYUDv2 scenes.

A. Semantic segmentation evaluation

The performance of the semantic segmentation network
RefineNet-101, presented in Section III-C, is evaluated
on four ScanNet sequences: scene0002_00, scene0026_00,
scene0030_00, scene0568_00.

Metrics. Standard metrics [4] are defined as
• class accuracy: acci = nii/ti
• mean class accuracy: macc = (1/ncl)

∑
i acci

• Jaccard index: IoUi = nii/(ti +
∑

j nji − nii)

• mean Jaccard index: mIoU = (1/ncl)
∑

i IoUi

where ncl is the number of classes, nij is the number of pixels
of class i classified as class j, and ti =

∑
j nij is the total

number of pixels belonging to class i.
Transfer learning. We trained RGB-RefineNet-101 for the

40-class [2], the 13-class [3] and the 4-class [26] semantic
segmentation tasks on the NYUDv2 dataset. Since NYUDv2
and ScanNet datasets have both been acquired with similar
settings and environments, it is assumed that the training
domain is close to the evaluation domain and consequently
it was not fine-tuned on the ScanNet dataset. At test time,
RefineNet was fed with 12k images from the four ScanNet
sequences. The final predictions are inferred at a scale of 1/4
producing feature maps at a resolution 160×120.
The results are shown in Table I. RefineNet-101 achieves
quite good performance on most highly represented classes
including wall, floor, chair, sofa, table, blinds, sink. These
results confirm the benefit of semantic contribution in hybrid
image alignment.

B. Semantic image alignment experiments

In all of the following experiments, image align-
ment is performed on image pairs n and n+k for
k∈{1, 2, 3, 6, 10, 15, 30} skipping k−1 intermediate frames
within the N=5192 frames of ScanNet’s scene0002_00 in
order to cover a wide range of relative pose errors (RPEs)
and simulate larger camera velocities. The proposed method
is illustrated in Figure 2.

Several different image alignment methods are compared
since the proposed error terms have different qualities and can
be combined in various ways including: Phot for photometric
term (equ. 12), Geom for geometric term (equ. 13), MsSem
for the multi-score semantic term (equ. 9) and Sem for the
best-score semantic term (equ. 10).

All tracking approaches are embedded into a coarse to fine
scheme using the following NP=3 pyramid levels of {I;D;F}
images starting at scale 1/4:

pyramid level scale resolution

0 1/4 160×120
1 1/8 80×60
2 1/16 40×30

Minimisation is iterated for a maximum of [dK/3e, dK/2e,K]
iterations in levels [2, 1, 0] respectively, starting with the coars-
est level, where K is the number of iterations at finer scale.

Metrics. Following [30], the relative pose error is defined
between frames n and n+k which measures the local accuracy
of the motion estimation as

RPEk
n=
(
Pgt

n
−1

Pgt
n+k

)−1(
Pest

n
−1

Pest
n+k

)
(14)

From the M=N−k individual RPEs along the sequence, the
translational normalized root mean square error (nRMSE) is
computed over all frame indices of the translational component

nRMSE
(
RPEk

1:N

)
=

(
1
M

M∑
n=1

‖trans(RPEk
n)‖2∥∥∥trans(Pgt

n
−1

Pgt
n+k)

∥∥∥2

)1/2

(15)

In case of divergence in the minimisation, the relative pose
estimate Pest

n
−1

Pest
n+k is set to the identity matrix.

Tuning the number of classes. Since RefineNet was
trained for three different segmentation tasks, Fig. 3 plots the
nRMSE of Sem method for score maps in input obtained with
C={4, 13, 40} and for binary masks in input with C=40.
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Fig. 3: Evaluation of Sem method with score maps obtained
for C={4, 13, 40} semantic segmentation tasks. The rotational
error (right) is nearly an image of the translational error (left).
In practice, no loss in performance was noticed using the Sem
method compared to the MsSem method.

Sem40 (binary) performs quite bad compared to other Sem
methods. This demonstrates that score maps contain more
useful semantic information for VO than label predictions.
Moreover, even if there is a gain in segmentation quality
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Label 2 4 5 6 7 8 9 10 11 12 13 1 2 3 4

acci (%) 65.7 44.4 69.3 15.9 42.4 57.2 40.4 70.4 48.8 73.8 50.6 52.6 55.3 85.2 50.8 46.0 59.3
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TABLE I: Evaluation of RGB-RefineNet-101 averaged on four ScanNet sequences for 40-class [2], 13-class [3] and 4-class [26]
segmentation tasks. A mIoU of 44.9%, 56.1% and 73.5% is reached on the NYUv2 test set, for these tasks respectively. For
clarity, entries of classes that do not appear in considered sequences has been deleted.

when the number of classes C is smaller, the semantic tasks
with C={4, 13} do not bring enough semantic information to
improve semantic-only tracking, compared to 40-class task.
Finally, Fig. 3 also shows that semantic-only tracking does
not perform as good as Phot or Geom methods.

Tuning the scaling factors. In order to prove that semantic
error can be useful in improving the standard Phot+Geom
method, the scaling factor λI is set to 0.35 (best in practice)
and λS is fine-tuned. Fig. 4 shows a plot of the translational
nRMSE (col 1) of Sem40

λSPhot0.35Geom method with
varying λS settings. Col 2 shows the plot with the scaling
factor λS which achieves the best translational error over
different ground-truth translations. A sigmoid model was
successfully fit to those points and thus verifies the hypothesis
formulated in Section IV-B demonstrating that an adaptive λ
strategy that varies using a sigmoid function can be employed.
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Fig. 4: Fine-tuning Sem40
λSPhot0.35Geom approach with vary-

ing λS settings and a constant λI=0.35.

Optimal adaptive scaling factors. The optimal adaptive
lambda strategy is defined to be the one which always selects
the best λ setting. Fig. 5 shows the plot of the nRMSE
of PhotoptGeom, Sem40

optGeom and Sem40
optPhot0.35Geom ap-

proaches with this strategy. First, these results show that,
in combination with Geom term, the Sem term performs
better than Phot term far from the solution (t>10cm or
θ>8◦). Since a median ground-truth translation of 25cm and
a standard deviation of 14cm at k=30 is observed, it can be
concluded that the semantic term is more useful for applica-
tions such as frame-to-keyframe alignment or relocalisation.
Second, it was found that the Sem40

optPhot0.35Geom method
with adaptive λS outperforms the PhotoptGeom method,
taking advantage of the semantic term far from the solution
({λS≈1/70;λI=0.35}) and relying on the photometric term
close to the solution ({λS≈0;λI=0.35}).
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Fig. 5: Evaluation of multi-objective methods with optimal
adaptive scaling factors.



VI. CONCLUSION

In this paper, a semantic-only visual odometry (SemVO)
approach was proposed and implemented for full 6-DoF pose
estimation using class-level feature maps from a deep neural
network trained for semantic segmentation. It was demon-
strated that dense semantic-only visual odometry is possible by
assuming classification invariance across viewpoints. Various
implementations were considered including a multi-score error
function and a best-score error function. A tri-objective non-
linear least-squares error function was also proposed to take
advantage of the new semantic error term simultaneously with
classic photometric and geometric terms. The impact of the
number of classes on tracking performance was analysed along
with optimal fusion parameters. Experiments on the ScanNet
dataset confirm that the proposed semantic error term helps the
minimisation to converge far from the solution. This condition
could be verified in several applications including frame-to-
keyframe alignment, tracking at low frame rate, high speed
motion or even relocalisation.

In future works, the proposed semantic-based VO could
be improved with a more consistent semantic segmentation
exploiting recent advances by, firstly, the fusion of the RGB
and depth channels for deep networks and, secondly, the com-
bination of image and 3D point cloud semantic segmentation.
Finally, it would be worth designing a complete semantic
RGB-D SLAM with semantic-based tracking integrated in a
consistent semantic mapping.
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