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Abstract

We present an ab initio theoretical study of quasi one-dimensional beryllium chains,

BeN , from an electronic structure perspective for N=3, 4,..., 12. In particular, linear

and cyclic systems have been compared by using high-quality Coupled-Cluster for-

malism. Both linear and cyclic species have been found to be local minima on the

corresponding Potential-Energy Surface, for all the considered values of N . The linear

geometry is the most stable one only in the case of Be4. Several indicators (energy

gap, position spread tensor, locality of the molecular orbitals) clearly show that both

linear and cyclic 1D structures, unlike 3D bulk beryllium, have a covalent insulating

nature.
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Introduction

The interest in atomically-thin linear surface-deposited structures has experienced huge

growth in the last years. This growth was driven, for the most part, by the possibility

of synthesizing one-dimensional electron systems at stepped surfaces.1–5 These systems ex-

hibit a common characteristic, namely the presence of edge orbitals, which correspond to

what Tamm and Shockley introduced long ago as “surface states” in a one-electron picture.6

The edge effects were predicted in graphene-based nanoribbons and nanodots,7,8 that can

give rise to a wide spectrum of interesting electric and magnetic phenomena.9 These states,

in one-dimensional setting, are referred to as “end states”, the presence of which has been

observed, for e.g., in one-dimensional chains of self-assembled gold atoms on silicon surfaces.5

Ab initio theoretical treatment of linear beryllium chains, close to equilibrium configura-

tions, predicted the existence of two edge orbitals localized at the extremities of the chains.10

These edge orbitals are partially filled, and lead to two low-lying quasi-degenerate states,

namely, 1Σg and 3Σu. The energy difference between the singlet ground state and the triplet

state presents an exponential decay with increased length of the atomic chain.

Recently, a multitude of interesting effects and features exhibited by beryllium in dif-

ferent chemical environments have been theoretically predicted by Yáñez and coworkers.

The formation of the so-called beryllium bonds between a Lewis base and a beryllium Lewis

acid11 was found to act as a modulator of intra-molecular interactions,12 and as the driver

of spontaneous radical formation.13 Be-Be bonds on the other hand were proposed as possi-

ble moiety to trap anions utilizing the electron deficiency of the bond in what is known as

beryllium-based anion sponges .14,15 A new kind of Be-Be bonding was also predicted, namely

a one electron Be-Be bond of a hybrid character dominated by the contribution of s or-

bitals.16 Versatility of Be-based species extends well beyond small molecular structures and

has spurred interest in the context of linear surface-deposited atomic chains, as it serves as a
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prototypical subject for studying such chains. Linear beryllium chains have been extensively

investigated by our group.10,17–21 Because of the presence of unpaired electrons, unsaturated

linear chains, would be certainly highly reactive. However, the terminal edge orbitals in a

BeN chain can be saturated by means of hydrogen atoms, finally obtaining a linear HBeNH

chain. Indeed, HBe2H clusters have been observed in beryllium vapors by Tagues and An-

drews.22 Another possibility of getting a saturated species is by wrapping the chain into

a ring, thus creating a topologically closed structure.23–25 Notice that, although a ring is,

strictly speaking, a 2-Dimensional (2D) system, its local topology has a close similarity to the

1-Dimensional (1D) chains. For this reason, both structures are considered as quasi-1D ones.

In this work, we studied the electronic structure of open (linear) and closed (cyclic) BeN

clusters, where N in any integer number ranging from 3 to 12. We optimized the geometry

of both linear and cyclic chains by using a high-quality Coupled-Cluster (CC) formalism.

on the Potential Energy Surface (PES) for each structure. An important point that is

addressed in this work concerns the nature of the Be-Be bond at equilibrium distance. Bulk

3D beryllium is a metal, and it is often said that the chains are quasi-1D metallic systems.

Such an opinion can even be found, for example, in an article of one of the authors of the

present paper.26 In order to investigate this point, we studied the behavior of the Total-

Position Spread (TPS) tensor as a function of the system size. Indeed, it has been shown by

Resta and co-workers that the value of the TPS per-electron, or “Localization Tensor”,27–30

tends toward a finite quantity if the system is an insulator, while it diverges in the case of

metals. For this reason, we computed the eigenvalues of the spread tensor for both types of

chains.

The body of the article is structured as follows. Firstly, we consider beryllium chains

from an electronic structure perspective. The case of linear and cyclic geometries will be

compared. Then the theoretical framework of the investigation is given, and the details

concerning the used computational techniques are described. The results are presented and
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discussed thereafter: the symmetry and the canonical and localized orbitals of these systems

are considered, and the Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular

Orbital (HOMO-LUMO) energy gaps discussed. Subsequently, results on the optimized ge-

ometries, harmonic frequencies, total energies and their extrapolation in the limit of infinite-

length chains as well as the behavior of the TPS tensor are presented. Finally, we close by

summarizing our main results and give concluding remarks.

Electronic Structure

Beryllium has four electrons in the isolated atom, and a closed-shell electronic configura-

tion, 1s22s2. This leads to an electronic structure somewhat resembling that of a rare gas.

Beryllium exhibits an Ionization Potential (IP) that is larger than the IP of its period succes-

sor, a relatively infrequent behavior in the Periodic Table, that beryllium shares with other

Alkaline-Earth metals.

With only two valence electrons, beryllium is found in molecular moieties of co-linear

geometrical configurations, for e.g., the well known case of beryllium hydride (BeH2), and

the less studied, BeNH2 linear structures.22

Consider a linear arrangement of N beryllium atoms that, for simplicity, defines the

z axis of our reference Cartesian coordinate system. We assume a D∞h as the symmetry

point group of the chain, to be verified, and label the orbitals by g and u according to their

character under the inversion symmetry operation.

For a qualitative description of the electronic structure of the systems at hand it is enough

to consider σ valence orbitals, as the role of π valence orbitals can be neglected due to their

relatively high energies. For a chain made of N Be atoms, the total number of valence
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electrons is 2N . 2N − 2 of these electrons are accommodated in the N − 1 σ-bonds formed

from the inner spz hybrids along the chain. The outer spz hybrids combine to form two

edge orbitals a σg, and a σu hosting the remaining two valence electrons. In terms of these

two symmetry-adapted orbitals, the lowest energy configurations of the two edge electrons

are 1√
2
(σgσ̄g − σuσ̄u), and 1√

2
(σgσ̄u + σuσ̄g), yielding a singlet 1Σg and a triplet 3Σu state,

respectively. Due to the large separation between the edge spz hybrids, the aforementioned

states are quasi-degenerate.

We consider now the total energy of both linear and cyclic systems. In the case of linear

systems, we have shown17–20 that the total energy can be expressed as:

Elinear(N) = EST(N) = (N − 1)EBe−Be + EBe· (1)

where EST indicates the mean singlet-triplet energy, EBe−Be is the energy of a Be atom

having two Be-Be bond, while EBe· is the energy associated to the terminal edge electrons.

In practice, for large systems, the singlet and the triplet are degenerate, so one can extract

the total energy from single-reference calculations on the triplet. Notice that by using this

definition the energies associated to the inner core electrons are absorbed in the bond or

edge energy definition. The total energy per Be atom can be rewritten as

Elinear(N)/N = EBe−Be +
1

N
(EBe· − EBe−Be) (2)

This means that the energy per atom is a linear function of 1/N , N being the number of

beryllium atoms. The limit for N → ∞ gives the energy per atom of the infinite chain,

while the (formal) extrapolation of the curve to the value N = 1 gives the value of the EBe·

parameter.

In the case of cyclic systems, on the other hand, no terminal effects are present. In turn,
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in this case, the presence of a strain energy must be considered. This is due to the fact that

the two bonds on each beryllium atom, -Be-, form an angle smaller than π, which is the ideal

one for the sp hybridization of beryllium atoms. In the case of a regular ring containing N

atoms, the difference between the ideal angle π and the actual one is given by θ = 2π/N .

For small deformations from the ideal local geometry, the strain energy is expected to be a

quadratic function of the deformation. In other words, for small values of θ (which means

in the limit of long chains), the strain energy is expected to be a quadratic function of θ.

Therefore, the total energy per beryllium atom will become

Ecyclic(N)/N = EBe−Be +
1

N2
EB̂e (3)

In this expression, EBe−Be is the Be-Be bond energy, as in equation (2), while EB̂e represents

the strain energy. Therefore, for cyclic chains, the total energy per atom is expected to

be a quadratic function of 1/N . As for the case of linear systems, limit for N → ∞ gives

the energy per atom of the infinite chain, while the line slope gives the EB̂e parameter. If

the present analysis is correct, the parameter EBe−Be should be exactly the same in the two

energy expressions, eq.s (2) and (3). Notice that in these equations the parameters EBe−Be

and EBe· include also the large core energy associated to the 1s electrons.

In this work we are particularly interested in comparing linear and cyclic systems up

to relatively long chains (N=12). This means that the use of high-quality size-consistent

methods is particularly appropriate. With this respect, the Coupled-Cluster (CC) formalism

is certainly the best tool nowadays available in Quantum Chemistry. However, CC formalism

is presently restricted essentially to the treatment of closed-shell systems. This is not a

problem for the treatment of cyclic chains, due to the single-reference nature of their ground

state. Linear chains, on the other hand, have an open-shell singlet ground state, whose

description is highly problematic at CC level. In the course of our previous investigations,

however, we have shown that the single-reference first excited triplet is quasi degenerate with
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the ground state. Their energy split, in fact, decreases exponentially as a function of the

number of atoms in the chain, and can be safely neglected in energetic considerations except

for the shortest chains for which the triplet is preferred. In the present investigation, in order

to apply a high-quality Coupled-Cluster formalism to the study of the systems, we made the

choice of studying the singlet ground state of cyclic chains and the triplet first-excited state

in the case of linear chains.

Computational Details

Quasi-1D systems are the linear and cyclic chains. The linear chains have a D∞h symmetry,

while cyclic ones have Dnh, where N is the number of Be atoms. These symmetries have

been checked a posteriori by means of a frequency calculation, as described in the following

section. However, since most ab initio packages can only handle abelian groups, the actual

calculations were carried out considering the largest abelian subgroup corresponding to the

system at hand. This is the D2h subgroup for linear and even cyclic chains, while odd cyclic

chains were studied in the C2v subgroup.

Crystalline metallic beryllium has a Hexagonal Close-Packing structure. In order to con-

firm the non-metallic nature of the Be-Be bonds in 1D structures, it is instructive to consider

also three-dimensional (3D) clusters. Since Hexagonal Close-Packing (HCP) arrangements

of weakly interacting atoms are often quasi-degenerate with Face-Centered Cubic (FCC)

structures, we considered highly symmetric clusters as fragments of these crystal structures.

The structures we chose are the tetrahedral Be4 structure (Td symmetry), and two isomers

of Be13: the icosahedral structure (Ih symmetry, which can be seen as a fragment of a FCC

crystal), and a D3h structure which is the seed of a HCP crystal. At HF level, Be4 has a

closed-shell ground state, and do not create particular difficulties. The two forms of Be13, on

the other hand, have open-shell ground states that require some caution. In particular FCC
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Be13, has a triply-degenerate HOMO manifold hosting four electrons, and it is not possible

to have a neutral non broken-symmetry wavefunction. For this reason, we also considered

the two ionic undistorted structures that are closest to the neutral one, i.e. the quartet Be+13

and the singlet Be2−13 . FCC Be13, on the other hand, has a doubly degenerate HOMO pair

containing two electrons, and we considered therefore the triplet lowest state.

The ANO-type basis set optimized by Widmark and co-workers was chosen for the atomic

orbitals,31 adopting the largest contraction recommended by the authors. We performed

Restricted Hartree-Fock Self Consistent Field (RHF-SCF) and Complete Active Space SCF

(CAS-SCF) calculations for the singlet ground state of cyclic system, and the triplet lowest

state of diradical linear chains. Geometries have also been optimized at Coupled-Cluster level

restricted to Single and Double excitations (CCSD). Finally, the contribution of triple exci-

tations was taken into account at a perturbative level by performing a CCSD(T) calculation

at the CCSD optimized geometry. The harmonic frequencies were evaluated numerically

at the SCF and CCSD levels. All CC calculations were performed with doubly occupied

RHF-frozen 1s orbitals.

Finally, we note that all the calculations reported in this work were carried out using

the MOLPRO package.32 In particular, we performed RHF-SCF, CAS-SCF, CCSD,33 and

CCSD(T)34 calculations with the corresponding MOLPRO sections. Geometry optimiza-

tions were obtained through the rational-function approach and the geometry DIIS algo-

rithm.35
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Results and Discussion

We discuss here the behavior of the singlet ground state of cyclic BeN chains and the first

excited triplet state of linear chains containing N Be atoms for values of N ranging from

3 to 12. Geometries were optimized at CCSD level (see Tables S1 and S2 in the Supple-

mentary Information), and single-point calculations at the CCSD optimized geometries were

performed at CCSD(T) level (Tables S3, and S4).

Linear-Chain Symmetry

The symmetry group of the linear chains BeN is D∞h. The different equilibrium-bond-lengths

of linear structures coincide up to few percents. The symmetry of the valence occupied

orbitals for even chains (N = 2m) are, in ascending energy order, σg, σu, σg,... The two singly

occupied molecular orbital (SOMO) have σu and σg symmetry and become quasi-degenerate

orbitals for long chains. At CAS-SCF level, the two orbitals have very close occupations

in the ground state singlet, 11Σ+
g . The lowest triplet state 13Σ+

u is quasi degenerate with

the ground state, and in this case the occupation numbers of the quasi-degenerate frontier

orbitals are exactly those obtained at CAS(2/2) level.

Cyclic-Chain Symmetry

It turned out that the cyclic minima have Dnh symmetry, which means that the N atoms

occupy the vertices of a regular polygon having N sides. We assume the molecule is placed

on the xy plane, with the yz symmetry plane containing at least one atom. The symmetry of

the valence occupied orbitals for even chains (N = 2m) are, in ascending energy order, a1g,

e1u, e2g, e3u,... The highest orbital has either b2g or b2u symmetry, for N = 4k or N = 4k+2,

respectively. Odd-N chains, on the other hand, (N = 2m+ 1) have orbitals with symmetry

a′1, e
′
1, e
′
2,..., e

′
m. This fact has important implications on the HOMO energies. In order to see
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this, it is convenient to consider a Hückel model that involves the bonding orbitals between

two adjacent atoms only. As usual, we assume a β value < 0 for the hopping integral between

two adjacent orbitals (its actual value is arbitrary), while the monocentric α integral does

not play any role, and can be put equal to zero. All the resulting orbitals will be doubly

occupied, so this model is not able to describe any excitation. Nevertheless, it can give some

useful information on the Highest Occupied Molecular Orbital (HOMO) structure. In fact,

in the case of even-N cyclic chains, the HOMO is a non degenerate orbital. In the Hückel

model, its energy has a constant value of −2β. The HOMO in odd cyclic chains is given

by a pair of degenerate orbitals, whose Hückel energy is given by −2β cos(π/N). The two

different behaviors are illustrated in Figure 1, where the orbital energies for the two cases of

C5H5 and C6H6 are reported.

Canonical and local orbitals

In Figure 2a, some of the ROHF valence orbitals are shown, for a linear chain of intermedi-

ate length (Be6) at the equilibrium geometry. The five doubly occupied canonical orbitals

are different bonding combinations of Be-Be spz hybrid orbitals. The singly occupied edge

orbitals are hybrid spz orbitals pointing towards the outer part of the chain.

Local orbitals have been obtained by a unitary transformation performed on the ROHF

canonical orbitals for the case of N = 6, with the DOLO code.36

In Figure 3, the valence local orbitals of linear Be6 are shown: there are five doubly occu-

pied valence bonding orbitals, together with the corresponding empty antibonding orbitals.

Between these two sets, two singly occupied edge orbitals are found. They come from the

linear combinations of the σg and σu quasi-degenerate orbitals that are located at the Fermi

level of the system.

In Figure 2b, RHF valence orbitals are shown for the cyclic (Be6) chain at its equilibrium
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geometry. In Figure 4, the corresponding local orbitals are illustrated. In this case, there

are N sets of orbitals that are equivalent because of symmetry reasons. Therefore, only

four types of different valence orbitals are found: bonding and antibonding, both having a σ

character, as well as in-plane (σ) and out-of-plane (π) non-bonding orbitals. For this reason,

only one doubly occupied bonding orbitals and its corresponding empty antibonding orbital

have been reported. The in-plane non-bonding orbital is also illustrated in the figure.

In Figure 2, the orbital energies of the valence doubly occupied or singly occupied edge

orbitals are also reported. For both linear and cyclic chains, the highest occupied orbitals

have negative energies. In the linear Be6 chain, the SOMO energies are closed to the highest

doubly occupied orbital one.

HOMO-LUMO Energy Gap

Although the HF calculations lack the correlation contribution, the HOMO-LUMO energy

gap computed at HF level is an indicator of the metallic character of an extended system.

For linear chains, HOMO correspond to the highest SOMO (the two SOMO become quasi-

degenerate for N > 8). In Figure 5 (see also Table 1), the HOMO-LUMO gap is illustrated

as a function of N for the two types of geometries. In both cases, the gap is roughly constant

as a function of the system size, and no sign of metallicity is shown. The linear gap is almost

constant as a function of the size, and converges toward a limit close to 0.26 hartree for long

chains. As discussed previously, the cyclic gap shows an alternating behavior between even

and odd structures. Because of this oscillating trend, its large-size limit is more difficult to

evaluate, but should be close to 0.23 hartree. The difference between the two limit values

are clearly due to the presence of the edge orbitals in the linear systems. In both cases,

these results are consistent with an infinite limit of the gap well different from zero. For

a comparison, the gap is 0.344943 hartree for the isolated Be atom, and becomes 0.260674
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hartree for Be4. In the case of Be13, the gap goes down to 0.136318 (0.170492) hartree for the

HCP (FCC) symmetry structure of the closed-shell neutral (dianion) compound. Although

the comparison between gaps of systems having different charges should be taken with some

caution, these values show a clear descending trend as a function of the system size, as one

would expect from a metallic system.

Optimized Geometries and Harmonic Frequencies

In Tables S1 and S2, the optimized bond lengths are reported for the linear and cyclic struc-

tures, respectively. All bond distances of chain structures are systematically shorter than the

value in the bulk, which is about 4.195 bohr.37 This fact can be understood if we consider

that each electron is shared among a much large number of “bonds” in the bulk than in

the chains. From these tables, it appears also that the bond lengths are weakly correlated

with the position of the bond, or the chain length. The terminal bonds of open chains are

an exception to this behavior, since their length are considerably longer than all the other

bonds. It is interesting to see that the same type of phenomenon has been described in

crystalline beryllium, where the inter-planar spacing between the first and the second planes

at the (0001) crystal surface has been found to be expanded by about 0.2 bohr.38

In cyclic BeN , all the bonds are equivalent. The optimized bond length are reported in

Table S2 and Figure 6. For small systems, the values of even cyclic chains are significantly

shorter than those corresponding to odd chains. The bond lengths decreases when N in-

creases for odd values of N and, on the contrary, increases for even N in the case of the

short chains (up to N = 7). This can be related to the different behavior of even and odd

closed chains, as discussed in the previous section. For larger values of N , on the other hand,

the two curves are barely distinguishable, and they tend to the common limit of an infinite

system for large values of N . The asymptotic value can be estimated to be about 4.04 bohr.
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In Table S1 and Figure 7 the distances for linear chains are reported. In our notation the

numbering of the bonds begins from the center and ends at the edge of the chain. Figure

7 gives a clear depiction of the general trend in bond lengths, where each curve describes

an N membered chain (N = 3, 4, ..., 12). The external bond ((N − 1)/2 bond number for

odd systems and N/2 for even ones) has a value of about 4.087 bohr. In each chain, this

bond is the longest one, being about 0.056 bohr longer than the previous one ((N − 3)/2 for

odd chains and N/2 − 1 for even ones). We note that the outer Be atoms are surrounded

by three valence electrons compared to four electrons for the inner atoms, explaining the

relatively long external bonds. The preceding ((N − 3)/2 for odd chains and N/2 − 1 for

even ones) bond is the shortest one in each chain, reaching around 4.031 bohr. Then, after

slight increments in bond lengths, saturation is reached at a value ∼ 4.044 bohr. We note

that bond lengths in chains of different sizes are reduced for the shorter chains, with the

exception of Be3. Finally, we notice that consecutive odd (N + 1) and even (N) chains have

very similar bond lengths when N increases.

It was found that the linear geometry is the most stable one only in the case of Be4.

Concerning the linear chains, we computed harmonic frequencies at CAS(2/2) level, for

the singlet and triplet states for short chains. It turns out that singlet and triplet have

extremely close frequencies in the case of long chains, since these two states are almost de-

generate. In other words, this means that the singlet-triplet quasi degeneracy is not removed

by small bending (or stretching) of the system. For this reason, we report in this work only

the frequencies for the triplet state computed at the RHF level (Table S5). The harmonic

frequencies for the cyclic chains have been calculated for the RHF singlet state (Table S6).

All the second derivatives where found to be positive (i.e., all the harmonic frequencies are

real and positive). This means that, in principle, it should be possible to produce these
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molecular species, although their stability is also related to dynamical and thermodynami-

cal aspects. The lowest bending and stretching frequencies vanish asymptotically with the

number of atoms N , whereas the highest frequencies approach finite values. CCSD har-

monic frequencies have also been calculated for both linear and cyclic chains, until N=8.

The results, presented in Table S7 and S8, do not change significantly compared to the ones

obtained at the RHF level . Indeed, the difference is no more than ±35 cm−1 except for

the Be4 cyclic chain for which one frequency is found 129 cm−1 lower at the correlated level

(344.73 cm−1 compared to 481.05 cm−1).

Extrapolated Energies

The total CCSD(T) energies can be found in Tables S3 and S4 while the per-atom CCSD(T)

energies are plotted in Figure 8 as a function of 1/N (linear clusters), and 1/N2 (cyclic

clusters). For sake of comparison, the energies for Be, Be4, Be13 are given in Table 2. In

the case of cyclic structures, the odd values on N show a behavior that is slightly different

from the even values, as discussed earlier, the curves shown in the figure have a remarkably

linear character for the largest values of N . By interpolating the energies corresponding to

the last seven values (N=6,...,12) we obtain a behavior given by

Elin(N)/N = −14.658 + 0.1044
1

N
(4)

and

Ecyc(N)/N = −14.658 + 0.4334
1

N2
(5)

The intercept at the abscissa equal to zero of these straight lines corresponds to the limit

for N → ∞ of the energy per monomer. The fact that the values obtained from the two

different types of systems are coincident within a mhartree confirms the consistency of the

model. It is also a further indication of the strong covalent nature of the bonds, since the

absence of size effects (except N = 3 and N = 4 for the cyclic case) indicates the absence of
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any remarkable sign of electron delocalization.

As already anticipated, the odd cyclic chains have a behavior that is slightly different

from the even chain ones. In particular, the points lies on a straight line to a worse approxi-

mation (this is illustrated in Figure 8). Although this is hardly surprising in the case N = 3,

since the strain angle is in this case very large, the behavior is much more surprising in the

case N = 5. In fact, this point is less well described by a linear fitting in 1/n2 than the even

chain N = 4, which in principle has a much larger strain. We should also mention the fact

that linear chains studied in previous works17 showed effects somehow reminding the present

one: in particular, we remarked a parity effect in both the ST splitting in neutral chains and

in the interaction in cationic or anionic bistable chains.

This alternating behavior is found also by looking at the equilibrium bond lengths of the

cyclic forms, reported in Table S2 and Figure 6 and already discussed.

The Total-Position Spread Tensor

The TPS tensor gives useful information about the metallicity of the system. The isolated

atomic value is Λ = 3.9491 bohr2, while the tetrahedral Be4 has the three degenerate com-

ponents equal to Λ = 24.1284 bohr2, which gives a per-atom value of Λ = 6.0321 bohr2. This

trend is consistent with the well known metallic nature of bulk beryllium.

The chain values are reported in Tables 3 (cyclic) and 4 (linear), and illustrated in Fig-

ures 9, 10, and 11. We computed both the spin-summed quantities and the spin-partitioned

αα + ββ and αβ + βα ones. For a single Slater determinant, the αβ + βα term is zero for

the cyclic case, and therefore only the spin-summed component is shown. For linear chains,

Λ‖ indicates the component in the chain direction, while Λ⊥ are the doubly degenerate com-

ponents in the directions orthogonal to the chain. For cyclic chains, on the other hand, Λ‖
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indicates the doubly degenerate components that lie on the chain plane, while Λ⊥ is the

component in the direction orthogonal to this plane. Both singlet and triplet values were

reported for the linear case. Singlet and triplet spreads, however, are almost coincident but

for the shortest chains, since the corresponding wavefunctions are almost identical, except

for the spin coupling of the electrons in the singly occupied orbitals.

In all cases, the spin-summed values become quickly proportional to the number of atoms,

as shown in Figures 9a and 10a. Moreover, from Figures 9b and 10b it appears that Λ/N

converges to a constant value from above, thus excluding the possibility of a slow divergence

of this quantity. This is a clear indication of the non-metallic nature of the chains. As

expected, the cyclic chains saturate more rapidly than the linear ones, because of the border

effects that are present in the latter. In particular, the orthogonal components Λ⊥/N for

both cyclic and linear systems converge toward a common limit that is close to 4.2 bohr2.

Remarkably, the parallel components are even smaller than the perpendicular ones, showing

a very little mobility of the electrons in the directions of the chains. These components have

obviously different behaviors for the linear and cyclic systems, since the spread is purely

longitudinal in the former case, and a mixture of longitudinal and transversal spread in

the latter case. However, in the case of a local character of the spread and because of its

quadratic nature as a function of the coordinates, one would expect that Λ‖/N for the cyclic

systems is close to the average between Λ‖/N and Λ⊥/N for the linear case. This is indeed

the case, with Λ‖/N = 3.9 bohr2 for the cycles, while Λ⊥/N = 4.2 bohr2 and Λ‖/N = 3.5

bohr2 for the linear geometries (average value: 3.9 bohr2). This is slightly above the atomic

spread (3.9491), but well below the per-atom Be4 value for the cluster with Td symmetry

(6.0321).

The per electron eigenvalues of the spread tensor for both types of chains quickly saturate

for large structures (actually, they even show a tiny reduction of their magnitude). These

facts clearly indicate, in our opinion, that quasi-1D beryllium systems do not have a metallic
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nature. On the contrary, we believe that they can be seen as prototypes of 1D covalent chains.

Spread data for FCC Be13, admit a less clear interpretation, because of the ionic char-

acter of the wave function. The spread for the Be+13 cluster is obviously much less than

the one for Be2−13 , partly because of the slightly larger bond lengths and the presence of

three more electrons in the latter, but in particular for the more diffuse nature of the an-

ionic wave function with respect to the cationic one. The per-atom values are comprised

between 5.5561 for Be+13 and 7.1731 for Be2−13 . HCP Be13 has values 5.9775 for the axial

component and 6.0953 for the two degenerate equatorial components. It is clear from these

results that the longitudinal components of the TPS in quasi-1D structures do not show any

signature of a metallic nature of the wave function, contrary to what happens for the 3D case.

Conclusions

A theoretical Coupled-Cluster study on the equilibrium geometry and harmonic frequencies

of quasi-1D beryllium structures, having either linear or cyclic geometries, was reported. It

was shown that the effect of dynamical correlation do not significantly change the HF results.

In conclusion, quasi-1D BeN systems are likely to be metastable clusters.

The equilibrium bond lengths of the studied systems are weakly dependent on the size

of the chain or the position of the bond along the chain. Moreover, harmonic frequencies,

computed at CCSD level, are in good agreement with previous CAS-SCF computations.

The reported calculations give information about the nature of the ground states of beryl-

lium linear structures. All the indicators point toward a non-metallic, covalent type of bond

between neighbor atoms. In particular, we found a HOMO-LUMO gap larger than 6 eV

for the biggest clusters, there is no tendency to shrink as the size of the system increases.

The valence Molecular Orbitals of the chains can be well localized, and they correspond to
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bond orbitals located on pairs of neighbor atoms, contrary to what happens in the case of

metallic structures. Finally, what is probably the strongest evidence of a non-metallic na-

ture of the systems is the fact that the TPS tensor has a linear dependence on the system size.

According to our results, both linear and cyclic structures are local minima on the corre-

sponding PES. For a given value of N, the cyclic structures are more stable than the linear

ones, except in the case of Be4. Nevertheless, more compact (i.e., 3D) clusters are much

more stable, with total energies considerably lower. The possible existence of these clusters

in quasi-1D geometries depend on the barrier toward more stable arrangements. Transition

states connecting these minima should be investigated to conclude.
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Table 1: HOMO-LUMO energy gap obtained by ROHF/RHF calculations for the linear and
cyclic structures. Energy values are in hartree.

N linear cyclic

3 0.260950 0.250322
4 0.260679 0.212153
5 0.260644 0.235867
6 0.260686 0.217744
7 0.260904 0.233666
8 0.261172 0.222158
9 0.261512 0.232881

10 0.261825 0.225006
11 0.262146 0.232277
12 0.262413 0.226369

Table 2: Total energies for the singlet ground state of the isolated Be atom and three 3-D
clusters (Be4, Be13 FCC and Be13 HCP). For Be13 FCC two undistorted clusters have been
studied: the high-spin (quartet) Be+13 and the closed-shell Be2−13 . For Be13 HCP the triplet
with an “ideal” geometry has been considered. Energies are in hartree.

system RCCSD(T) RCCSD RHF-SCF

Be -14.61896573 -14.61896573 -14.57298670
Be4 -58.60931559 -58.58345127 -58.35870626

FCC Be+13 -190.62705587 -190.52910207 -189.76368163
FCC Be2−13 -190.93162621 -190.81969066 -189.96562397
HCP Be13 -190.76001277 -190.65777865 -189.85624311
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Table 3: TPS tensor for cyclic BeN clusters. The isolated Be atom value is 3.949061 bohr2,
while the Be4 value for the cluster with Td symmetry is 24.128468. For the FCC clusters
with Ih symmetry, the TPS value is 72.229108 for Be+13 and 93.249672 for Be2−13 , while the
HCP Be13 has values 77.705190 (the axial component) and 79.392777 (the two degenerate
equatorial components). All TPS values are in bohr2.

N Λ‖ Λ⊥

3 22.40055271 14.61175820
4 20.10512254 17.33366066
5 24.19144676 21.57474198
6 26.26399922 25.42874598
7 29.76517495 29.56328841
8 32.95341909 33.63912437
9 36.48514744 37.77095934

10 39.98501422 41.89523029
11 43.58183491 46.03325189
12 47.19360128 50.17274976
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Table 4: TPS tensor for linear BeN clusters.

N 3Σu Λ‖
3Σu Λ⊥

1Σg Λ‖
1Σg Λ⊥

1Σg Λαα+ββ
‖

1Σg Λαβ+βα
‖

3 11.36190259 13.24719585 12.25496116 13.36032816 66.51043287 -54.25547170
4 15.00274761 17.45137526 15.24779377 17.47028013 122.41199734 -107.16420357
5 18.51186839 21.62742504 18.56716211 21.63077807 193.68876105 -175.12159893
6 21.96918759 25.79452283 21.98197352 25.79502058 281.08133953 -259.09936600
7 25.40448964 29.95848755 25.40676696 29.95858478 384.79795293 -359.39118597
8 28.82989461 34.12105801 28.83050954 34.12106795 504.88414711 -476.05363756
9 32.25083491 38.28292822 32.25088095 38.28293151 641.34745876 -609.09657781

10 35.66977175 42.44445216 35.66981185 42.44445205 794.18957727 -758.51976542
11 39.08783634 46.60574585 39.08783014 46.60574593 963.40895434 -924.32112419
12 42.50563131 50.76689007 42.50563579 50.76688997 1149.00329929 -1106.49766350

Figure 1: The Hückel π Molecular Orbitals of (a) benzene C6H6 and (b) cyclopentadienyl
anion C5H5. Orbital energies are given as a function of the Hückel parameters α and β.
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Figure 2: Canonical Occupied Molecular Orbitals (MO) of (a) Linear Be6 (D∞h) computed
at ROHF level and (b) Cyclic Be6 (DNh) computed at RHF level. The MO symmetries are
specified and the orbital energies are given (hartree).
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Figure 3: The 12 valence orbitals having σ character of the Be6 chain, local picture: the five
occupied bonding orbitals (bottom); the two singly occupied edge orbitals (middle); the five
empty virtual orbitals (top). The π orbitals are not shown.
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Figure 4: Three out of the 18 valence orbitals having σ character of cyclic Be6, local picture:
a bonding occupied orbital (bottom); an empty non-bonding orbital (middle); an empty
virtual orbital (top). The remaining 15 σ orbitals are equivalent by symmetry to these three
ones by rotation around the C6 axis. The π orbitals are not shown.
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type of chains, as a function of the number of beryllium atoms N . Energies in hartree.

30



4 6 8 10 12
N

3.95

4

4.05

4.1

4.15

4.2
B

on
d 

di
st

an
ce

 (
bo

hr
)

Even N
Odd N

Figure 6: The optimized CCSD bond lengths (bohr) as a function of the number of Be atoms
(N), for cyclic BeN , N=3,...,12.

31



0 1 2 3 4 5 6
Bond number

4.02

4.04

4.06

4.08
B

on
d 

di
st

an
ce

 (
bo

hr
)

N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12

Figure 7: The optimized CCSD bond lengths (bohr) as a function of the bond position in
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Figure 9: The spin-summed TPS for cyclic chains34
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Figure 10: The spin-summed TPS for linear chains35
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