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Abstract The French Mediterranean is subject to intense precipitation events occurring mostly in
autumn. These can potentially cause flash floods, the main natural danger in the area. The distribution of
these events follows specific spatial patterns, i.e., some sites are more likely to be affected than others. The
peaks-over-threshold approach consists in modeling extremes, such as heavy precipitation, by the
generalized Pareto (GP) distribution. The shape parameter of the GP controls the probability of extreme
events and can be related to the hazard level of a given site. When interpolating across a region, the shape
parameter should reproduce the observed spatial patterns of the probability of heavy precipitation.
However, the shape parameter estimators have high uncertainty which might hide the underlying spatial
variability. As a compromise, we choose to let the shape parameter vary in a moderate fashion. More
precisely, we assume that the region of interest can be partitioned into subregions with constant hazard
level. We formalize the model as a conditional mixture of GP distributions. We develop a two-step inference
strategy based on probability weighted moments and put forward a cross-validation procedure to select
the number of subregions. A synthetic data study reveals that the inference strategy is consistent and not
very sensitive to the selected number of subregions. An application on daily precipitation data from the
French Mediterranean shows that the conditional mixture of GPs outperforms two interpolation approaches
(with constant or smoothly varying shape parameter).

1. Introduction

In the French Mediterranean, heavy precipitation events occurring mainly in autumn, often called Cevenol
events tend to gather in very specific areas. Factors explaining the spatial distribution of these events are
the presence of mountains and the trajectories usually taken by contrasting air masses, humid, and warm
coming from the Mediterranean sea and cold from the North. Heavy precipitation might trigger flash floods,
the main natural danger in the Mediterranean area, that can potentially cause fatalities and important mate-
rial damage [Delrieu et al., 2005; Borga et al., 2011; Braud et al., 2014].

Extreme value theory [Coles, 2001] provides a sound asymptotic framework commonly used to model the
distribution of extremes such as heavy precipitation. The Extremal-types theorem [Fisher and Tippett, 1928;
Gnedenko, 1943] states that the behavior of the upper tail of the distribution, which governs the probability
of extreme events, can be of three distinct types. Two classical strategies for statistical inference are as fol-
lows. In the block maxima approach, the generalized Extreme Value (GEV) distribution is fitted to maxima
over sufficiently large blocks of observations, often taken as years. On the other hand, the peaks-over-
threshold approach consists in approximating the distribution of the excesses over a large enough thresh-
old by the generalized Pareto (GP) distribution [Balkema and de Haan, 1974; Pickands, 1975]. Both the GEV
and the GP distribution have a shape parameter which determines the type of extremal behavior: Fr�echet
(heavy tail), Gumbel (exponential or light tail), or Weibull (finite bounded tail) type depending on the range
of values of the shape parameter (positive, zero or negative, respectively).

Although risk assessment is conventionally performed by hydrologists based on return levels such as the
100 year return level, the probability of extreme events and therefore hazard levels are strongly influenced
by the shape parameter. Indeed, return levels of period T years (the amount which is expected to be
exceeded on average once in T years) can be expressed as quantiles of the GEV or the GP distribution. In
both cases, as T gets large, the shape parameter becomes the determining factor of the value of return
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levels. Therefore, to assess hazard levels, considering return levels with a long period is strongly linked to
the value of the shape parameter.

Several regression approaches have been developed to interpolate the distribution of extremes in a region.
As the estimation of the shape parameter is known to be difficult, it is often assumed to be constant in
space, thereby assuming a constant hazard level in the region [Sang and Gelfand, 2009; Renard, 2011;
Naveau et al., 2014]. However, the shape parameter has also been modeled as functions of covariates with
various degrees of freedom [Blanchet and Lehning, 2010; Carreau and Girard, 2011]. In Cooley et al. [2007],
hierarchical Bayesian models of increasing complexity for the shape parameter are compared: a single value
for the entire region (constant shape parameter in space), two values for two predefined regions (the
selected model) and as functions of covariates with a Gaussian process.

Regional frequency analysis can also be applied as an interpolation approach of the distribution of extremes
[Hosking and Wallis, 2005; Carreau et al., 2013]. It relies on the concept of homogeneous regions that can be
defined either contiguously in space or as neighborhoods around target sites [Burn, 1990]. Extreme observa-
tions (annual maxima or excesses above a high threshold) from all the sites in a given homogeneous region
are scaled by a site-specific factor and pooled together to estimate the so-called regional distribution. Both
with the block maxima or the peaks-over-threshold strategies, this implies that homogeneous regions have
constant shape parameter and thus the corresponding hazard levels can be either piecewise constant (in
the case of contiguous regions) or smoothly varying (with the neighborhood approach also called region of
influence).

In this work, we propose a regional peaks-over-threshold model to interpolate the distribution of extremes,
defined as excesses above a high threshold, for regions in which the hazard level is assumed to vary moder-
ately. More precisely, we assume that the hazard level is piecewise constant and that the region can be par-
titioned into subregions with constant shape parameter. The scale parameter is assumed to vary smoothly
spatially as a function of covariates. The regional peaks-over-threshold model can be formalized as a condi-
tional mixture of GP distributions, see section 2.2. We develop in section 2.2.1 a two-step inference and
interpolation procedure to estimate the partition and the GP parameters, analogously to the Expectation-
Maximization (EM) algorithm [Dempster et al., 1977]. The inference is fast since it relies on probability
weighted moment estimators [Diebolt et al., 2007] and could be used to initialize EM or any other inference
strategy involving optimization. The estimation of the GP parameters in a given subregion is a reformula-
tion, with simplified expressions (requiring two instead of three probability weighted moments), of the
inference strategy proposed in Naveau et al. [2014] (see Appendix A for details).

The number of subregions, i.e., the size of the partition or equivalently the number of components in the
mixture, is selected with a cross-validation procedure, see section 2.2.2. This is a standard way to assess out-
of-sample performance by creating test sets, i.e., data not used for estimation, which makes an efficient use
of the available data [see Bishop, 2011, section 1.3]. By comparing several partition sizes with out-of-sample
performance, the cross-validation procedure can find a balance between sufficient adaptability of the
model obtained with enough subregions and too much variability as a result of too many shape parameters
to infer. This is a typical bias-variance trade-off which is often addressed in regional frequency analysis with
statistical tests to assess homogeneity [Viglione et al., 2007].

The proposed regional peaks-over-threshold model can be cast into regional frequency analysis combined
with peaks-over-threshold [Madsen and Rosbjerg, 1997a; Roth et al., 2012; Evin et al., 2016]. However, none
of these studies has considered the case of a partition into subregions with constant shape parameter (i.e.,
contiguous homogeneous regions). In addition, the procedure developed in this work to identify the parti-
tion takes an entirely different angle. In particular, the partition is formed based on a probability weighted
moment that depends only on the shape parameter rather than from physiographic variables such as geo-
graphical and climatological characteristics [Hosking and Wallis, 2005]. Besides, although the inference strat-
egy is completely different, the proposed conditional mixture of GPs can also be thought of as an extension
of the two subregion model proposed in Cooley et al. [2007] in which the number of subregions is not fixed
a priori.

The performance of the proposed regional peaks-over-threshold model is evaluated on 18 different syn-
thetic data sets in section 3 in terms of its ability to select the appropriate number of hazard subregions
and to estimate the GP parameters when the generative model is known. In section 4, the proposed model
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is compared on daily precipitation from the French Mediterranean to two other interpolation approaches
with different assumptions on the variability of the shape parameter (either constant on the entire region
or smoothly varying). To this end, the performance of each interpolation approach is evaluated via cross val-
idation. In addition, thanks to spatial block bootstrap, 95% confidence bands of return level curves are
obtained for each approach at two stations that were kept aside for validation.

2. Regional Peaks-Over-Threshold Approach

2.1. Peaks-Over-Threshold Approach
The peaks-over-threshold approach is based on a theorem which states that, under mild assumptions, the
generalized Pareto (GP) distribution can be used as an approximation to the upper tail of the distribution of
most random variables [Pickands, 1975]. In other words, given a high enough threshold u suitably chosen,
the GP distribution approximates the distribution of the excesses over u. Let Y � Gðr; nÞ be a random vari-
able representing the excesses that follows a GP distribution with scale parameter r > 0 and shape parame-
ter n 2 R. The survival function of Y is provided in equation (1) and obey the following domain restrictions:
y � 0 when n � 0 and y 2 ½0;2r=nÞ when n < 0.

PðY > yÞ5�Gðy; r; nÞ512Gðy; r; nÞ5
11n

y
r

� �21=n
if n 6¼ 0

exp 2
y
r

� �
if n50:

8>><
>>: (1)

The shape parameter describes the upper tail behavior and can be thought of as a way to associate a hazard
level to Y. Indeed, the larger the shape parameter is, the higher the probability of extreme events. If n > 0, Y is
said to have a heavy or Pareto-type upper tail and PðY > yÞ � 1=y1=n for y " 1. The upper tail is said to be
light or exponential when n 5 0 and PðY > yÞ � 1=exp ð2yÞ for y " 1. The upper tail is bounded for n < 0.
2.1.1. Return Levels
High quantiles associated to long return periods such as 100 years are often used by practitioners for risk
assessment. Let l(T) be the quantile, also termed return level, with a return period of T years, i.e., l(T) is the
level that is exceeded on average once every T years. Thanks to the GP tail approximation, l(T) can be esti-
mated as a quantile of the GP distribution as follows:

lðTÞ5
u1

r
n
ððT NexcÞn21Þ if n 6¼ 0

u1rlog ðT NexcÞ if n50

8<
: (2)

provided that l(T) is greater than the threshold u and where Nexc5365:25 fu is the average number of
excesses per year with fu the probability of exceeding the threshold u.

Underestimation of the shape parameter leads to underestimation of return levels with greater discrepan-
cies for longer return periods. Indeed, it can be seen from equation (2) that the larger T is, the greater the
influence of the value of the shape parameter on the return level l(T).
2.1.2. Probability Weighted Moment Estimators
To estimate the GP parameters, we rely on a method based on probability weighted moments (PWM). For
r � 0, the PWMs of Y � Gðr; nÞ are given by [Diebolt et al., 2007]:

E½Y �GðY; r; nÞr �5 r
ð11rÞð11r2nÞ : (3)

Provided that n < 1, let l5E½Y�5r=ð12nÞ be the first probability weighted moment of Y (plug r 5 0 in
equation (3)). Let us define Z5Y=l. We have that Z � Gð12n; nÞ since, by making use of equation (1):

PðZ > zÞ5PðY > l zÞ5P Y >
rz

12n

� �
5�Gð12n; nÞ: (4)

Note that the first PWM of Z is equal to one, i.e., E½Z�51. Let m denote the second PWM of Z:

m5
12n

422n
: (5)
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We express the GP parameters n and r as functions of the two aforementioned PWMs, m and l:

n5
124m
122m

and r5lð12nÞ: (6)

Sample estimates of PWMs can be computed using U-statistics [Furrer and Naveau, 2007].

2.2. Conditional Mixture of GPs
We assume that the region of interest can be partitioned into Nreg subregions with different hazard levels.
In terms of GP distribution, this translates into each subregion having distinct but constant shape parame-
ters. The scale parameter is assumed to vary smoothly as a function of the covariates.

For a given site, let Y be the random variable representing the excesses above a high enough threshold and
let x be a vector of covariates associated to the site. In addition, let C be a discrete random variable taking
values in f1; . . . ;Nregg representing the label of the subregion to which the site belongs. Then Y can be
thought of as following a conditional mixture whose distribution is given by:

PðY � yjxÞ5
XNreg

j51

PðC5jjxÞPðY � yjC5j; xÞ; (7)

where PðC5jjxÞ is the probability of belonging to the jth subregion given the covariates x and PðYjC5j; xÞ
is the conditional distribution of Y given that it belongs to the jth subregion.

Thanks to the GP tail approximation and the assumptions on the GP parameters, we have that:

PðY � yjC5j; xÞ5Gðy; rðxÞ; njÞ; (8)

where G is the distribution function given in equation (1) and with the scale parameter rð�Þ a smooth func-
tion of x and nj the shape parameter of the jth subregion.
2.2.1. Inference and Interpolation
We develop a two-step inference strategy adapted to the fact that the subregion label is not observed, i.e.,
C is a hidden (or latent) variable. Both steps, called E and M steps by analogy with the Expectation-
Maximization (EM) algorithm [Dempster et al., 1977], relies on PWM estimators (section 2.1.2). The first step
or E-step aims to assign hazard levels to the sites by estimating C, i.e., it aims to estimate the partition of the
subregions. In the second step or M-step, PðC5jjxÞ along with the GP scale parameter rð�Þ and the shape
parameters fn1; . . . ; nNreg

g are estimated.

Let M be the number of gauged sites in the region of interest. For a given gauged site i, let fyi1; . . . ; yinig be
the ni observed excesses and let x i be the corresponding vector of covariates. In addition, let Ci 2 f1; . . . ;

Nregg be the unobserved subregion label.
2.2.1.1. E-Step: Partitioning into Hazard Subregions
Let YijCi; x i � Gðrðx iÞ; nCi

Þ. Similar expressions as in section 2.1.2 can be developed with r replaced by rðx iÞ
and n by nCi

. In particular, given Ci, equation (4) yields:

Zi5
YijCi ; x i

lðx iÞ
� Gð12nCi

; nCi
Þ; (9)

where the conditional average of the excesses is given by lðx iÞ5rðx iÞ=ð12nCi
Þ.

To estimate lð�Þ, we employ kernel regression, a nonparametric approach [Nadaraya, 1964; Watson, 1964].
The implementation details are provided in section 2.2.3. Let l̂ð�Þ be the kernel regression estimator of lð�Þ.
The estimated scaled excesses are then given by ẑ ik5yik=l̂ðx iÞ for 1 � i � M and 1 � k � ni .

For any two sites 1 � i; j � M, let mi and mj be the second PWMs of Zi and Zj, respectively (see equation (5)).
Since mi and mj only depend on nCi

and nCj
respectively, we have that

mi5mj () Ci5Cj: (10)

The partitioning into hazard subregions can be thought of as an unsupervised classification problem. Let m̂ i

be estimators computed using U-statistics [Furrer and Naveau, 2007] of the second PWM of Zi, 1 � i � M
based on fẑ i1; . . . ; ẑ inig, the sample of estimated scaled excesses at site i. We resort to K-Means [Ripley,
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1996] applied to m̂ i to obtain a partition of the hazard subregions. Any other statistic of Zi, such as higher
PWMs, could be considered to form the partition.
2.2.1.2. M-Step: Parameter Estimation
The estimation of the conditional probability of belonging to a subregion follows from the partitioning
obtained in the E-Step. Since K-Means yields hard assignment rules, i.e., a site is or is not in a subregion, we
have that P̂ðC5jjx iÞ51fĈ i55jg. In the conditional mixture setup, the expressions in equation (6) to estimate
the GP parameters become:

nj5
124mj

122mj
1 � j � Nreg (11)

rðx iÞ5lðx iÞð12njÞ if Ci5j: (12)

For a given subregion j, the scaled excesses from all the sites in the subregion can be pooled together to
estimate mj. Let Ĉ i be the estimated subregion labels obtained at the E-Step, i.e., the cluster labels deter-
mined by K-Means. For each 1 � j � Nreg, mj is estimated from the pooled sample fẑ ik ; 1 � k � ni : Ĉ i5jg,
i.e., the set of estimated scaled excesses from all the sites that are assigned to subregion j. The estimated
shape parameter n̂j for each subregion is then obtained through equation (11) and the estimated scale
parameter r̂ðx iÞ is provided by equation (12). See Appendix A for details of the related inference strategy
developed in Naveau et al. [2014].
2.2.1.3. Interpolation to Ungauged Sites
Let i	 be a target site, poorly gauged or ungauged where we wish to estimate the parameters of the GP dis-
tribution according to the model of equation (7). The first step (or E-Step) is to assign a hazard level to i	,
i.e., to estimate the subregion label Ci	 2 f1; . . . ;Nregg. This is a supervised classification problem for which
we use the k-nearest neighbor rule, a nonparametric classifier [Ripley, 1996], based on the covariates x i	 and
x i; 1 � i � M. See section 2.2.3 for the implementation details.

In the M-Step, as the k-nearest neighbor rule also yields hard assignment rules, P̂ðC5jjx i	 Þ51fĈ i	55jg. The
estimated shape parameter at i	 is given by n̂ Ĉ i	

. Then r̂ðx i	 Þ is obtained via equation (12) in which the esti-
mated l̂ð�Þ is applied to the covariates x i	 .
2.2.2. Selection of the Number of Hazard Subregions
The number of hazard subregions is the number of mixture components and it controls the complexity
level of the conditional mixture of equation (7). Indeed, the number of components is equal to the number
of free parameters in the mixture which corresponds to the shape parameters of the GP for each subregion.
Therefore, increasing the number of subregions provides the conditional mixture with a greater ability to
adapt to the variability of the hazard level in the region. On the other hand, added adaptability translates
into higher variance of the conditional mixture since more parameters must be estimated from the data.
This is particularly an issue in our setup since the shape parameter is notoriously difficult to estimate and is
subject to considerable uncertainty [Coles, 2001].

We address this bias-variance trade-off (sufficient adaptability while keeping variance under control) by
selecting the number of subregions such that the conditional mixture yields the highest performance on
out-of-sample data. In practice, we implement cross validation as follows. A small set of sites is held out to
assess performance while the remainder of the sites are used for parameter estimation. The procedure is
repeated for all possible choices for the held-out set of sites and the performance is computed from all the
held-out sets of sites [see Bishop, 2011, section 1.3].

The performance is measured in terms of loss functions which provide a measure of how poorly models
perform. Thus, the best model is the one yielding the smallest lost. In order to stress the contribution of the
shape parameter, the lost functions are computed on the estimated scaled excesses ẑ ik . Due to the hard
assignment rules used to form the partition, the fitted model for the scaled variable at a given held-out site
i reduces to:

P̂ðZi � zjx iÞ5P̂ðYi � l̂ðx iÞzjx iÞ5
XNreg

j51

1fĈ i 55jgGðz; 12n̂ j; n̂ jÞ5Gðz; 12n̂Ĉ i
; n̂Ĉ i
Þ: (13)

We consider three lost functions to evaluate the fitted conditional mixture. The first loss function is the neg-
ative log-likelihood of the estimated scaled excesses which is given by:
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2
XM

i51

Xni

k51

ln gðẑ ik ; 12n̂Ĉ i
; n̂Ĉ i
Þ; (14)

where g is the density function of the GP distribution.

The second loss function is the sum-of-squares quantile error:

XM

i51

Xni

k51

ẑ iðkÞ2G21ððk20:5Þ=ni ; 12n̂Ĉ i
; n̂Ĉ i
Þ

� �2
(15)

where ẑ ið1Þ � . . . � ẑ iðniÞ are the ordered estimated scaled excesses and G21 is the quantile function of the
GP distribution computed on empirical frequencies.

The third loss function is the Anderson-Darling statistic that is ‘‘sensitive to discrepancies at the tails of the
distribution’’ [Anderson and Darling, 1954]:

XM

i51

2ni2
1
ni

Xni

k51

ð2k21Þ ln Gðẑ iðkÞ; 12n̂Ĉ i
; n̂Ĉ i
Þ1ln ð12Gðẑ iðni2k11Þ; 12n̂Ĉ i

; n̂Ĉ i
ÞÞ

h i( )
: (16)

2.2.3. Implementation Details for Fixed Nreg

The algorithm for the regional peaks-over-threshold approach is described in details in Algorithm 1 and is
implemented in a package available upon request in the R environment [R Core Team, 2016]. Each step of
the algorithm is illustrated on synthetic data generated according to a model that satisfies the assumptions
of the approach. More precisely, let x 2 ½0; 1000� be a one-dimensional covariate, then:

Yjx � Gðy; sin ð2px=250Þ1exp ðx=500Þ; nCÞ: (17)

For the illustration, we use the sample in Figure 1a with four hazard subregions, i.e., C 2 f1; 2; 3; 4g such
that:

n150:3 if x � 250

n250:2 if 250 < x � 500

n350:1 if 500 < x � 750

n450 if x > 750:

(18)

The shape parameter values are chosen so as to span approximately the range of estimated values for the
precipitation data, see section 4. The scale parameter is taken as a combination of periodic and exponential
signal. Therefore, the conditional mean also follows a combination of periodic and exponential signal but
with discontinuities at the borders of the subregions since lðxiÞ5rðxiÞ=ð12nCi

Þ. We can thus assess the abil-
ity of kernel regression at estimating a nonlinear function with a small number of discontinuities.

To perform the so-called E-Step of the inference scheme in section 2.2.1, the conditional mean lð�Þ must
first be estimated (see Figure 1b) and then the estimated scaled excesses can be computed ẑ ik5yik=l̂ðx iÞ, 1
� k � ni and 1 � i � M (see Figure 2a).

Let Khð�Þ be a kernel function that can be thought of as a symmetric density function for which the so-
called bandwidth h, which controls the amount of smoothing in the regression, acts as a scale parameter.
The kernel regression estimator of lðxÞ is given by:

l̂ðxÞ5 1X
i

Khðx2x iÞ
XM

i51

1
ni

Xni

k51

yik

 !
Khðx2x iÞ: (19)

We rely on the np package of R [Hayfield and Racine, 2008] that implements kernel regression with various
types of kernels and several automated bandwidth selection methods. We employed the Epanechnikov kernel
which is optimal in the sense that it minimizes the asymptotic mean integrated square error [Epanechnikov,
1969; Abadir and Lawford, 2004]. Bandwidth selection is performed with cross validation [Li and Racine, 2004].

For each site 1 � i � M, mi, is estimated from fẑ ik ; 1 � k � nig with U-statistics [Furrer and Naveau, 2007]
and then smoothed with kernel regression similarly as for lð�Þ to reduce the sampling variability. K-Means

Water Resources Research 10.1002/2017WR020758

CARREAU ET AL. PARTITIONING INTO HAZARD SUBREGIONS 4412



Algorithm 1: Regional peaks-over-threshold model with fixed Nreg

input : Nreg the number of subregions ;

y i5fyi1; . . . ; yinig observed excesses, x i vector of covariates for each site 1 � i � M ;

x i	 1 � i	 � M	 for ungauged sites (optional)

output fn̂1; . . . ; n̂Nreg
g shape parameter estimates for each subregion ;

:

r̂ðx iÞ; Ĉ i 1 � i � M the scale parameter and the subregion label estimates for each site ;

Ĉ i	 and r̂ðx i	 Þ for 1 � i	 � M	

1 Estimate lð�Þ by regressing l̂ i51=ni

Xni

k51

yik over x i ;

2 Compute the scaled excesses ẑ ik5yik=l̂ðx iÞ for 1 � k � ni ;

3 if Nreg551 then // single subregion case

4 Assign all the sites to a single subregion Ĉ i518i and Ĉ i	51 8i	 ;

5 else//partitioning into Nreg subregions

6 Estimate mi by regressing the second PWM sample estimate of Zi over x i ;

7 Estimate Ci i.e., assign each site i to a subregion j, 1 � j � Nreg by clustering m̂ i ;

8 Estimate Ci	 i.e assign each i	 to a subregion j with a classifier based on x i	 and x i ;

9 end

10 for j  1 to Nreg do

11 Estimate mj from all ẑ ik ; 1 � k � ni , such that Ĉ i5j ;

12 Estimate nj, the shape parameter of subregion j as n̂ j5ð124m̂ jÞ=ð122m̂ jÞ ;

13 Estimate rðx iÞ thanks to r̂ðx iÞ5l̂ðx iÞð12n̂Ĉ i
Þ ;

14 Estimate rðx i	 Þ similarly ;

15 end

Figure 1. (a) Synthetic data set made of ni 5 100 random GP values Y with x 5 i and 1 � i � 1000 from the generative model in equations
(17) and (18) whose scale parameter is represented by the cyan curve. (b) At each x, the sample average of the excesses is computed (gray
dots) and then smoothed with kernel regression to obtain l̂ðxiÞ (red curve). The black curve represents the conditional mean of the gener-
ative model lðxÞ5rðxÞ=ð12nCÞ. See line 1 in Algorithm 1. In both figures, the hazard subregions of the generative model are defined by
the vertical bands.
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(implementation of the stats package in R) is then applied to the smoothed m̂ i estimate in order to partition
the sites into subregions corresponding to clusters (see Figure 2b where the number of clusters is equal to
the number of subregions of the generative model in equation (18)).

To ensure that K-Means always converges to the same partition, we set initial cluster centers to Nreg empiri-
cal quantiles of m̂ i; 1 � i � M, with probabilities that spread regularly the ½0; 1� interval. The sites are itera-
tively assigned to the cluster whose center is closer in terms of m̂ i and then the cluster centers are updated
as the averages of the m̂ i of the sites belonging to each cluster.

The k-nearest neighbor rule assigns a subregion label to ungauged sites based on the partition estab-
lished by K-Means. The k nearest neighbors of an ungauged site i	 are determined from the Euclidean dis-
tances dðx i	 ; x iÞ for all i 2 f1; . . . ;Mg. The subregion Ci	 is the result of a majority vote among the k
nearest neighbors. We set the number of neighbor to k 5 5, although it could be optimized just like the
bandwidth of kernel regression.

In the so-called M-Step in section 2.2.1, mj is estimated for each subregion 1 � j � Nreg with the pooled sam-
ple fẑ ik ; 1 � k � ni : Ĉ i5jg. The GP parameters are then estimated thanks to equations (11) and (12). The
parameters of the generative model are shown as black curves in Figure 3 while the gray bands represent
95% confidence intervals obtained with parametric bootstrap (1000 replications).

3. Synthetic Data Study

We simulate synthetic data sets that vary in terms of generative models, number of sites, and sample sizes
with the aim to evaluate the regional peaks-over-threshold model.

The two generative models considered share the functional form of equation (17) for the scale parameter
but differ in terms of partitions into hazard subregions. The first partition has two subregions with very dis-
tinct hazard level values:

n150:3 if x � 500

n250 if x > 500:
(20)

The second partition has four subregions with closer hazard level values as given in equation (18).

We only include differences in partitions in the generative models in order to assess the main contributions
of the regional peaks-over-threshold model, namely the E-Step to determine the partition and the cross-
validation procedure to select the number of subregions. Note that the estimation of the partition

Figure 2. (a) Estimated scaled excesses ẑ ik 5yik=l̂ðxiÞ; 1 � k � ni and 1 � i � M of the data set in Figure 1a with l̂ðxiÞ as the red curve in
Figure 1b. See line 2 in Algorithm 1. (b) The colored curves represent m̂ i , the second PWM of Zi estimate, obtained by smoothing with
kernel regression the estimates computed from fẑ ik ; 1 � k � nig at each site (gray dots). Hazard subregions, identified by colors, are
determined by applying K-Means to m̂ i with Nreg 5 4 clusters. The horizontal black lines represent the m values of the generative model. See
lines 3–9 in Algorithm 1. In both figures, the hazard subregions of the generative model are defined by the vertical bands.
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influences both the shape and scale parameter estimates (see equations (11) and (12)). On the other hand,
as mentioned in section 2.2.3, the functional form for rð�Þ is reasonably challenging for kernel regression.

There are, in all, 18 different types of synthetic data sets with either two or four subregions, made of M sites
for which x is sampled randomly in ½0; 1000� with M 5 100, 200, or 400 and the sample size is either 25, 50,
or 100 for each site. Each synthetic data set is replicated 1000 times to assess uncertainty.

3.1. Selection of the Number of Hazard Subregions
We select the number of hazard subregions as the partition size that yields the highest out-of-sample per-
formance, as described in section 2.2.2. We consider partitions with either 1, 2, 4, or 8 hazard subregions (a
classical geometric progression). This choice of partition sizes is made to keep computation time tractable.

The cross-validation procedure is implemented as follows. The size of the held-out sets is established so
that, whichever synthetic data set, there are 100 held-out sets. More precisely, with M5100; 200; 400, the
held-out sets contain 1, 2, and 4 sites, respectively.

For each of the three loss functions (see equations (14–16)), we computed the percentage of times, out of
1000 replications, each number of subregions is selected. The results for the negative log-likelihood loss
function are presented in Figure 4 for each of the 18 types of synthetic data sets. For the sum-of-squares
quantile error and the Anderson-Darling statistic, the results are provided in the supporting information.

3.2. Estimation of the GP Parameters
Once the number of hazard subregions is selected via cross validation, the conditional mixture of GPs is esti-
mated anew on the whole data set. The GP parameters are then interpolated to fictitious ‘‘ungauged’’ sites,
i.e., on a test set. The test set is made of 1001 sites for which x takes integer values f0; 1; . . . ; 1000g. Thanks
to parametric bootstrap (1000 replicates), 95% confidence bands are computed.

Figures 5 and 6 presents, for the two-region and four-region generative models, respectively, the 95%
confidence bands obtained for the smallest data set (100 sites and a sample size of 25) and the largest
data set (400 sites and a sample size of 100), when the negative log-likelihood loss function is employed
to select the partition size. The results for the other two loss functions are provided in the supporting
information.

4. Daily Precipitation Data Application

We focus on the area in the French Mediterranean shown in Figure 7a. The Rhône river valley (in shades of
dark green in Figure 7a) runs from north to south and encompasses the cities of Valence and Montpellier.

Figure 3. 95% confidence bands in gray obtained with parametric bootstrap (1000 replications) for the GP parameter estimates (M-Step in
section 2.2.1). The parameters of the generative model are shown as black curves. (a) Shape parameter estimates (equation (11) with mj

estimated from the pooled sample fẑ ik ; 1 � k � ni : Ĉ i5jg). (b) Scale parameter estimates (equation (12)). See lines 12 to 15 of Algorithm
1. In both figures, the hazard subregions of the generative model are defined by the vertical bands.
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On the left bank of the river, sits the prealps (highest point about 2700 m) while on the right bank, sits the
Cevennes mountain range (highest point about 1700 m). The latter is well-known for the intense rainfall
events called �episodes c�evenols that occur mainly in autumn [Delrieu et al., 2005; Braud et al., 2014].

We selected 332 stations of the M�et�eo-France network, the French weather service, depicted in Figure 7b,
that belong to the French Mediterranean area shown in Figure 7a. Daily precipitation measurements are col-
lected over the period 1 January 1958 to 31 December 2014 (57 years). In Figure 7b, the size of the plotting
symbol is proportional to the length of the observation period available (from 10 to 57 years). The color
indicates the percentage of missing values over the observation period (from 0% in light orange to 10% in
dark red). Two contour level curves, 400 m and 800 m, of the digital elevation map in dark and light shades
of gray recall the orography of the area.

A regular grid (approximately 500 m) is set up to cover the region where the stations lie. Interpolation of
the distribution of heavy precipitation is carried out onto the grid. The vector of covariates x is taken as the
x and y coordinates (extended Lambert II projections of latitude and longitude).

For each station, the threshold that defines the excesses for the application of the peaks-over-threshold
approach (section 2.1) is set to the 98% quantile of the precipitation intensities (the observations greater
than 0.1 mm which is the sensitivity of daily rain gauges). This is in line with conventional choices of thresh-
old, see for instance Roth et al. [2012]. The resulting overall number of excesses per station ranges from 20

Figure 4. Selection of each partition size (# of subregions) in % over 1000 replications for (a)–(c) the two subregion generative model and (d)–(f) the four subregion generative model.
In Figures 4a and 4d, the number of sites is M 5 100, in Figures 4b and 4e M 5 200 and in Figures 4c and 4f M 5 400. The negative log-likelihood loss function is used to assess
performance, see section 2.2.2.
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to 191. The threshold and the average number of excesses per year are estimated at each station and then
interpolated onto the regular grid with kernel regression (see section 2.2.3 and equation (19)). Figure
8 shows the interpolation results.

4.1. Interpolation Approaches
We compare three approaches to interpolate the distribution of heavy precipitation, i.e., the distribution of
the excesses above a high threshold. Each approach differs in the way the shape parameter is assumed to
vary in the region.

The first approach considered is the regional peaks-over-threshold model with a single region, i.e., the num-
ber of subregions is fixed to one. Therefore, the shape parameter is assumed to be constant (this is equiva-
lent to the Naveau et al. [2014] approach, see Appendix A). The shape parameter estimate obtained by
pooling the 332 stations of Figure 7b together in equation (11) is n̂150:11.

In the second approach, we let the number of subregions be determined by the data as described in sec-
tion 2.2.2. For the precipitation data, cross validation is implemented with held-out sets containing four sites

Figure 5. 95% confidence bands (gray) obtained by interpolating on the test set (x 2 f0; 1; . . . ; 1000g) with 1000 replicates (a) and (b) the
shape and (c) and (d) the scale parameters of the GP distribution of the two-region generative model (black curves). (a) and (c) Results for
the smallest data set (100 sites and a sample size of 25) and (b) and (d) for the largest data set (400 sites and a sample size of 100). The
partition size is selected with the negative log-likelihood loss function, see section 2.2.2.
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taken at random (there are 83 such sets). A partition of size four yielded the highest performance according
to the three loss functions (equations (14–16)). In Figure 9a, we see that the shape parameter estimate
varies in a piecewise constant manner across the region. Each subregion has a different hazard level related
to the values of the estimated shape parameter, namely n̂150:01, n̂250:07; n̂350:12, and n̂450:29. The dif-
ference between the interpolated scale parameter of the regional peaks-over-threshold model with a single
region versus the four subregion partition is presented in Figure 10a.

In the third approach, the shape and scale parameters are estimated at each station thanks to equation (6)
and then interpolated with kernel regression (see section 2.2.3 and equation (19)). In this approach, the
shape parameter can vary almost freely. In Figure 9b, its estimated values range mainly from 20.05 to 0.3
with less than 5% of its values below 20.05 (in dark gray in Figure 9b with a minimum of 20.24). Figure
10b shows the difference between the interpolated scale parameter of this approach and the one of the
regional peaks-over-threshold model with four subregions. Less than 1% of the differences are greater than
7 mm in magnitude (in dark gray in Figure 10b).

Figure 6. 95% confidence bands (gray) obtained by interpolating on the test set (x 2 f0; 1; . . . ; 1000g) with 1000 replicates (a) and (b) the
shape and (c) and (d) the scale parameters of the GP distribution of the four-region generative model (black curves). (a) and (c) Results for
the smallest data set (100 sites and a sample size of 25) and (b) and (d) for the largest data set (400 sites and a sample size of 100). The
partition size is selected with the negative log-likelihood loss function, see section 2.2.2.
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4.2. Out-of-Sample Performance Comparison
Cross validation, with held-out sets of size four taken at random, is employed to evaluate the out-of-sample
performance of each of the three interpolation approaches described previously. Note that cross validation
was also applied to determine the number of hazard subregions of the second interpolation approach. This
can be thought of as a form of double layer of cross validation since thanks to the randomization of the
sites, the held-out sets are different in each layer [Arlot and Celisse, 2010].

With the GP parameter interpolated to the held-out sets, we computed the three loss functions from equa-
tions (14–16) on the excesses yik in order to account for the estimation of both the shape and the scale
parameters. In addition, the loss functions are computed relatively to the regional peaks-over-threshold
model with four hazard subregions. For instance, the negative log-likelihood loss function becomes:

Figure 7. (a) Digital elevation map of the area of interest in the French Mediterranean. (b) 332 rain gauge stations of the M�et�eo-France network (French weather service) covering the
period 1 January 1958 to 31 December 2014 (57 years). The size of the symbol is proportional to the length of the observation period (10–57 years) and the color shade (light orange to
dark red) indicates the percentage of missing values (0–10%).

Figure 8. French Mediterranean precipitation data: (a) Threshold defined as the 98% quantile of precipitation intensities (b) Average number of excesses above the threshold per year.
Interpolation onto the grid is performed with kernel regression.
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where g is the density function of the GP distribution, r̂R
i and n̂

R
Ĉ i

are the parameter estimates of the
regional model with four hazard subregions while r̂O

i and n̂
O
Ĉ i

are the estimates of one of the other interpo-
lation approaches. Positive values of the relative log-likelihood from equation (21) indicate that the regional
model with four hazard subregions outperforms the other interpolation approach. The two other relative
loss functions based on the sum-of-squares quantile error in equation (15) and on the Anderson-Darling sta-
tistic in equation (16) are built similarly and can be interpreted in the same way.

Figure 11 shows the relative negative log-likelihood loss from equation (21) at each station for the regional
model with a single region and the kernel regression interpolation of at-site estimates. At one station

Figure 9. Interpolated shape parameter of the GP distribution onto the grid with (a) the regional peaks-over-threshold model with four subregions and (b) kernel regression applied to
at-site shape parameter estimates. Less than 5% of the values are below 20.05 and are shown in dark gray. The shape parameter estimate of the regional peaks-over-threshold model
with a single region is n̂150:11.

Figure 10. Differences in interpolated scale parameter of the GP distribution onto the grid: (a) The regional peaks-over-threshold model with a single region or (b) The kernel regression
interpolation of the at-site estimates minus the interpolated scale parameter of the regional model with four subregions. In Figure 10b, less than 1% of the differences are greater than
7 mm in magnitude and are shown in dark gray.
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(shown in gray in the north-west of both figures), kernel regression interpolation failed (for l in the
regional peaks-over-threshold model and for r and n in the interpolation of the at-site estimates). In Fig-
ure 11b, two stations have values beyond the color scale (–4.5 and 6.9) (also shown in gray). The figures
for the other relative loss functions have similar spatial patterns and are provided in the supporting
information. The spatial average with standard errors in parentheses of the three relative loss functions
is provided in Table 1.

Last, we performed the inference on 330 stations, i.e., with two stations (the closest ones to the cities of
Montpellier and Valence, see Figure 7b) kept aside for validation. From the interpolated GP parameters
from each of the three interpolation approaches, we computed return level curves (see equation (2)). To
obtain the 95% confidence bands shown in Figure 12, we implemented nonparametric spatial block boot-
strap as follows. Blocks of 3 days are randomly sampled from the original observations for all the stations
simultaneously to preserve both the temporal and spatial dependence present in the observations. The size
of the block was determined from the maximum number of consecutive excesses in the precipitation data.
Other propositions to take into account the spatial dependence in the uncertainty estimation can be found
in Madsen and Rosbjerg [1997b]; Madsen et al. [2002]; and Van de Vyver [2012].

5. Discussion

5.1. Synthetic Data Study
The synthetic data study in section 3 serves two purposes. First it allows to evaluate the procedure to select
the number of hazard subregions from section 2.2.2 on data whose generative model is known.

For both the two subregion and the four subregion generative models (see equation (20) and equation
(18), respectively), the number of subregions of the generative model is selected approximately in 50% of

the bootstrap replicates when the
negative log-likelihood loss function is
used to assess performance see Figure
4. The picture is more mixed for the
other two loss functions, see the sup-
porting information. This percentage
does not seem to follow a pattern, in
particular it does not clearly increase
with the number of sites or the sample

Figure 11. Negative log-likelihood relative to the regional model with four subregions. (a) For the regional model with a single region and (b) for the kernel regression interpolation of
the at-site estimates. Positive values (blue shades) indicate that the regional model with four subregions outperforms the other interpolation approach in terms of log-likelihood.

Table 1. Average (Standard Error) Loss Functions Relative to the Regional Model
With Four Subregionsa

Neg Log-Like Sum-of-Squares Anderson-Darling

Single region 0.1160 (0.04148) 784.5 (336.8) 0.06201 (0.02805)
Kernel regression 0.03704 (0.05053) 641.7 (286.6) 0.009116 (0.04415)

aPositive values means that the regional model with four subregions outper-
forms the other interpolation approach, results in boldfaced are approximately
significant at 95%.
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size as we might expect. There is a tendency to select more rather than less subregions than present in the
generative model, especially as the number of sites and the sample size get larger. Indeed, the partition
with a single region (in red in the figures) is rarely selected.

The focus of the procedure is only on the selection of the number of subregions, not on their identification.
As the partitioning or E-Step is fairly stable, i.e., a partition of a given size will always define very comparable
subregions, the selection of the number of subregions also determines their shape. On the other hand, the
partition is built so that within each subregion, the hazard level of the sites is as similar as possible. Thus, if
within some subregions the hazard level is too variable, the only possibility to improve the fit of the model
is to increase the number of subregions, not to change their shape. In contrast, in regional frequency analy-
sis, subregions are conventionally identified as geographically coherent areas with similar climatic and phys-
ical features. Such subregions are often found to be heterogeneous in terms of extremal behavior.
Statistical tests are used to assess homogeneity and the subregions are reshaped until they pass the tests
[Madsen and Rosbjerg, 1997b; Castellarin et al., 2001].

The second purpose of the synthetic data study is to evaluate the inference and interpolation strategy of
the regional peaks-over-threshold model, see section 2.2.1. The 95% confidence bands for the shape and
scale parameter become narrower as the number of sites and the sample size increases, see Figures 5 and 6
and the supporting information. The width of the 95% confidence bands of the scale parameter is compara-
ble for both generative models. In contrast, with the four subregion generative model, the confidence
bands of the shape parameter tend to overlap more between subregions than with the two subregion gen-
erative model.

5.2. Daily Precipitation Data Application
The threshold that defines the excesses (the 98% quantile of the precipitation intensities) takes its larger
values, about 100 mm, along the Cevennes mountain range, see Figure 8a. As the Cevennes acts as a bar-
rier, the threshold values drop quickly behind it. The spatial pattern of the average number of excesses per
year is noticeably different, see Figure 8b. In section 2.1.1, it is defined as Nexc5365:25 fu5365:25
PðP > ujxÞ5365:25 PðP > ujP > 0; xÞPðP > 0jxÞ, where P is the random variable representing daily pre-
cipitation (not the excesses, that are represented by Y). By construction, PðP > ujP > 0; xÞ50:02. Therefore,
the north-south pattern of Nexc is driven by PðP > 0jxÞ, the probability of occurrence of positive precipita-
tion intensities.

Figure 12. Return level curves from the regional peaks-over-threshold model with a single region (light blue), with four hazard subregions (dark blue) and the kernel regression interpo-
lation of at-site estimates (magenta). The points represent the empirical return levels.
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The shape parameter estimate of the regional peaks-over-threshold model with a single region n̂150:11 is
very close to the average of the estimates of the four subregions model which is of 0.12, see Figure 9a. Simi-
larly, the shape parameter estimates of the model with four subregions can be seen as approximately the
average of the estimates obtained with kernel regression within each subregion, see Figure 9. Most of the
values (84%) in Figure 9b are in the ½0; 0:3� interval. Thus, the range of values of the shape parameter esti-
mates is globally the same for the four subregions model and the interpolation with kernel regression. Also,
in both models, the higher hazard subregion is located in the south (in pink) with shape parameter esti-
mates close to 0.3. The region starts at the coast, goes up to the foothills of the Cevennes mountain range
and is consistent with expert knowledge [Delrieu et al., 2005; Braud et al., 2014].

The borders of the subregions are relatively smooth in Figure 9a except in a few places such as near the
southern east and west borders of the high hazard subregion. The amount of smoothness is controlled by
k, the number of neighbors in the k-nearest neighbor rule, which was set to 5. This choice might have an
impact on the cross-validation results (held-out sites might be classified into different hazard subregions
with other values of k). We leave the selection of the number of neighbors for further studies.

The partition obtained with the regional peaks-over-threshold model with data-driven number of subre-
gions has two subregions with relatively close shape parameter estimates in Figure 9a, n̂150:01 and n̂25

0:07 in green and orange, respectively. It seems likely that three instead of four hazard subregions would
be sufficient. However, we considered only partitions of size 1, 2, 4, and 8. To assess the validity of a parti-
tion of size 3, we would have to tune the procedure of selection of the number of subregions to refine the
search over more precise partition sizes. Given the results in the synthetic data study, it seems, on one
hand, that determining a very precise partition size is not an easy task but on the other hand, a slightly
higher number of subregions should not harm much the GP parameter estimates.

The differences between the scale parameter estimates from the three interpolation approaches in Figure
10 are generally small compared to the threshold values in Figure 8a. Indeed, 93% of the differences
between the single region and the four subregion model are less than 5 mm in magnitude (see Figure 10a).
For the kernel regression interpolation of at-site estimates, this percentage goes up to 97%, see Figure 10b.
This is consistent with the findings in the synthetic data study that the scale parameter estimates is not very
sensitive to the shape parameter estimate.

The spatial pattern of the cross-validation results for the negative log-likelihood loss function in Figure 11a
shows that the single region model is outperformed by the four subregion model in the higher hazard area
(shown in pink in Figure 9a). Similar patterns can be seen for the other two loss functions in the supporting
information. In contrast, there is no clear spatial pattern for the performance of the kernel regression inter-
polation of the at-site estimates relative to the four subregion model, see Figure 11b. These conclusions are
supported by Figure 12. In Figure 12a, for the city of Montpellier which sits in the higher hazard subregion,
the 95% confidence bands of the return level curve of the single region model underestimate the empirical
return levels. In Figure 12b, no similar underestimation occurs at the city of Valence which belongs to a low
hazard region with shape parameter about 0.07, see Figure 9a. The 95% confidence bands of the return
level curve of the kernel regression interpolation are somewhat lower than the empirical return levels and
in particular, the larger empirical return level is outside the confidence bands in both cases. The spatial aver-
ages of the relative loss functions (with standard errors in parentheses) in Table 1 are all positive and most
of them are significant at 95%, indicating that the four subregion model performed better relatively to the
other two interpolation approaches.

6. Conclusions

In some regions such as the French Mediterranean, the distribution of heavy precipitation is known to fol-
low specific spatial patterns. Since the shape parameter of the GEV or the GP distribution governs the
behavior of the upper tail of the distribution where the extremes lie, it can be related directly to the hazard
level. Therefore, when interpolating the distribution of extremes in such a region, we would be tempted to
take into account the variability of the hazard level and to let the shape parameter vary in space. However,
the shape parameter is difficult to estimate due to the high uncertainty of its estimators and for this reason,
it is often assumed to be constant. In this work, we chose a middle ground and assume a moderately vary-
ing hazard level. More precisely, it is allowed to vary in a piecewise constant fashion.
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The main contributions of this paper are the following. We formulated the regional peaks-over-threshold
model as a conditional mixture model of GP distributions. Each component has a smoothly varying scale
parameter together with a constant shape parameter and can be thought of as affecting a subregion with
constant hazard level. We developed a two-step inference and interpolation strategy that is similar in spirits
to the Expectation-Maximization algorithm. In the first step, the partition into subregions with constant haz-
ard level is estimated i.e., each site is assigned to a mixture component. The second step consists in estimat-
ing the GP parameter for each subregion while the probability of belonging to each subregion follows from
the partitioning of the first step. The two-step strategy relies on two probability weighted moments of the
GP. The computations are fast and could be used to initialize maximum likelihood estimators. We proposed
a classical cross-validation procedure with three different loss functions to assess performance in order to
select the number of subregions.

Thanks to 18 synthetic data sets, we assess how the performance of the regional peaks-over-threshold
model is affected by the number of subregions, the variability of the hazard level, the number of sites, and
the sample size at each site. To this end, we designed two generative models with different types of parti-
tions: one with two subregions with very different hazard levels and another one with four subregions and
more similar hazard levels. We were able to evaluate the following two aspects: the ability of the cross-
validation procedure to retrieve the number of subregions of the generative model and the performance of
the GP estimators when the number of subregions is selected with cross validation and therefore prone to
error.

The synthetic data study indicates that the proposed procedure to select the number of subregions is only
partially successful at identifying the number of subregions of the generative model and tend to overesti-
mate it, in particular for larger data sets. Note that conventional homogeneity test in regional frequency
analysis also suffer from a lack of power [Viglione et al., 2007]. On the other hand, although the selected
number of subregions does not tend to the generative model’s, the accuracy of the GP parameter estimates
is improved with larger data sets. As expected, hazard levels are more clearly determined (i.e., the confi-
dence intervals of the shape parameter estimates overlap less) for synthetic data from the generative model
with the two very distinct hazard subregions than with the four subregions with closer hazard levels.

In the French Mediterranean daily precipitation data application, the cross-validation procedure selected
four subregions for the regional peaks-over-threshold model according to all three loss functions. We con-
ducted a comparison with two other interpolation approaches. The first approach assumes that the shape
parameter is constant in the region while the second approach let it varies smoothly as a function of covari-
ates. The comparison of the out-of-sample performance of the three interpolation approaches leads us to
conclude that the assumption of a constant shape parameter is not appropriate for this region. On the other
hand, the gain in performance of the four subregion model relative to the smooth interpolation of the at-
site estimates is not so clear. As shown in Carreau et al. [2013] for the block maxima approach, it is likely
that the gain in performance of the regional model would be greater in applications in which the spatial
variability of the variable of interest is high compared to the spatial density of the sites such as in sparsely
gauged networks, in more arid climates or when considering subdaily precipitation. Potential advantages of
the regional model are the partitioning into hazard subregions which could be useful for decision makers
and shape parameter estimates that are less likely to take negative values thanks to the pooled sample.

One interesting perspective for this work is to exploit the formulation of the regional peaks-over-threshold
model as a mixture of GPs. First, by making the assignment rules to make the partition soft, i.e., probabilistic,
smooth transitions between subregions could be obtained. More precisely, the probability of belonging to
a subregion would vary smoothly, being closer to 1 in the center and gradually decreasing when getting
near the borders. Second, as mentioned previously, the mixture parameters could be estimated with an EM
algorithm or by maximizing directly the log-likelihood starting from the parameter values provided by the
two-step inference strategy developed in this work. Another perspective is to improve the procedure to
select the number of subregions. In particular, we could work out a penalty term in order to limit the num-
ber of subregions when the differences in shape parameter estimates are low relative to their uncertainty.
Last, the regional peaks-over-threshold model could be applied to a sparsely gauged network to better
assess the gain in performance of the regional peaks-over-threshold model compared to a direct interpola-
tion of the at-site GP parameter estimates. Most likely, x and y coordinates would not be informative
enough and, in addition to altitude, covariates related to the orography could be of interest [Benichou and
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Le Breton, 1987]. Besides, nonparametric methods, such as the k-nearest neighbor rule and kernel regres-
sion, might not perform so well in sparser networks and it might be more appropriate to seek parsimonious
parametric models.

Appendix A: Alternative Inference Strategy for a Given Subregion

We present the inference strategy developed in Naveau et al. [2014] to estimate the GP parameters in a
region with constant shape parameter and smoothly varying scale parameter. It is related to the so-called
M-Step of the inference strategy in section 2.2.1.

It relies on a different scaled variable Z � Gð1; nÞ. Let a denotes the ratio of the second and third PWMs of Z
(replace r 5 1, 2 and rðxÞ51 in equation (3)), i.e.,

a5
E½Z�GðZ; 1; nÞ�
E½Z�GðZ; 1; nÞ2�

: (A1)

As before, let E½Yjx�5lðxÞ5rðxÞ=ð12nÞ be the first PWM of Y given x. Naveau et al. [2014] expressed n and
rðxÞ as functions of the aforementioned three PWMs:

n5
924a
322a

and rðxÞ5lðxÞð12nÞ: (A2)

To infer n and rðxÞ, estimates of a and lðxÞ are required. Since Z5YðxÞ=rðxÞ is not observable, Naveau
et al. [2014] circumvent this issue by relying on the probability weighted moment of YðxÞ=lðxÞ to estimate
a. The latter remains unchanged since it is a ratio and lðxÞ and rðxÞ differs by the factor 12n.
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