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Abstract. We propose to tackle the cost-sensitive learning problem,
where each feature is associated to a particular acquisition cost. We pro-
pose a new model with the following key properties: (i) it acquires fea-
tures in an adaptive way, (ii) features can be acquired per block (several
at a time) so that this model can deal with high dimensional data, and
(iii) it relies on representation-learning ideas. The effectiveness of this
approach is demonstrated on several experiments considering a variety
of datasets and with different cost settings.

1 Introduction

The development of attention models [13,1,14] is a recent trend in the neural
network (NN) community. It usually consists in adding an attention module to
classical NN architectures which goal is to select relevant information to use for
predicting instead of using the whole input. These models have been mainly de-
veloped for particular types of data i.e images and text and are specific to the
nature of the inputs. More generally, the objective of selecting relevant informa-
tion is not new and different models have been proposed in the Machine Learning
domain during the last decades e.g. L1 regularization (e.g [3]) or dimensionality
reduction techniques [10]. These works are mainly motivated by the need to not
only select relevant input information – as it is the case for attention models
– but also to limit the inference cost in applications where the acquisition or
computation of input features is expensive. Applications like medical diagnosis
or personalized predictive tasks are intuitive examples of such setting, where
some input features can be very expensive (e.g fMRI exams). One can also think
of many today applications such as spam detection ([17]), web-search ([24,6]),
where one wants to answer huge numbers of prediction per second, per minute or
per day. In that cases, limiting the number of input features used for prediction
is a key factor for an algorithm, in order to constraint the ”cost” of the informa-
tion used, while keeping robust prediction ability. An optimal strategy to limit
this cost should rely on an adaptive feature acquisition process (as in attention
models), i.e selecting features according to what has been currently observed of
the input, since it is quite likely that not all inputs require the knowledge of the
same subset of features to perform an accurate prediction.

We propose a new sequential model based on a recurrent neural network
architecture to tackle this problem of cost-sensitive features selection. At each
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time-step, the model chooses which features to acquire and builds a representa-
tion of the partially observed input based on all the acquired information. This
learned representation is then used to both drive the future acquisition steps,
but also to compute a final prediction at the end of the acquisition process. Our
algorithm is thus an adaptive one which is able to select different subsets of
features depending on the input and is learned based on the objective to find a
good trade-off between the average acquisition cost and the quality of the pre-
diction. At the opposite to recent NN-based techniques, our model is not specific
to a particular nature of the data, and the attention part of the model is guided
by the cost of the different features. Moreover, our algorithm is able to acquire
multiple features at each timestep making it scalable for dealing with high di-
mensional data. These key aspects – adaptiveness, ability to handle different cost
for different features, scalability, and representation learning based approach –
are, to the best of our knowledge, novel in regard of the state of the art (see
Section 4).

The paper is organized as follows: Section 2 details the cost-sensitive acquisi-
tion problem and details our RNN model and experimental results are provided
in Section 3. Section 4 situates our work with respect to state of the art.

2 Cost-Sensitive Recurrent Neural Network

We consider the generic problem of computing a prediction y ∈ RY based on an
input x ∈ Rn where n is the dimensionality of the input space, y is an output
vector, and Y is the dimension of the output space. xi (resp yi) denotes the i-th
features of x (resp. y). We particularly focus on the classification task where Y
is the number of possible categories, and yi = 1 if the input belongs to category
i and yi = −1 elsewhere.

2.1 Recurrent ADaptive AcquisitIon Network (RADIN3)

The generic principle of adaptive feature acquisition may be resumed as follows.
A model starts by acquiring a first subset of features from an input x. Then, new
features are iteratively acquired at each timestep based on what has already been
observed, we note T the number of steps made by the model. The final prediction
is then performed based on the set of acquired features. Many models can be
cast in this formalism. Non-adaptive feature selection approach stands for one
step models (T = 1), while a decision tree may be thought as starting in the
root node and acquiring a new feature one at a time that depends on the node
in the tree.

We propose in this work to instantiate this general framework with a Recur-
rent Neural Network architecture (see Figure 1). At each timestep, the acquired
information enrich a latent representation of the input, and further decisions
(acquisition of new features and final prediction) are made based on this repre-
sentation. The internal state of the RNN (i.e. a continuous vector in z ⊂ Rp, p

3 In french, ”radin” means ”skinflint”
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Fig. 1: Architecture of our recurrent acquisition network.

being the dimensionality of the latent space) is used to encode the information
gathered on an input sample x through a subset of observed features. It is ini-
tialized as the null vector z0 = 0p. It is enriched all along the acquisition process,
yielding a series of representations, z1, z2... up to a final iteration T and a final
representation zT . The use of multiple steps enables data dependent feature ac-
quisition. The final representation of x, zT , is used to perform prediction. It is
worth noting that zT is built from a partial view of x, i.e. only a subset of its
features have been observed when performing prediction.

We discuss now the RNN architecture and how zt’s are updated. The un-
derlying mechanism involve both an attention layer in charge of choosing which
features to acquire, and an aggregation layer in charge of aggregating the newly
acquired information to the previously collected features.

Attention Layer: While in classical RNN, the input at time t is usually a
predetermined piece of the input (an element of an input sequence for exam-
ple), in our case, this input is chosen by the model as a function of the previous
state zt−1 in the following way: A specific attention layer computes a vector
at = f(A× zt−1) ∈ [0, 1]

n
whose component i denoted at,i stands for the useful-

ness of feature i of the input denoted xi. at is an attention vector that aims at
selecting the features to acquire i.e the features i such that at,i > 0. This vec-
tor is computed based on the previous representation zt−1 and different inputs
will thus produce different values of the attention layer resulting in an adaptive
acquisition model. f is typically a non-linear activation function and A ∈ Rn×p

corresponds to the parameters of the attention layer. In order to compute the
input of the hidden layer, the attention vector is then ”mixed” with the original
input x by using the Hadamard product4, the attention layer acting as a filter on
the features of x. This input is denoted x [at] = at ◦x in the following. Note that
in the particular case where at would be a binary vector, this stands for a copy
of x where features that should not be acquired are set to 0. This vector x [at]
is an additional input that is used to update the internal state, i.e. to compute zt.

Aggregation layer: Once newly features have been acquired, the internal
state zt is updated according to zt = f(U × zt−1 + V × x [at]) (with U and V

4 Note that the Hadamard product is used during training since the training inputs
are fully known. During inference on new inputs, the value of the Hadamard product
is directly computed by only acquiring the chosen features.
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Corpus Name Nb.Feat. Nb.Cat. Feature used (%) Model

SVM L1 DT GreedyMiser RADIN

Cardio 21 10

90 % 0.683 0.775 0.827 0.824
75 % 0.580 0.775 0.825 0.825
50 % 0.496 0.775 0.751 0.837
25 % 0.338 0.771 0.508 0.775
10 % 0.259 0.643 0.325 0.662

Statlog 60 3

90 % 0.775 0.823 0.851 0.859
75 % 0.741 0.823 0.846 0.858
50 % 0.703 0.823 0.831 0.858
25 % 0.630 0.823 0.765 0.852
10 % 0.587 0.821 0.605 0.833

MNIST 780 10

90 % 0.897 0.808 0.920 0.950
75 % 0.897 0.808 0.920 0.948
50 % 0.882 0.808 0.903 0.926
25 % 0.704 0.808 0.846 0.920
10 % 0.577 0.808 0.776 0.859

gisette 5000 2

25 % 0.970 0.919 0.884 0.957
10 % 0.968 0.919 0.884 0.957
5 % 0.963 0.919 0.867 0.957
1 % 0.910 0.919 0.785 0.947

r8 6224 8

25 % 0.969 0.901 0.948 0.962
10 % 0.968 0.901 0.947 0.961
5 % 0.951 0.901 0.945 0.961
1 % 0.913 0.901 0.939 0.959

webkb 5388 4

25 % 0.891 0.793 0.861 0.962
10 % 0.887 0.793 0.864 0.961
5 % 0.859 0.793 0.857 0.865
1 % 0.717 0.793 0.828 0.831

Table 1: Results of the different models w.r.t percentage of features used on
different datasets.

two weight matrices of size p × p and p × n) as in classical RNN cells 5. The
internal state layer zt is thus an aggregation of the information gathered from
all previous acquisition steps up to step t.

Decision Layer: The final representation zT , which is obtained after the T -
acquisition step, is used to perform classification o(x) = g(H × zT ) ∈ RY with g
a non linear function and H a weight matrix of size Y × p, zT being the repre-
sentation of the input x at the end of the acquisition process.

Noting ci the acquisition cost for feature i, ci ≥ 0 and c ∈ Rn the vector

of all feature costs, the quantity
T∑

t=1
aᵀt .c stands for the actual acquisition cost

provided that at,i are actually binary values and that a feature cannot be ac-
quired twice. In order to train the RNN to learn to acquire efficiently information
from the inputs before classifying it we propose to optimize the weight param-
eters A,U, V,H to minimize the following empirical loss on a set of N training
samples (xk, yk)k=1..N :

J emp(A,U, V,H) =
∑

k=1...N

[
∆(o(xk), yk) + λ

T∑
t=1

aᵀt .c

]
(1)

where the first term of the loss is a data fit term that measures how well pre-
diction is performed on training samples and the second term is related to the

5 We also tested Gated Recurrent Unit ([8]).
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Fig. 2: Accuracy/Cost on cardio.
Fig. 3: RADIN with different T values
on MNIST.

constraint on the feature acquisition budget. In practice however, dealing with
binary attention vectors at leads to a difficult optimization problem so that we
use for our model continuous values at,i ∈ [0, 1] with a similar meaning i.e xi
is acquired only if at,i > 0. In that case, the regularization term is an approxi-
mation of the budget term that acts as a penalty term that drives at,i towards
0. This continuous relaxation is close to what it is usually done when using
L1-regularized models instead of L0 ones.

It is worth mentioning here that the architecture we present allows feature
acquisition to be performed per block, i.e. many features at a time (in one step),
as at can have several non-null values. This is an interesting, and quite novel
property with regard to state of the art methods for (cost-sensitive) problems,
as it allows this model to scale well to data with a large number of features,
reaching high accuracy while keeping a reasonable computational complexity of
the process.

3 Experiments

This section provides results of various experiments on feature-acquisition prob-
lems with different cost-settings. We study the ability of our approach on several
mono-label classification datasets 6. Let us first describe our experimental pro-
tocol for validation (as our goal is both to optimize the accuracy as well as the
acquisition cost, usual cross-validation protocol cannot be conducted here). Each
dataset is split in training, validation and testing sets 7. We then learn several
models with various hyper-parameters settings on the training set. Each learned
model yields a two dimension point (accuracy,cost) on the validation set. The
Pareto Front of this set of points is then computed to select the best models.
At last, the selected models are evaluated on the test set on which results are
reported. We used the following specifications for our model: a linear function for
prediction o , GRU or RNN cells for the aggregation layer, and a hard logistic ac-
tivation function for the attention layer. ∆ is a mean-square error. The code used

6 Note that our approach also handles other problems such as multi-label classification,
regression or ranking as long as the loss function ∆ is differentiable.

7 One third of the examples for each set, except for MNIST, where the split corresponds
to 15%,5%,80% of the data
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Fig. 4: Cost-sensitive setting on cardio
dataset

Fig. 5: Illustration of the adaptive be-
havior of RADIN on three different
MNIST inputs

to conduct these experiments is available at http://github.com/ludc/radin.
We compare our model with three different approaches : (i) a L1-regularized
linear SVM, (ii) a Decision Tree, (iii) a cost-sensitive method that con-
straints locally and globally the cost of a set of weak classifiers -decision trees-
GreedyMiser ([22]). Note that the first two methods can’t handle cost-sensitive
problems. Due to a lack of space, we do not present here all the results obtained
on many different datasets, and just focus on the more representative perfor-
mance.

Let us first focus on experiments with uniform cost, i.e ∀i, ci = 1. In this
case, the acquisition cost is directly the number of features gathered. The cost
is thus expressed as the percentage of features acquired w.r.t the total number
of available features. Figure 2 illustrates the overall accuracy-cost curves for the
dataset cardio. One can see for example that the GreedyMiser approach yields
an accuracy of about 68 % for a cost of 0.4, i.e acquiring 40 % of the features,
while our model RADIN obtains approximately 82 % of accuracy for the same
amount of acquired features. The results in Table 1 show the ability of our
method to give competitive or better results on all datasets, including larger
scale datasets, particularly in this case when the percentage of acquired features
drops substantially.

The Figure 3, which plots the accuracy/cost curves obtained with different
number of acquisition steps T illustrates the adaptive behavior of our model and
its ability to choose relevant features depending on the input. Moreover, one can
see on Figure 5 which features are acquired considering three particular inputs
of the MNIST dataset. Each color corresponds to a particular acquisition step.
If the features acquired at time T = 1 are the same, RADIN exhibits a different
behavior for the following steps depending on the acquired information.

At last, we have considered a different cost-sensitive setting and show the
performance obtained by RADIN and GreedyMiser on an artificial cost-sensitive
dataset constructed from the cardio dataset, where the cost of feature i is defined
as ci = i

n . One can observe (Figure 4) that our model yields better accuracy
results than Greedy Miser for all the cost range, which indicates its ability to
not only acquire the relevant features but also to integrate in the process their
different costs ci.

http://github.com/ludc/radin


7

4 Related Work

Many methods have been proposed under a static features selection framework,
i.e with only one step of acquisition. A good overview of existing methods is
provided in [10] which describe different approaches like wrapper methods [12]
or Embedded methods [3,19] with l1 and l0-norm. Block feature selection has also
been proposed but feature blocks have to be known beforehand [23]. Note that
these approaches generally cannot handle non-uniform costs. Another family
of algorithm proposes to tackle the features selection problem by estimating
the information gain of the features [4] For example, [5] presents two greedy
strategies to learn a test-cost sensitive naive Bayes classifier, while [18] propose
to use reinforcement-learning to learn a value-function of the information gain.
In the adaptive features selection literature, decision trees are naturally good
candidates and they are used for example in [22,20] as several weak constraint
classifiers. Another type of approach relies on learning cascade of classifiers, as in
[16] and [7], the classifier being used depending on the input. More recently, [21]
presented a method to learn a tree of classifiers which can be extended to cascade
architecture inducing the possibility of early-stopping, which is an interesting
aspect of adaptive prediction behavior. Feature acquisition can also be seen
as a sequential decision process, and it has been studied under the MDP and
Reinforcement Learning framework, as in [11], which models the problem as a
partially observable MDP, or in [2,15,9] using classical RL algorithms. Here, these
models usually suffer when the number of features is too large. At last, new deep
learning models have recently emerged [13,1,14] and are closely related to our
work. They consist in adding an attention mechanism to classical architecture.
They have been mainly developed for images and text with the goal to increase
the quality of the model. They thus don’t consider a particular budget or cost-
sensitive setting.

Regarding these various methods, our work differs on several aspects. It is,
to the best of our knowledge, the first approach that tackles the adaptive cost-
sensitive acquisition problem in a generic way with a RNN-like architecture.

5 Conclusion

We presented a recurrent neural network architecture to tackle the problem of
adaptive cost-sensitive acquisition. Our approach can acquire the features per
block and can be learned using efficient gradient descent algorithm. We showed
that our model performs well on different problem settings and is able to acquire
information resulting in a good cost/accuracy trade-off in an adaptive way.

Acknowledgments : This article has been supported within the Labex SMART
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ments d’Avenir programme under reference ANR-11-LABX-65. Part of this work
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