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Abstract. In this paper we study the asymptotic behavior of the eigen-
value problem solutions of the conduction process in an ε-periodic domain
formed by two components separated by a first-order jump interface. We
prove that when ε → 0 the limits of the eigenvalues and eigenfunctions
of this problem verify a certain (effective) two-temperature eigenvalue prob-
lem. Moreover, we show that the effective eigenvalue problem has only
eigenvalues which come from the homogenization process.
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1 Introduction

During the last decades there was a steady interest for the homoge-
nization of problems with interfacial thermal barriers (see [2], [14], [7], [5])
or equivalent (see [13], [11], [8], [15]). Meanwhile, it was also studied the
asymptotic behavior of the eigenvalue problems in ε-periodic domains (see
[12]) , even for ε-periodically perforated domains (see [17]), where the key
ingredient was the prolongation operator which was introduced by [6].

Here we continue our works [9], [10] and [16] by studying the asymptotic
behavior of the eigenvalue problem solutions of the conduction process in
an ε-periodic domain formed by two components separated by a first-order
jump interface. We prove that when ε→ 0 the limits of the eigenvalues and
eigenfunctions of this problem verify a certain (effective) two-temperature
eigenvalue problem. Moreover, we show that the effective eigenvalue problem
has only eigenvalues which come from the homogenization process. Our
key ingredient is a pair of prolongation operators, corresponding to each
component of the domain. Otherwise, we mainly follow the methods of the
two-scale theory (see [1]). We have to remark that the procedure presented
here can straightforwardly be generalized to any n-component ε-periodic
domain with interfacial jumps of the first order.
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The paper is organized as follows: in Section 2 we study the eigenvalue
problem in the ε-periodic domain; in Section 3 we present the key prolonga-
tion operators, the a priori estimates and the specific compactness results;
Section 4 is devoted to the derivation of the effective eigenvalue problem
and its connection with the homogenization process.

2 The eigenvalue problem

Let Ω be an open connected bounded set in RN (N ≥ 3), locally lo-
cated on one side of the boundary ∂Ω, a Lipschitz manifold composed of
a finite number of connected components. For any ε ∈ (0, 1),Ω has two
ε-periodically ditributed components. For convenience, the periodicity is
described by using the cube Y = (0, 1)N , as follows:

Let Ya ⊂⊂ Y be a Lipschitz open set such that Yb = Y \Y a is connected.
For any ε ∈ (0, 1) we denote

Zε = {k ∈ ZN : εk + εY ⊆ Ω}. (1)

The two ε−periodic components of Ω are defined by:

Ωεa = int

 ⋃
k∈Zε

(εk + εY a)

 (2)

Ωεb = Ω \ Ωεa. (3)

Denoting Γ := ∂Ya = ∂Ya∩∂Yb, the interface between Ωεa and Ωεb have the
property:

Γε :=
⋃
k∈Zε

(εk + εΓ) = ∂Ωεa = ∂Ωεa ∩ ∂Ωεb. (4)

Let us remark that Ωεb is connected and all the boundaries are at least
locally Lipschitz. Also, the inward normal on ∂Ya, denoted by ν, has the
property

νε(x) = ν
({
ε−1x

})
, ∀x ∈ Γε, (5)

where
{
ε−1x

}
is formed by the fractional parts of the components of ε−1x.

We have to introduce the Hilbert space

Hε =
{
u ∈ L2(Ω) : u

∣∣
Ωεa
∈ H1(Ωεa ), u

∣∣
Ωεb
∈ H1(Ωεb ), u = 0 on ∂Ω

}
(6)

endowed with the scalar product

(u, v)Hε =

∫
Ωεa

∇u∇v +

∫
Ωεb

∇u∇v + ε

∫
Γε

[u][v], (7)

where [u] = γεau− γεbu and γεau, γεbu are the traces of u on Γε defined in
H1(Ωεa) and H1(Ωεb), respectively.

Our domain has the following well-known property [8]:

2



Lemma 2.1. For any v ∈ Hε there exists C > 0, independent of ε, such
that

|v|L2(Ωεb)
≤ C |∇v|L2(Ωεb)

, (8)

ε1/2 |γεαv|L2(Γε)
≤ C

(
|v|L2(Ωεα) + ε |∇v|L2(Ωεα)

)
, α ∈ {a, b}, (9)

|v|L2(Ωεa) ≤ C
(
ε1/2 |γεav|L2(Γε)

+ ε |∇v|L2(Ωεa)

)
. (10)

Remark 2.1. Taking in account the L2−norm of the jump on Γε the results
of the previous Lemma have important consequences:

ε1/2
∣∣[v]
∣∣
L2(Γε)

≤ C
(∣∣v∣∣

L2(Ω)
+ ε
∣∣∇v∣∣

L2(Ωεa)
+ ε
∣∣∇v∣∣

L2(Ωεb)

)
, (11)

|v|L2(Ωεa) ≤ C |v|Hε , ∀v ∈ Hε. (12)

Next, we introduce the data of our problem: the transmission factor
hε(x) = h(x/ε) and the symmetric conductivities aεij(x) = aij(x/ε) and
bεij(x) = bij(x/ε), where h, aij and bij belong to L∞per(Y ) and have the prop-
erty that there exists δ > 0 such that

h ≥ δ, a.e. on Y, (13)

aijξjξi ≥ δξiξi and bijξjξi ≥ δξiξi, ∀ξ ∈ RN , a.e. on Y. (14)

We consider the following eigenvalue problem:
Find λε ∈ R∗ such that ∃uε ∈ Hε \ {0} verifying the equations

−div (aε∇uε) = λεuε, in Ωεa, (15)

−div (bε∇uε) = λεuε, in Ωεb, (16)

and the transmission conditions

aεij
∂uε

∂xj
νεi = bεij

∂uε

∂xj
νεi = εhε (γεau

ε − γεbuε) on Γε. (17)

The variational formulation of the problem (15)-(17) is the following:
Find λε ∈ R∗ such that ∃uε ∈ Hε \ {0} verifying

Gε(u
ε, v) :=

∫
Ωεa

aεij
∂uε

∂xj

∂v

∂xi
+

∫
Ωεb

bεij
∂uε

∂xj

∂v

∂xi
+ ε

∫
Γε

hε[uε][v] = λε(uε, v),

∀v ∈ Hε (18)

where (·, ·) denotes the inner product in L2(Ω).
Using the procedure of [3], we introduce the operator T ε ∈ L

(
L2(Ω), Hε

)
by denotig with T ε(u), for u ∈ L2(Ω), the unique solution of the problem∫

Ωεa

aεij
∂T ε(u)

∂xj

∂v

∂xi
+

∫
Ωεb

bεij
∂T ε(u)

∂xj

∂v

∂xi
+ε

∫
Γε

hε[T ε(u)][v] =

∫
Ω
uv,∀v ∈ Hε.
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Defining T̃ ε : L2(Ω)→ L2(Ω) by T̃ ε = Jε ◦T ε, where Jε is the inclusion
of Hε into L2(Ω), we see that the eigenvalue problem (18) is equivalent to
the eigenvalue problem

T̃ εuε = µεuε, via µε =
1

λε
.

Lemma 2.2. The inclusion Jε : Hε → L2(Ω) is a compact operator.

Proof. As for any v ∈ Hε we have∣∣Jεv∣∣
Lε(Ω)

=
∣∣v∣∣

Ωεa
+
∣∣v∣∣

Ωεb
≤ C

∣∣v∣∣
Hε
,

is sufficient to prove that the bounded sequences from Hε contain a conver-
gent subsequence in L2(Ω).

Let {vn}n a bounded sequence in Hε. We note van = vn
∣∣
Ωεa

and vbn =

vn
∣∣
Ωεb

. Since {van}n is a bounded sequence in H1(Ωεa), from the Rellich’s

theorem there exist va ∈ H1(Ωεa) and a subsequence, still denoted by {n},
such that

van → va strongly in L2(Ωεa).

Further, {vbn}n being bounded in H1(Ωεb), again the Rellich’s theorem
implies the existence of some vb ∈ H1(Ωεb) such that on a sub-subsequence
it holds

vbn → vb strongly in L2(Ωεb).

It follows that

v0 =

{
va in Ωεa,
vb in Ωεb

⇒ v0 ∈ Hε ⊂ L2(Ω).

The proof is completed as∣∣vn − v0

∣∣2
L2(Ω)

=
∣∣van − va∣∣2L2(Ωεa)

+
∣∣vbn − vb∣∣2L2(Ωεb)

→ 0.

�

We see now that T̃ ε is a self-adjoint, compact operator in L2(Ω) and
recalling for instance [4] it follows that there exist {λεk}k, eigenvalues of the
problem (18), with the property

0 < λε1 ≤ λε2 ≤ ...→∞

and {uεk}k, the corresponding eigenfunctions, which are complete and or-
thonormal in L2(Ω).

In the following sections we shall study the behaviour of (λεk, u
ε
k) when

ε→ 0.
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3 A priori estimates

We begin this section by proving the boundedness of {λεk}ε, the eigen-
values of (18). For every k ∈ N let us denote

Hε,k = {S subspace of Hε,dimS = k}.

Applying the Minimum-maximum principle (see [3]), λεk can be estimated
via the Rayleigh quotient:

λεk = min
S∈Hε,k

max
v∈S

Gε(v, v)∣∣v∣∣2
L2(Ω)

≤

≤ C min
S∈Hε,k

max
v∈S

∣∣∇v∣∣2
L2(Ωεa)

+
∣∣∇v∣∣2

L2(Ωεb)
+ ε
∣∣[v]
∣∣2
L2(Γε)∣∣v∣∣2

L2(Ω)

. (19)

In order to further estimate λεk with respect to ε we introduce two prolon-
gation operators.

First, for any v ∈ H1(Ya) let w ∈ H1(Yb) be the only solution of the
Dirichlet problem:

−∇w = 0 in Yb, (20)

w = 0 on ∂Y, w = v on Γ. (21)

We have to introduce here Pa(v) ∈ H1(Y ) by

Pa(v) =

{
v in Ya,
w in Yb.

It has the property ∣∣Pa(v)
∣∣
H1(Y )

≤ C
∣∣v∣∣

H1(Ya)
. (22)

Denoting uεk(y) := u(εk + εy), for any k ∈ Zε, y ∈ Ya and u ∈ H1(Ωεa), we
define our first prolongation operator, P εa : H1(Ωεa)→ H1

0 (Ω), by

P εa (u)(x) =


u(x) for x ∈ Ωεa

Pa(u
ε
k)
(
{xε}

)
for x ∈ (εk + εYb), k ∈ Zε

0 for x ∈ Ω \
⋃
k∈Zε(εk + εY )

Rescaling (22) we easily obtain∣∣P εa (u)
∣∣
H1(Ω)

≤ C
(∣∣u∣∣

L2(Ωεa)
+ ε
∣∣∇u∣∣

L2(Ωεa)

)
, ∀v ∈ H1(Ωεa). (23)

Second, for any v ∈ H1(Yb) let w ∈ H1(Yb) be the only solution of the
Dirichlet problem:

−∇w = 0 in Ya, (24)
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w = v on Γ. (25)

For this component we introduce Pb(v) ∈ H1(Y ) by

Pb(v) =

{
w in Ya,
v in Yb,

which has a property similar to (22):∣∣Pb(v)
∣∣
H1(Y )

≤ C
∣∣v∣∣

H1(Yb)
. (26)

Denoting uεk(y) := u(εk + εy), for any k ∈ Zε, y ∈ Yb, u ∈ H1(Ωεb),
u = 0 on ∂Ω, we define our second prolongation operator, P εb : {u ∈
H1(Ωεb), u=0 on ∂Ω} → H1

0 (Ω), by

P εb (u)(x) =

{
u(x) for x ∈ Ωεb

Pb(u
ε
k)
(
{xε}

)
for x ∈ (εk + εYa), k ∈ Zε.

Rescaling (26) we get∣∣P εb (u)
∣∣
H1(Ω)

≤ C
(∣∣u∣∣

L2(Ωεb)
+ ε
∣∣∇u∣∣

L2(Ωεb)

)
,

∀u ∈ H1(Ωεb), u=0 on ∂Ω. (27)

We can now estimate the terms of (19).
The first term gives:∣∣∇v∣∣2

L2(Ωεa)∣∣v∣∣2
L2(Ω)

≤

∣∣∇P εa (v)
∣∣2
L2(Ωεa)∣∣P εa (v)
∣∣2
L2(Ω)

·

∣∣P εa (v)
∣∣2
L2(Ω)∣∣v∣∣2

L2(Ω)

< C

∣∣P εa (v)
∣∣2
L2(Ω)∣∣v∣∣2

L2(Ω)

,

the constant being the first eigenvalue of the problem (20)-(21). Using (23)
we obtain ∣∣∇v∣∣2

L2(Ωεa)∣∣v∣∣2
L2(Ω)

< C1 + ε2C2

∫
Ωεa

aε∇v∇v∣∣v∣∣2
L2(Ω)

. (28)

The second term gives:∣∣∇v∣∣2
L2(Ωεb)∣∣v∣∣2
L2(Ω)

≤

∣∣∇P εb (v)
∣∣2
L2(Ωεb)∣∣P εb (v)
∣∣2
L2(Ω)

·

∣∣P εb (v)
∣∣2
L2(Ω)∣∣v∣∣2

L2(Ω)

< C

∣∣P εb (v)
∣∣2
L2(Ω)∣∣v∣∣2

L2(Ω)

,

the constant being the first eigenvalue of the problem (24)-(25). Using (27)
we obtain ∣∣∇v∣∣2

L2(Ωεb)∣∣v∣∣2
L2(Ω)

< C1 + ε2C2

∫
Ωεb

bε∇v∇v∣∣v∣∣2
L2(Ω)

. (29)
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The third term can be estimated from (11), that is

∣∣[v]
∣∣2
L2(Γε)∣∣v∣∣2
L2(Ω)

< C1 + ε2C2

∫
Ωεa

aε∇v∇v∣∣v∣∣2
L2(Ω)

+ ε2C2

∫
Ωεb

bε∇v∇v∣∣v∣∣2
L2(Ω)

. (30)

Adding the estimates (28)-(30) we get

λεk ≤ C1 + ε2C2λ
ε
k,

which obviously implies that λεk is bounded for sufficiently small ε.

Setting v = uεk in (18) and using the coerciveness of Gε(·, ·) and the
orthonormality of {uεk}k we find

Gε(u
ε
k, u

ε
k) =

∫
Ωεa

aεij
∂uεk
∂xj

∂uεk
∂xi

dx+

∫
Ωεb

bεij
∂uεk
∂xj

∂uεk
∂xi

dx+

+ε

∫
Γε

hε[uεk]
2 ds = λεk, ∀uε ∈ Hε. (31)

As {λεk}ε is bounded, we find that

{uεk}ε is bounded in Hε. (32)

Using the previously obtained result together with inequalities (8)-(10), it
follows that there exists C > 0 such that

|∇uεk|L2(Ωεa) ≤ C, |∇uεk|L2(Ωεb)
≤ C, |[uεk]|L2(Γε)

≤ C. (33)

Applying to the properties of the two-scale convergence theory [1], a specific
compactness result follows.

Theorem 3.1. There exist λk ∈ R?+, uak ∈H1(Ω), ubk ∈ H1
0 (Ω) and ηαk ∈

L2
(

Ω; H̃1
per(Yα)

)
, α ∈ {a, b}, such that the following convergences hold on

some subsequence

χεαu
ε
k

2s
⇀ χαu

α
k , (34)

χεα∇uεk
2s
⇀ χα (∇xuαk +∇yηαk (·, y)) , (35)

λεk → λk, (36)

where χεα : L2(Ωεα)→ L2(Ω) and χα : L2(Ω×Yα)→ L2(Ω×Y ), α ∈ {a, b},
denote the straight prolongations with zero; sometimes they can be identified
with the corresponding characteristic functions.
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4 The homogenization process

Passing (18) to the limit on the subsequence on which the convergences
of Theorem 3.1 hold, we obtain like in [8]:

Lemma 4.1. For any ϕa ∈ C∞(Ω̄), ϕb ∈ D(Ω) and ψα ∈ D(Ω;C∞per(Yα)),
α ∈ {a, b}, it holds

∫
Ω×Ya

aij

(
∂uak
∂xj

+
∂ηak
∂yj

)(
∂ϕa
∂xi

+
ψa
∂yi

)
+

∫
Ω×Yb

bij

(
∂ubk
∂xj

+
∂ηbk
∂yj

)(
∂ϕb
∂xi

+
ψb
∂yi

)
+

+h̃

∫
Ω

(uak − ubk)(ϕa − ϕb) = λk

∫
Ω×Y

χau
a
kϕa + χbu

b
kϕb (37)

where h̃ is defined by

h̃ =

∫
Γ
h(y)ds. (38)

Proof. For ϕα and ψα, α ∈ {a, b} like in the hypotheses, we set v in (18) as
follows:

v(x) =
(
ϕa(x) + εψa

(
x,
x

ε

)
, ϕb(x) + εψb

(
x,
x

ε

))
. (39)

We obtain

λε(χεau
ε, ϕa) + λε (χεau

ε, ϕb) +O(ε) =
∑

α∈{a,b}

∫
Ωεα

αεij
∂uε

∂xj

(
∂ϕα
∂xi

+
∂ψα
∂yi

)
+

+ε

∫
Γε

hε (γεau
ε − γεbuε) [ϕa − ϕb + ε(ψa − ψb)] . (40)

The proof is completed by following the same steps as in the proof presented
in [8].

�

In order to present the next results we have also to introduce the Hilbert
space

H :=
[
H1(Ω)×H1

0 (Ω)
]
×
[
L2(Ω, H̃1

per(Ya)× L2(Ω, H̃1
per(Yb))

]
, (41)

endowed with the scalar product

(((ua, ub), (ηa, ηb)) , ((ϕa, ϕb), (ψa, ψb)))H =
∑

α∈{a,b}

∫
Ω
∇uα∇ϕα+

+

∫
Ω

(ua − ub) (ϕa − ϕb) +
∑

α∈{a,b}

∫
Ω×Yα

∇yηα∇yψα. (42)

Using density arguments, Lemma 4.1 yields:
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Theorem 4.1. λk ∈ R∗+ and
(
(uak, u

b
k), (ηa, ηb)

)
∈ H \ {0} verify:∫

Ω×Ya
aij

(
∂uak
∂xj

+
∂ηak
∂yj

)(
∂ϕa
∂xi

+
ψa
∂yi

)
+

∫
Ω×Yb

bij

(
∂ubk
∂xj

+
∂ηbk
∂yj

)(
∂ϕb
∂xi

+
ψb
∂yi

)
+

+h̃

∫
Ω

(uak − ubk)(ϕa − ϕb) = λk

∫
Ω×Y

(
χau

a
kϕa + χbu

b
kϕb

)
,

∀ ((ϕa, ϕb), (ψa, ψb)) ∈ H. (43)

We can present now the main result of this paper.

Theorem 4.2. If (λεk, u
ε
k) is a solution of (18) then the limits of the con-

vergences (34)-(36), that is λk ∈ R∗+ and (uak, u
b
k) ∈

[
H1(Ω)×H1

0 (Ω)
]
\ {0},

put together a solution of the following effective eigenvalue problem:

Find (λk, (u
a
k, u

b
k)) ∈ R∗+ ×

[
H1(Ω)×H1

0 (Ω)
]
\ {0} such that

Ghom((uak, u
b
k), (ϕa, ϕb)) = λk

∫
Ω
m uakϕa + (1−m)ubkϕb,

∀ (ϕa, ϕb) ∈ H1(Ω)×H1
0 (Ω), (44)

where m=
∣∣Ya∣∣,

Ghom((uak, u
b
k), (ϕa, ϕb)) =∫

Ω
âij

∂uak
∂xj

∂ϕa
∂xi

+

∫
Ω
b̂ij
∂ubk
∂xj

∂ϕb
∂xi

+ h̃

∫
Ω

(uak − ubk)(ϕa − ϕb), (45)

the effective coefficients α̂ij, α ∈ {a, b}, are defined by

α̂ij =

∫
Yα

αij + αik
∂eaj
∂yk

dy, ∀i, j ∈ {1, 2, ..., N} , (46)

and eαk ∈ H̃1
per (Yα), k ∈ {1, 2, ..., N} , is the unique solution of the local-

periodic problem

− ∂

∂yi

(
αij

∂ (eαk + yk)

∂yj

)
= 0 in Yα, (47)

αij
∂ (eαk + yk)

∂yj
νi = 0 on Γ. (48)

Moreover, there are no eigenvalues of the problem (44) except those ob-
tained as limits of the homogenization process.
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Proof. The first assertion follows from Theorem 4.1 using standard homog-
enization procedures.

Next, suppose that there exists an eigenvalue of the problem (44), µ ∈
R∗+, µ 6= λk, ∀k ≥ 1, where {λk}k represents the eigenvalues of the problem
(44) obtained as limits of the homogenization process. It follows that there
exists k such that λk < µ < λk+1. Let w = (wa, wb) ∈

[
H1(Ω)×H1

0 (Ω)
]
\

{0} be an eigenfunction associated to µ.
Let us introduce wε ∈ Hε, the unique the solution to the problem

Gε(w
ε, v) = µ

∫
Ωεa

wav + µ

∫
Ωεb

wbv, ∀v ∈ Hε. (49)

Setting v = wε in the previous relation we find that

Gε(w
ε, wε) ≤ C

∣∣wε∣∣
L2(Ω)

.

Applying the coercivity property of Gε, we find that the sequence {wε}ε is
bounded in Hε. Under these circumstances, there exists w∗ = (w∗a, w

∗
b ) ∈

H1(Ω)×H1
0 (Ω) such that

P εaw
ε ⇀ w∗a in H1(Ω) and P εbw

ε ⇀ w∗b in H1
0 (Ω).

Homogenizing the problem (49) we obtain

lim
ε→∞

Gε(w
ε, v) = Ghom(w∗, v) = µ(w, v) = Ghom(w, v), ∀v ∈ H1

0 (Ω),

from which follows

w = w∗ and

∫
Ω

(wε)2 →
∫

Ω
m(wa)2 + (1−m)(wb)2 6= 0. (50)

Next, we define ŵε = wε −
k∑
i=1

(∫
Ω
wεuεi

)
uεi , where uεi ∈ Hε is an eigen-

function associated to λi. We note that

∫
Ω
ŵεuεj = 0, ∀j ≤ k, and hence

Gε(ŵε, ŵε) ≥ λεk+1

∫
Ω

(ŵε)2. (51)

As ∫
Ω
wεuεi =

∫
Ω
χεaP

ε
aw

εuεi +

∫
Ω

(1− χεa)P εbwεuεi , ∀i ∈ {1, ..., k},

the passage to the limit yields∫
Ω
wεuεi →

∫
Ω
mwauai + (1−m)wbubi = 0,
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which obviously implies∫
Ω

(ŵε)2 →
∫

Ω
m(wa)2 + (1−m)(wb)2. (52)

Passing (49) to the limit in we finally get

Gε(ŵ
ε, ŵε)→ Ghom(w,w) = µ

∫
Ω
m(wa)2 + (1−m)(wb)2 <

< λk+1

∫
Ω
m(wa)2 + (1−m)(wb)2, (53)

which is in contradiction with (51), via (52). �

Remark 4.1. The formulation of the effective two-temperature eigenvalue
problem follows from Theorem (4.2):

Find λ ∈ R∗ such that ∃(ua, ub) ∈
[
H1(Ω)×H1

0 (Ω)
]
\ {0} verifying

−div (â∇ua) = m λ ua in Ω, (54)

−div
(
b̂∇ub

)
= (1−m)λ ub in Ω, (55)

and the boundary condition

âij
∂ua

∂xj
ni = 0 on ∂Ω, (56)

where n is the outward normal on ∂Ω.
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