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In this paper we study the asymptotic behavior of the eigenvalue problem solutions of the conduction process in an ε-periodic domain formed by two components separated by a first-order jump interface. We prove that when ε → 0 the limits of the eigenvalues and eigenfunctions of this problem verify a certain (effective) two-temperature eigenvalue problem. Moreover, we show that the effective eigenvalue problem has only eigenvalues which come from the homogenization process.

Introduction

During the last decades there was a steady interest for the homogenization of problems with interfacial thermal barriers (see [START_REF] Auriault | Macroscopic modelling of heat transfer in composites with interfacial thermal barrier[END_REF], [START_REF] Monsurrò | Homogenization of a two-component composite with interfacial thermal barrier[END_REF], [START_REF] Donato | Homogenization of two heat conductors with interfacial contact resistance[END_REF], [START_REF] Bunoiu | Homogenization of a thermal problem with flux jump[END_REF]) or equivalent (see [START_REF] Lipton | Heat conduction in fine scale mixtures with interfacial contact resistance[END_REF], [START_REF] Hummel | Homogenization for heat transfer in polycrystals with interfacial resistances[END_REF], [START_REF] Ene | Model of diffusion in partially fissured media[END_REF], [START_REF] Poliševski | The Regularized Diffusion in Partially Fractured Porous Media[END_REF]). Meanwhile, it was also studied the asymptotic behavior of the eigenvalue problems in ε-periodic domains (see [START_REF] Kesavan | Homogenization of elliptic eigenvalue problems[END_REF]) , even for ε-periodically perforated domains (see [START_REF] Vanninathan | Homogenization of eigenvalue problems in perforated domains[END_REF]), where the key ingredient was the prolongation operator which was introduced by [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF].

Here we continue our works [START_REF] Gruais | Heat transfer models for two-component media with interfacial jump[END_REF], [START_REF] Gruais | Model of two-temperature convective transfer in porous media[END_REF] and [START_REF] Poliševski | Heat transfer with firstorder interfacial jump in a biconnected structure[END_REF] by studying the asymptotic behavior of the eigenvalue problem solutions of the conduction process in an ε-periodic domain formed by two components separated by a first-order jump interface. We prove that when ε → 0 the limits of the eigenvalues and eigenfunctions of this problem verify a certain (effective) two-temperature eigenvalue problem. Moreover, we show that the effective eigenvalue problem has only eigenvalues which come from the homogenization process. Our key ingredient is a pair of prolongation operators, corresponding to each component of the domain. Otherwise, we mainly follow the methods of the two-scale theory (see [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]). We have to remark that the procedure presented here can straightforwardly be generalized to any n-component ε-periodic domain with interfacial jumps of the first order.

The paper is organized as follows: in Section 2 we study the eigenvalue problem in the ε-periodic domain; in Section 3 we present the key prolongation operators, the a priori estimates and the specific compactness results; Section 4 is devoted to the derivation of the effective eigenvalue problem and its connection with the homogenization process.

The eigenvalue problem

Let Ω be an open connected bounded set in R N (N ≥ 3), locally located on one side of the boundary ∂Ω, a Lipschitz manifold composed of a finite number of connected components. For any ε ∈ (0, 1), Ω has two ε-periodically ditributed components. For convenience, the periodicity is described by using the cube Y = (0, 1) N , as follows:

Let

Y a ⊂⊂ Y be a Lipschitz open set such that Y b = Y \ Y a is connected. For any ε ∈ (0, 1) we denote Z ε = {k ∈ Z N : εk + εY ⊆ Ω}. ( 1 
)
The two ε-periodic components of Ω are defined by:

Ω εa = int   k∈Zε (εk + εY a )   (2) 
Ω εb = Ω \ Ω εa . (3) 
Denoting Γ := ∂Y a = ∂Y a ∩ ∂Y b , the interface between Ω εa and Ω εb have the property:

Γ ε := k∈Zε (εk + εΓ) = ∂Ω εa = ∂Ω εa ∩ ∂Ω εb . (4) 
Let us remark that Ω εb is connected and all the boundaries are at least locally Lipschitz. Also, the inward normal on ∂Y a , denoted by ν, has the property

ν ε (x) = ν ε -1 x , ∀x ∈ Γ ε , (5) 
where ε -1 x is formed by the fractional parts of the components of ε -1 x.

We have to introduce the Hilbert space

H ε = u ∈ L 2 (Ω) : u Ωεa ∈ H 1 (Ω εa ), u Ω εb ∈ H 1 (Ω εb ), u = 0 on ∂Ω (6) 
endowed with the scalar product

(u, v) Hε = Ωεa ∇u∇v + Ω εb ∇u∇v + ε Γε [u][v], (7) 
where [u] = γ εa u -γ εb u and γ εa u, γ εb u are the traces of u on Γ ε defined in H 1 (Ω εa ) and H 1 (Ω εb ), respectively. Our domain has the following well-known property [START_REF] Ene | Model of diffusion in partially fissured media[END_REF]:

Lemma 2.1. For any v ∈ H ε there exists C > 0, independent of ε, such that |v| L 2 (Ωε b ) ≤ C |∇v| L 2 (Ωε b ) , (8) 
ε 1/2 |γ εα v| L 2 (Γε) ≤ C |v| L 2 (Ωε α ) + ε |∇v| L 2 (Ωε α ) , α ∈ {a, b}, (9) 
|v| L 2 (Ωε a ) ≤ C ε 1/2 |γ εa v| L 2 (Γε) + ε |∇v| L 2 (Ωε a ) . (10) 
Remark 2.1. Taking in account the L 2 -norm of the jump on Γ ε the results of the previous Lemma have important consequences:

ε 1/2 [v] L 2 (Γε) ≤ C v L 2 (Ω) + ε ∇v L 2 (Ωεa) + ε ∇v L 2 (Ω εb ) , (11) 
|v| L 2 (Ωεa) ≤ C |v| Hε , ∀v ∈ H ε . (12) 
Next, we introduce the data of our problem: the transmission factor h ε (x) = h(x/ε) and the symmetric conductivities

a ε ij (x) = a ij (x/ε) and b ε ij (x) = b ij (x/ε)
, where h, a ij and b ij belong to L ∞ per (Y ) and have the property that there exists δ > 0 such that

h ≥ δ, a.e. on Y, (13) 
a ij ξ j ξ i ≥ δξ i ξ i and b ij ξ j ξ i ≥ δξ i ξ i , ∀ξ ∈ R N , a.e. on Y. (14) 
We consider the following eigenvalue problem:

Find λ ε ∈ R * such that ∃u ε ∈ H ε \ {0} verifying the equations -div (a ε ∇u ε ) = λ ε u ε , in Ω εa , (15) 
-div

(b ε ∇u ε ) = λ ε u ε , in Ω εb , (16) 
and the transmission conditions

a ε ij ∂u ε ∂x j ν ε i = b ε ij ∂u ε ∂x j ν ε i = εh ε (γ εa u ε -γ εb u ε ) on Γ ε . (17) 
The variational formulation of the problem ( 15)-( 17) is the following:

Find λ ε ∈ R * such that ∃u ε ∈ H ε \ {0} verifying G ε (u ε , v) := Ωεa a ε ij ∂u ε ∂x j ∂v ∂x i + Ω εb b ε ij ∂u ε ∂x j ∂v ∂x i + ε Γε h ε [u ε ][v] = λ ε (u ε , v), ∀v ∈ H ε (18) 
where (•, •) denotes the inner product in L 2 (Ω).

Using the procedure of [START_REF] Babuška | Eigenvalue Problems, Handbook of numerical analysis[END_REF], we introduce the operator

T ε ∈ L L 2 (Ω), H ε by denotig with T ε (u), for u ∈ L 2 (Ω), the unique solution of the problem Ωεa a ε ij ∂T ε (u) ∂x j ∂v ∂x i + Ω εb b ε ij ∂T ε (u) ∂x j ∂v ∂x i +ε Γε h ε [T ε (u)][v] = Ω uv, ∀v ∈ H ε . Defining T ε : L 2 (Ω) → L 2 (Ω) by T ε = J ε • T ε , where J ε is the inclusion of H ε into L 2 (Ω), we see that the eigenvalue problem (18) is equivalent to the eigenvalue problem T ε u ε = µ ε u ε , via µ ε = 1 λ ε . Lemma 2.2. The inclusion J ε : H ε → L 2 (Ω) is a compact operator.
Proof. As for any v ∈ H ε we have

J ε v L ε (Ω) = v Ωεa + v Ω εb ≤ C v Hε ,
is sufficient to prove that the bounded sequences from H ε contain a convergent subsequence in

L 2 (Ω). Let {v n } n a bounded sequence in H ε . We note v a n = v n Ωεa and v b n = v n Ω εb
. Since {v a n } n is a bounded sequence in H 1 (Ω εa ), from the Rellich's theorem there exist v a ∈ H 1 (Ω εa ) and a subsequence, still denoted by {n}, such that

v a n → v a strongly in L 2 (Ω εa ). Further, {v b n } n being bounded in H 1 (Ω εb ), again the Rellich's theorem implies the existence of some v b ∈ H 1 (Ω εb ) such that on a sub-subsequence it holds v b n → v b strongly in L 2 (Ω εb ). It follows that v 0 = v a in Ω εa , v b in Ω εb ⇒ v 0 ∈ H ε ⊂ L 2 (Ω).
The proof is completed as

v n -v 0 2 L 2 (Ω) = v a n -v a 2 L 2 (Ωεa) + v b n -v b 2 L 2 (Ω εb ) → 0.
We see now that T ε is a self-adjoint, compact operator in L 2 (Ω) and recalling for instance [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF] it follows that there exist {λ ε k } k , eigenvalues of the problem (18), with the property

0 < λ ε 1 ≤ λ ε 2 ≤ ... → ∞
and {u ε k } k , the corresponding eigenfunctions, which are complete and orthonormal in L 2 (Ω).

In the following sections we shall study the behaviour of (λ ε k , u ε k ) when ε → 0.

A priori estimates

We begin this section by proving the boundedness of {λ ε k } ε , the eigenvalues of (18). For every k ∈ N let us denote

H ε,k = {S subspace of H ε , dim S = k}.
Applying the Minimum-maximum principle (see [START_REF] Babuška | Eigenvalue Problems, Handbook of numerical analysis[END_REF]), λ ε k can be estimated via the Rayleigh quotient:

λ ε k = min S∈H ε,k max v∈S G ε (v, v) v 2 L 2 (Ω) ≤ ≤ C min S∈H ε,k max v∈S ∇v 2 L 2 (Ωεa) + ∇v 2 L 2 (Ω εb ) + ε [v] 2 L 2 (Γε) v 2 L 2 (Ω) . (19) 
In order to further estimate λ ε k with respect to ε we introduce two prolongation operators.

First, for any v ∈ H 1 (Y a ) let w ∈ H 1 (Y b ) be the only solution of the Dirichlet problem:

-∇w = 0 in Y b , (20) 
w = 0 on ∂Y, w = v on Γ. ( 21 
)
We have to introduce here P a (v) ∈ H 1 (Y ) by

P a (v) = v in Y a , w in Y b .
It has the property

P a (v) H 1 (Y ) ≤ C v H 1 (Ya) . (22) 
Denoting u ε k (y) := u(εk + εy), for any k ∈ Z ε , y ∈ Y a and u ∈ H 1 (Ω εa ), we define our first prolongation operator, P ε a : H 1 (Ω εa ) → H 1 0 (Ω), by

P ε a (u)(x) =    u(x) for x ∈ Ω εa P a (u ε k ) { x ε } for x ∈ (εk + εY b ), k ∈ Z ε 0 for x ∈ Ω \ k∈Zε (εk + εY )
Rescaling (22) we easily obtain

P ε a (u) H 1 (Ω) ≤ C u L 2 (Ωεa) + ε ∇u L 2 (Ωεa) , ∀v ∈ H 1 (Ω εa ). (23) Second, for any v ∈ H 1 (Y b ) let w ∈ H 1 (Y b )

be the only solution of the Dirichlet problem:

-

∇w = 0 in Y a , (24) 
w = v on Γ.

(25)

For this component we introduce P b (v) ∈ H 1 (Y ) by

P b (v) = w in Y a , v in Y b ,
which has a property similar to (22):

P b (v) H 1 (Y ) ≤ C v H 1 (Y b ) . (26) 
Denoting u ε k (y) := u(εk + εy), for any k ∈ Z ε , y ∈ Y b , u ∈ H 1 (Ω εb ), u = 0 on ∂Ω, we define our second prolongation operator, P ε b : {u ∈ H 1 (Ω εb ), u=0 on ∂Ω} → H 1 0 (Ω), by

P ε b (u)(x) = u(x) for x ∈ Ω εb P b (u ε k ) { x ε } for x ∈ (εk + εY a ), k ∈ Z ε .
Rescaling (26) we get

P ε b (u) H 1 (Ω) ≤ C u L 2 (Ω εb ) + ε ∇u L 2 (Ω εb ) , ∀u ∈ H 1 (Ω εb ), u=0 on ∂Ω. (27) 
We can now estimate the terms of (19). The first term gives:

∇v 2 L 2 (Ωεa) v 2 L 2 (Ω) ≤ ∇P ε a (v) 2 L 2 (Ωεa) P ε a (v) 2 L 2 (Ω) • P ε a (v) 2 L 2 (Ω) v 2 L 2 (Ω) < C P ε a (v) 2 L 2 (Ω) v 2 L 2 (Ω)
, the constant being the first eigenvalue of the problem (20)-(21). Using (23) we obtain

∇v 2 L 2 (Ωεa) v 2 L 2 (Ω) < C 1 + ε 2 C 2 Ωεa a ε ∇v∇v v 2 L 2 (Ω) . (28) 
The second term gives:

∇v 2 L 2 (Ω εb ) v 2 L 2 (Ω) ≤ ∇P ε b (v) 2 L 2 (Ω εb ) P ε b (v) 2 L 2 (Ω) • P ε b (v) 2 L 2 (Ω) v 2 L 2 (Ω) < C P ε b (v) 2 L 2 (Ω) v 2 L 2 (Ω)
, the constant being the first eigenvalue of the problem (24)-(25). Using (27) we obtain

∇v 2 L 2 (Ω εb ) v 2 L 2 (Ω) < C 1 + ε 2 C 2 Ω εb b ε ∇v∇v v 2 L 2 (Ω) . ( 29 
)
The third term can be estimated from [START_REF] Hummel | Homogenization for heat transfer in polycrystals with interfacial resistances[END_REF], that is

[v] 2 L 2 (Γε) v 2 L 2 (Ω) < C 1 + ε 2 C 2 Ωεa a ε ∇v∇v v 2 L 2 (Ω) + ε 2 C 2 Ω εb b ε ∇v∇v v 2 L 2 (Ω) . ( 30 
)
Adding the estimates ( 28)-(30) we get

λ ε k ≤ C 1 + ε 2 C 2 λ ε k ,
which obviously implies that λ ε k is bounded for sufficiently small ε. Setting v = u ε k in (18) and using the coerciveness of G ε (•, •) and the orthonormality of {u ε k } k we find

G ε (u ε k , u ε k ) = Ωεa a ε ij ∂u ε k ∂x j ∂u ε k ∂x i dx + Ω εb b ε ij ∂u ε k ∂x j ∂u ε k ∂x i dx+ +ε Γε h ε [u ε k ] 2 ds = λ ε k , ∀u ε ∈ H ε . (31) 
As {λ ε k } ε is bounded, we find that

{u ε k } ε is bounded in H ε . ( 32 
)
Using the previously obtained result together with inequalities ( 8)- [START_REF] Gruais | Model of two-temperature convective transfer in porous media[END_REF], it follows that there exists C > 0 such that

|∇u ε k | L 2 (Ωεa) ≤ C, |∇u ε k | L 2 (Ω εb ) ≤ C, |[u ε k ]| L 2 (Γε) ≤ C. ( 33 
)
Applying to the properties of the two-scale convergence theory [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], a specific compactness result follows.

Theorem 3.1. There exist

λ k ∈ R + , u a k ∈ H 1 (Ω), u b k ∈ H 1 0 (Ω) and η α k ∈ L 2 Ω; H 1 per (Y α ) , α ∈ {a
, b}, such that the following convergences hold on some subsequence

χ ε α u ε k 2s χ α u α k , (34) 
χ ε α ∇u ε k 2s χ α (∇ x u α k + ∇ y η α k (•, y)) , (35) 
λ ε k → λ k , (36) 
where

χ ε α : L 2 (Ω εα ) → L 2 (Ω) and χ α : L 2 (Ω × Y α ) → L 2 (Ω × Y ), α ∈ {a,
b}, denote the straight prolongations with zero; sometimes they can be identified with the corresponding characteristic functions.

The homogenization process

Passing (18) to the limit on the subsequence on which the convergences of Theorem 3.1 hold, we obtain like in [START_REF] Ene | Model of diffusion in partially fissured media[END_REF]:

Lemma 4.1. For any ϕ a ∈ C ∞ ( Ω), ϕ b ∈ D(Ω) and ψ α ∈ D(Ω; C ∞ per (Y α )), α ∈ {a, b}, it holds Ω×Ya a ij ∂u a k ∂x j + ∂η a k ∂y j ∂ϕ a ∂x i + ψ a ∂y i + Ω×Y b b ij ∂u b k ∂x j + ∂η b k ∂y j ∂ϕ b ∂x i + ψ b ∂y i + + h Ω (u a k -u b k )(ϕ a -ϕ b ) = λ k Ω×Y χ a u a k ϕ a + χ b u b k ϕ b ( 37 
)
where h is defined by

h = Γ h(y)ds. (38) 
Proof. For ϕ α and ψ α , α ∈ b} like in the hypotheses, we set v in (18) as follows:

v(x) = ϕ a (x) + εψ a x, x ε , ϕ b (x) + εψ b x, x ε . (39) 
We obtain

λ ε (χ ε a u ε , ϕ a ) + λ ε (χ ε a u ε , ϕ b ) + O(ε) = α∈{a,b} Ωεα α ε ij ∂u ε ∂x j ∂ϕ α ∂x i + ∂ψ α ∂y i + +ε Γε h ε (γ εa u ε -γ εb u ε ) [ϕ a -ϕ b + ε(ψ a -ψ b )] . ( 40 
)
The proof is completed by following the same steps as in the proof presented in [START_REF] Ene | Model of diffusion in partially fissured media[END_REF].

In order to present the next results we have also to introduce the Hilbert space

H := H 1 (Ω) × H 1 0 (Ω) × L 2 (Ω, H 1 per (Y a ) × L 2 (Ω, H 1 per (Y b )) , (41) 
endowed with the scalar product

(((u a , u b ), (η a , η b )) , ((ϕ a , ϕ b ), (ψ a , ψ b ))) H = α∈{a,b} Ω ∇u α ∇ϕ α + + Ω (u a -u b ) (ϕ a -ϕ b ) + α∈{a,b} Ω×Yα ∇ y η α ∇ y ψ α . (42) 
Using density arguments, Lemma 4.1 yields:

Theorem 4.1. λ k ∈ R * + and (u a k , u b k ), (η a , η b ) ∈ H \ {0} verify: Ω×Ya a ij ∂u a k ∂x j + ∂η a k ∂y j ∂ϕ a ∂x i + ψ a ∂y i + Ω×Y b b ij ∂u b k ∂x j + ∂η b k ∂y j ∂ϕ b ∂x i + ψ b ∂y i + + h Ω (u a k -u b k )(ϕ a -ϕ b ) = λ k Ω×Y χ a u a k ϕ a + χ b u b k ϕ b , ∀ ((ϕ a , ϕ b ), (ψ a , ψ b )) ∈ H. ( 43 
)
We can present now the main result of this paper.

Theorem 4.2. If (λ ε k , u ε k
) is a solution of (18) then the limits of the convergences (34)-(36), that is

λ k ∈ * + and (u a k , u b k ) ∈ H 1 (Ω) × H 1 0 (Ω) \ {0}
, put together a solution of the following effective eigenvalue problem:

Find (λ k , (u a k , u b k )) ∈ R * + × H 1 (Ω) × H 1 0 (Ω) \ {0} such that G hom ((u a k , u b k ), (ϕ a , ϕ b )) = λ k Ω m u a k ϕ a + (1 -m)u b k ϕ b , ∀ (ϕ a , ϕ b ) ∈ H 1 (Ω) × H 1 0 (Ω), (44) 
where m= Y a ,

G hom ((u a k , u b k ), (ϕ a , ϕ b )) = Ω âij ∂u a k ∂x j ∂ϕ a ∂x i + Ω bij ∂u b k ∂x j ∂ϕ b ∂x i + h Ω (u a k -u b k )(ϕ a -ϕ b ), (45) 
the effective coefficients αij , α ∈ {a, b}, are defined by

αij = Yα α ij + α ik ∂e a j ∂y k dy, ∀i, j ∈ {1, 2, ..., N } , (46) 
and

e α k ∈ H 1 per (Y α ), k ∈ {1, 2, ..., N } , is the unique solution of the local- periodic problem - ∂ ∂y i α ij ∂ (e α k + y k ) ∂y j = 0 in Y α , (47) 
α ij ∂ (e α k + y k ) ∂y j ν i = 0 on Γ. ( 48 
)
Moreover, there are no eigenvalues of the problem (44) except those obtained as limits of the homogenization process.

Proof. The first assertion follows from Theorem 4.1 using standard homogenization procedures.

Next, suppose that there exists an eigenvalue of the problem (44), µ ∈ R * + , µ = λ k , ∀k ≥ 1, where {λ k } k represents the eigenvalues of the problem (44) obtained as limits of the homogenization process. It follows that there exists k such that λ k < µ < λ k+1 . Let w = (w a , w b ) ∈ H 1 (Ω) × H 1 0 (Ω) \ {0} be an eigenfunction associated to µ.

Let us introduce w ε ∈ H ε , the unique the solution to the problem

G ε (w ε , v) = µ Ωεa w a v + µ Ω εb w b v, ∀v ∈ H ε . (49) 
Setting v = w ε in the previous relation we find that

G ε (w ε , w ε ) ≤ C w ε L 2 (Ω) .
Applying the coercivity property of G ε , we find that the sequence {w ε } ε is bounded in H ε . Under these circumstances, there exists w * = (w * a , w * b ) ∈ H 1 (Ω) × H 1 0 (Ω) such that 

P ε a w ε w * a in H 1 (( 1

 11 Ω) and P ε b w ε w * b in H 1 0 (Ω).Homogenizing the problem (49) we obtainlim ε→∞ G ε (w ε , v) = G hom (w * , v) = µ(w, v) = G hom (w, v), ∀v ∈ H 1 0 (Ω),from which followsw = w * and Ω (w ε ) 2 → Ω m(w a ) 2 + (1 -m)(w b ) 2 = 0. (50)Next, we define ŵε = w ε -k i=1 Ω w ε u ε i u ε i, where u ε i ∈ H ε is an eigenfunction associated to λ i . We note that Ω ŵε u ε j = 0, ∀j ≤ k, and henceG ε ( ŵε , ŵε ) -χ ε a )P ε b w ε u ε i , ∀i ∈ {1, ..., k}, the passage to the limit yieldsΩ w ε u ε i → Ω mw a u a i + (1 -m)w b u b i = 0,
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which obviously implies

Passing (49) to the limit in we finally get

which is in contradiction with (51), via (52).

Remark 4.1. The formulation of the effective two-temperature eigenvalue problem follows from Theorem (4.2):

and the boundary condition

where n is the outward normal on ∂Ω.