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Simultaneous Information and Energy Transmission
in the Two-User Gaussian Interference Channel

Nizar Khalfet and Samir M. Perlaza

Abstract—In this paper, the fundamental limits of simultaneous
information and energy transmission (SIET) in the two-user
Gaussian interference channel (G-IC) with and without perfect
channel-output feedback are approximated by two regions in each
case, i.e., an achievable region and a converse region. When the
energy transmission rate is normalized by the maximum energy
rate, the approximation is within a constat gap. In the proof of
achievability, the key idea is the use of power-splitting between
two signal components: an information-carrying component and
a no-information component. The construction of the former is
based on random coding arguments, whereas the latter consists in
a deterministic sequence known by all transmitters and receivers.
The proof of the converse is obtained via cut-set bounds, genie-
aided channel models, Fano’s inequality and some concentration
inequalities considering that channel inputs might have a positive
mean. Finally, the energy transmission enhancement due to
feedback is quantified and it is shown that feedback can at most
double the energy transmission rate at high signal to noise ratios.

Index Terms—Feedback, Gaussian interference channel, simul-
taneous information and energy transmission, RF harvesting,
information-energy capacity region.

I. INTRODUCTION

Battery dependency is a critical issue when communica-
tions systems are deployed in hard-to-reach locations, e.g.,
remote geographical areas, concrete structures, human bodies,
or disaster/war zones. In this case, the lifetime of the elec-
tronic devices or even the whole communications system is
determined by the battery life. An effective remedy is using
energy harvesting technologies. Specifically, energy can be
harvested from different ambient sources such as light, vibra-
tions, heat, chemical reactions, physiological processes, or the
radio frequency (RF) signals produced by other communica-
tions systems. This observation rises the idea of simultaneous
information and energy transmission (SIET) via RF.

The idea of wireless energy transmission traces back to
Tesla in the 20-th century [34]. However, only recently the
idea of SIET has been formalized. For instance, the point-to-
point channel has been studied from the perspective of SIET
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in the asymptotic block-length regime in [19], [37], [38] and
[39]. In the non-asymptotic block-length regime, very little is
known as pointed out in [28] and [32]. The Gaussian multiple
access channel with one non-colocated energy harvester (EH)
has been studied in [1]. The special case of a colocated EH
was studied in [17]. The Gaussian interference channel (G-IC)
has been studied in the context of SIET in [7], [8] and [26]. A
closely related result is the analysis of energy cooperation at
the transmitters [31]. Nonetheless, none of these works tackles
the fundamental limits of SIET in the G-IC. Other multi-user
channels are studied in [2], [12], [18], [25], [29], [35] and
references therein.

This paper focuses on the case of the two-user G-IC
under the following assumptions: (a) A non-colocated energy
harvester (EH) recollects energy from the signals sent by
the transmitters; (b) a perfect channel-output feedback link
might be available from each receiver to the corresponding
transmitter. The main results in the case with and without
feedback are twofold. First, a set of achievable information
and energy transmission rates is presented. That is, a subset
of the information-energy capacity region [1] is characterized.
Second, a set that contains the information-energy capacity
region is introduced. These two sets are shown to be a
constant gap approximation to the information-energy capacity
region when the energy rate is normalized by the maximum
energy rate. Using these results, it is finally shown that perfect
channel-output feedback can at most double the energy rate in
the G-IC.

This work builds upon existing results whose foci are ex-
clusively on information transmission, in particular [14], [20],
[30] and [33]. For instance, in the proof of achievability with
and without feedback, the novelty lyes upon the use of power
splitting to superimpose two signal components: One that is
designed to transmit information; and another that is designed
to transmit energy. Note that the former naturally carries
both information and energy, whereas the latter exclusively
carries energy. From this perspective, the information-carrying
component is built up along the same lines of the achievability
scheme presented in [21] and [33] in the case with and
without feedback, respectively. The no-information carrying
component is built along the lines of the scheme presented in
[1] using the idea of common randomness. More specifically,
both the transmitters and the receivers know in advance the
realization of a given random variable. This realization is used
by the transmitters to correlate their transmitted signals in
order to benefit the transmission of energy. At the receivers,
this knowledge is used for cancelling the interference of
the no-information carrying component. The proof of the
converse, in the case with and without feedback, follows along
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Interference Channel with Feedback (G-IC-FB)
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Fig. 1. Two-user Gaussian interference channels with a non-colocated energy
harvester at channel use n. (a) Case without feedback; and (b) Case with
perfect channel output feedback.

the lines of [14] and [33], respectively. The main difference
relies on the fact that no constraint is imposed on the first
moment of codewords of a given feasible coding scheme. Note
for instance that a codeword with a strictly positive mean
carries an amount of energy equal to its mean, i.e., direct
current (DC) component. Finally, new inner and outer bounds
on the energy transmission rate are obtained using Markov’s
concentration inequality [5].

The proofs are presented only for the case with feedback
and only the intuitions behind the proofs are discussed for the
case without feedback. A complete presentation of the proofs
is presented in [24].

II. SYSTEM MODEL

Consider a two-user G-IC with a non-colocated energy har-
vester (EH) with and without point-to-point perfect channel-
output feedback (PF) from each receiver to its corresponding
transmitter. These two scenarios are depicted in Figure 1(a)
and Figure 1(b), respectively. Note that there is no feedback
from the EH to any of the transmitters. Within this context,
transmitter i, with i ∈ {1, 2}, aims to simultaneously execute
two tasks: (a) information transmission to its intended re-
ceiver; and (b) energy transmission to the EH. Section II-A and
Section II-B describe these tasks independently. Later, Section
II-C describes the simultaneous implementation of both tasks.

A. Information Transmission Task

From the information transmission standpoint, the goal of
transmitter i, with i ∈ {1, 2}, is to convey a message index
Wi ∈ Wi = {1, 2, . . . , b2NRic} to receiver i using N channel
input symbols Xi,1, Xi,2, . . . , Xi,N . That is, information is
transmitted at rate Ri > 0 bits per channel use. The channel
coefficient from transmitter k to receiver i, with k ∈ {1, 2}, is
denoted by hi,k ∈ R+, where R+ denotes the positive reals.
At receiver i, during channel use n, input symbol Xi,n is
observed at receiver i subject to the interference produced by
the symbol Xj,n sent by transmitter j, with j ∈ {1, 2} \ {i},
and a real additive Gaussian noise Zi,n with zero mean and
variance σ2

i . Hence, the channel output at receiver i during
channel use n, denoted by Yi,n, is:

Yi,n = hi,iXi,n + hi,jXj,n + Zi,n. (1)

In the case without feedback, at each channel use n, the
symbol Xi,n sent by transmitter i depends upon the message

index Wi and a randomly generated index Ω ∈ N. Let
f
(N)
i,n :Wi ×N→ R be the encoding function at channel use
n, such that for all n ∈ {1, 2, . . . , N}, the following holds:

Xi,n=f
(N)
i,n (Wi,Ω). (2)

In the case with feedback, the symbol Xi,n sent by transmitter
i depends upon the indices Wi and Ω, but also upon all
previous channel-outputs Yi,1, Yi,2, . . . , Yi,n−d, with d ∈ N
the feedback delay. In the following, it is assumed that d
is equal to one channel use, without any loss of generality.
Thus, the first channel input symbol Xi,1 depends only on the
message index Wi and Ω. More specifically, f (N)

i,1 :Wi×N→
R. Alternatively, for all n ∈ {2, 3, . . . , N}, the encoding
functions are f (N)

i,n :Wi ×N×Rn−1 → R. Essentially,

Xi,1=f
(N)
i,1 (Wi,Ω), (3a)

and for all n > 1,

Xi,n=f
(N)
i,n (Wi,Ω, Yi,1, Yi,2, . . . , Yi,n−1). (3b)

In both cases, with and without feedback, the random index
Ω is assumed to be known by all transmitters and receivers.
Moreover, channel input symbols Xi,1, Xi,2, . . . , Xi,N are
subject to an average power constraint of the form

1

N

N∑
n=1

EXi,n

[
X2
i,n

]
≤ Pi, (4)

where Pi denotes the average transmit power of transmitter
i in energy units per channel use. The decoder of receiver i
observes the channel outputs Yi,1, Yi,2, . . . , Yi,N and uses a
decoding function φ

(N)
i : N × RN → Wi, to get an estimate

of the message indices:”Wi = φ
(N)
i (Ω, Yi,1, Yi,2, . . . , Yi,N ) , (5)

where ”Wi is an estimate of the message index Wi. The
decoding error probability of a codebook of block-length N ,
denoted by P (N)

DE , is given by

P
(N)
DE = max

ï
Pr
î”W1 6= W1

ó
,Pr
î”W2 6= W2

ó ò
. (6)

The signal to noise ratio (SNR) at receiver i is denoted by

SNRi =
|hi,i|2Pi
σ2
i

. (7a)

The interference to noise ratio (INR) at receiver i is denoted
by

INRi =
|hi,j |2Pj
σ2
i

, with j 6= i. (7b)

B. Energy Transmission Task
Let h3,i ∈ R+ be the channel coefficient from transmitter i

to the EH. The symbols sent by the transmitters during channel
use n are observed by the EH subject to an additive Gaussian
noise Z3,n with zero mean and variance σ2

3 . More specifically,
the channel output at the EH during channel use n, denoted
by Y3,n, is:

Y3,n = h3,1X1,n + h3,2X2,n + Z3,n. (8)
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From the energy transmission standpoint, the goal of both
transmitters is to jointly guarantee an average energy rate at
the EH.

Let B(N) : RN → R+ be a function that determines the
energy obtained from the channel outputs Y3,1, Y3,2, . . . , Y3,N .
In the following, this function is chosen to be the average
energy rate (in energy-units per channel use) at the end of N
channel uses. That is,

B(N)(Y3,1, Y3,2, . . . , Y3,N )
4
=

1

N

N∑
n=1

Y 2
3,n, (9)

which implies that the energy carried by a given channel output
Y3,t, with t ∈ {1, 2, . . . , N}, is Y 2

3,t. This assumption is very
optimistic given the dependency of the delivered DC power on
higher order statistics of the channel input distribution [36],
[37]. Nonetheless, from the fundamental limits point of view,
any more realistic model would induce fundamental limits that
are more pessimistic than the results presented in the following
sections.

The SNR of transmitter i at the EH is denoted by

SNR3i =
|h3,i|2Pi
σ2
3

. (10)

Note that the maximum average energy rate, denoted by Bmax,
is:

Bmax = σ2
3

Ä
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

ä
,

(11)
which can be achieved in the asymptotic block-length regime
when both channel inputs exhibit a correlation coefficient
equal to one. Hence, given an energy rate B ∈ [0, Bmax],
the energy shortage probability, denoted by P (N)

ES (B), is:

P
(N)
ES

4
= Pr

î
B(N)(Y 3) < B

ó
. (12)

C. Simultaneous Information and Energy Transmission

The system is said to operate at the information-energy
rate triplet (R1, R2, B) ∈ R3

+ when both transmitter-receiver
pairs use a transmit-receive configuration such that: (i) reliable
communication at information rates R1 and R2 is ensured; and
(ii) reliable energy transmission at energy rate B is ensured.
A formal definition is given below.

Definition 1 (Achievable Rates): The triplet (R1, R2, B) ∈
R3

+ is achievable if for all i ∈ {1, 2}, there exists a sequence
of encoding functions f (N)

i,1 , f
(N)
i,2 , . . . , f

(N)
i,N and two decoding

functions φ(N)
1 and φ(N)

2 such that both the average decoding
error probability P

(N)
DE and the energy-shortage probability

P
(N)
ES tend to zero as the block-length N tends to infinity. That

is,

lim sup
N→∞

P
(N)
DE = 0 and (13a)

lim sup
N→∞

P
(N)
ES = 0. (13b)

Using Definition 1, the fundamental limits of simultaneous in-
formation and energy transmission in the Gaussian interference
channel can be described by the information-energy capacity
region [2], defined as follows.

Definition 2 (Information-Energy Capacity Region): The
information-energy capacity region, denoted by EF in the case
with feedback and E in the case without feedback, corresponds
to the closure of all achievable information-energy rate triplets
(R1, R2, B).

D. A Note on the Main Results

The main results of this paper consist in descriptions of
the information-energy capacity regions with feedback EF and
without feedback E . Such a description is presented in the form
of an approximation in the sense of the definition hereunder.

Definition 3 (Approximation of a Set): Let n ∈ N be fixed.
A set X ⊂ Rn+ is approximated by the sets X and X
if X ⊆ X ⊆ X and ∀x = (x1, x2, . . . , xn) ∈ X thenÅ

(x1 − ξ1)+, (x2 − ξ2)+, . . . , (xn − ξn)+
ã
∈ X , for some

(ξ1, ξ2, . . . , ξn) ∈ Rn+.
In Definition (3), the operator max[·, 0] is denoted by (·)+.

III. MAIN RESULTS: CASE WITHOUT CHANNEL-OUTPUT
FEEDBACK

The information-energy capacity region E is approximated
by the regions E ⊂ R3

+, which represents an information-
energy achievable region (Theorem 1); and E ⊂ R3

+, which
represents an information-energy converse region (Theorem
2). Regions E and E satisfy E ⊆ E ⊆ E and approximate the
information-energy region E to within a given gap (Theorem
3), in the sense of Definition 3.

A. An Achievable Region

The following theorem introduces an achievable
information-energy region.

Theorem 1: The information-energy capacity region E con-
tains the set E ⊆ R3

+ of all rate tuples (R1, R2, B) that satisfy:

R1 ≤
1

2
log

Å
1 +

(1− λ1e)SNR1

1 + λ2pINR1

ã
, (14a)

R2 ≤
1

2
log

Å
1 +

(1− λ2e)SNR2

1 + λ1pINR2

ã
, (14b)

R1 +R2 ≤
1

2
log

Å
1+(1−λ1e)SNR1+(1−λ2e)INR1

1+λ2pINR1

ã
+

1

2
log

Å
1 +

λ2pSNR2

1 + λ1pINR2

ã
, (14c)

R1 +R2 ≤
1

2
log

Å
1+(1−λ2e)SNR2+(1−λ1e)INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 +

λ1pSNR1

1 + λ2pINR1

ã
, (14d)

R1 +R2 ≤
1

2
log

Å
1 + λ1pSNR1 + (1−λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + λ2pSNR2 + (1−λ1e)INR2

1 + λ1pINR2

ã
, (14e)
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2R1 +R2 ≤
1

2
log

Å
1 + (1−λ1e)SNR1 + (1−λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + λ2pSNR2 + (1−λ1e)INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 +

λ1pSNR1

1 + λ2pINR1

ã
(14f)

R1 + 2R2 ≤
1

2
log

Å
1 + (1−λ2e)SNR2 + (1−λ1e)INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 + λ1pSNR1 + (1−λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 +

λ2pSNR2

1 + λ1pINR2

ã
, (14g)

B ≤ σ2
3

Å
1 + SNR31 + SNR32

+2
√

SNR31SNR32

√
λ1eλ2e

ã
, (14h)

for some (λip, λie) ∈ [0, 1]2 such that λip+λie ≤ 1, for all
i ∈ {1, 2}.
The proof of Theorem 1 is presented in [24]. Essentially, the
achievability scheme used to obtain the region E described in
Theorem 1 is built upon random coding arguments using four
key ingredients: (a) superposition coding [9]; (b) rate-splitting
[20]; (c) common randomness [4], [27]; and (d) power-spliting
[1].

The codebook of transmitter i, with i ∈ {1, 2}, is generated
by super-imposing three different code layers. The first code
layer is a sub-codebook generated for the exclusive purpose of
energy transmission. Note that this code layer can be chosen
to be the same for both transmitters. The key point is to ensure
that codewords in the first code layer of transmitter 1 and 2
exhibit a correlation factor equal to one. For each codeword
in the first layer, a new sub-codebook is generated. This set of
sub-codebooks is referred to as the second code layer and it is
designed to broadcast information to both receivers. However,
even if it is not the primary goal, these codewords naturally
carry energy to the EH, as well. Finally, for each codeword in
the second layer, a new sub-codebook is generated. This set of
sub-codebooks is referred to as the third layer of the codebook
and it is designed for the exclusive purpose of transmitting
information to receiver i. Nonetheless, as for the codewords
in the first and second layer, these codewords also carry energy
to the EH.

In a nutshell, codewords from all layers of the codebook
are capable of carrying energy to the EH but only those in the
second and third layer carry both information and energy. The
size of the first layer of the codebook determines the number
of different codewords that can be used to transmit energy to
the EH. However, the size of this layer does not have any
impact on the information or energy rate of the transmitters.
Alternatively, the size of the second and third layer determine
the information rate of the corresponding transmitter. The
exact size of each of these layers lies upon a decoding error
probability analysis that is presented in [24].

Rate splitting is the ingredient that allows the convenient
exploitation of the codebooks with the form described above.

Note that at the beginning of each transmission, transmitter
i possesses two indices to transmit: common random index
Ω and message index Wi. The message index Wi is divided
into two subindices: Wi,C and Wi,P . The index Ω is used to
choose a codeword in the first layer and the indices Wi,C

and Wi,P are used to choose a codeword in the second
and third layer, respectively. This justifies the name of the
technique as the information rate of transmitter i is split into
two streams: common and private. Note that the second layers
contain codewords that are decoded at both receivers (common
messages) whereas the third layers contain codewords that
are decoded only at the intended receiver (private messages).
Intuitively, the codewords from the second layer of the code of
transmitter i can be decoded at receiver j, with j ∈ {1, 2}\{i},
which allows some interference cancellation. On the other
hand, the codewords from the third layer of transmitter i are
treated as interference at receiver j. The interference produced
by the codewords from the first layer on both transmitters can
be fully eliminated, as by assumption, the index Ω is known
by all transmitters and receivers.

Finally, to prove the existence of at least one code that
achieves the rates described by Theorem 1, it suffices to
average the information and energy rates that are achievable
by all possible codebooks that can be generated using the
structure described above. If the average of such rates satisfies
the inequalities in Theorem 1, then for each rate tuple in
E , there exists at least one code that achieves such a rate
tuple. Assume for instance that the codewords of the first,
second and third layers of transmitter i are N -length sequences
of realizations of the following three independent random
variables respectively: V ∼ N (0, 1); Ui ∼ N (0, λic); and
Si ∼ N (0, λip), where λic + λip + λie 6 1. Let also the
channel input of transmitter i, during any given channel use
be:

Xi =
√
PiSi +

√
PiUi +

√
λiePiV. (15)

At channel use n and given any possible codebook with the
structure described above, the n-th channel input of transmitter
i is a weighted sum of the n-th symbols of the corresponding
codewords in the three layers of such codebook. The weighting
is referred to as power splitting to highlight that a fraction λie
of the total average power Pi is used to transmit a codeword
whose role is to exclusively transmit energy to the EH. The
information-carrying component, which is the sum of the
codewords from the second and third layers of the codebook,
is transmitted using an average power λic + λip 6 1− λie.

The role of the first layer of the codebook becomes clearer
after the following remarks.

Remark 1: When λ1e = λ2e = 1, the left-hand sides
of inequalities (14a)-(14g) become zero, whereas the left-
hand side of inequality (14h) is maximized. That is, a zero
information rate is achieved at the same time that the highest
energy rate Bmax in (11) is achieved. This is essentially
because the transmitted codewords belong to the first layers of
the codebooks of both transmitters. Note also that the choice
is made such that the correlation coefficient of both channel
inputs is one.
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Remark 2: When λ1e = λ2e = 0, the codewords of the first
layers of the code are not transmitted. From this perspective,
both channel input signal are independent of each other and
thus, the energy rate is at most σ2

3 (1 + SNR31 + SNR32)
energy units per channel use.
Note that Remark 1 and Remark 2 highlight the fact that
the no-information component is needed to transmit energy
beyond the energy rate σ2

3 (1 + SNR31 + SNR32). Thanks to
this no-information component, the signals of both transmitters
can be correlated, which results into higher energy rates than
those achieved by independent signals.
Remark 3: A consequence of Remark 2 is that for all rate
tuples (R1, R2, B) ∈ E or (R1, R2, B) ∈ E , with

B 6 σ2
3 (1 + SNR31 + SNR32) ,

it follows that the rate pairs (R1, R2) form respectively
the inner region or the outer region of the information
capacity region described in [20]. Alternatively, for all
rate tuples (R1, R2, B) ∈ E or (R1, R2, B) ∈ E , with
B > σ2

3 (1 + SNR31 + SNR32), it follows that the rate
pairs (R1, R2) form a proper set of the inner or outer
region of the information capacity region described in
[20], respectively. This observation implies that a trade-off
between energy and information rates is observed when
B > σ2

3 (1 + SNR31 + SNR32). This is compliant with
previous observations in other multi-user channels, e.g., the
multiple access channel [1].

Remark 4: Note that the first layer of the code does
not contribute to the information rate. Hence, there is no
constraint on reducing the size of the first layer to one
codeword. That is, the assumption of common randomness can
be soften to the knowledge of a sufficiently large codeword
whose purpose is exclusively transmitting energy to the EH,
e.g., a pseudo-random sequence.

In Section V, Remark 1 - Remark 3 are highlighted in
particular numerical examples.

B. A Converse Region

The following Theorem introduces an information-energy
converse region.

Theorem 2: The information-energy capacity region E is
contained into the set E ∈ R3

+, which contains all rate tuples
(R1, R2, B) that satisfy:

R1 ≤
1

2
log(1 + β1SNR1), (16a)

R2 ≤
1

2
log(1 + β2SNR2), (16b)

R1 +R2 ≤
1

2
log(1 + β1SNR1 + β2INR1)

+
1

2
log

Å
1 +

β2SNR2

1 + β2INR1

ã
, (16c)

R1 +R2 ≤
1

2
log(1 + β2SNR2 + β1INR2)

+
1

2
log

Å
1 +

β1SNR1

1 + β1INR2

ã
, (16d)

R1 +R2 ≤
1

2
log

Å
1+
β1SNR1+β2INR1+β1β2INR1INR2

1 + β1INR2

ã
+

1

2
log

Å
1 +

β2SNR2 + β1INR2 + β1β2INR1INR2

1 + β2INR1

ã
, (16e)

2R1 +R2 ≤
1

2
log

Å
1 +

β1SNR1

1 + β1INR2

ã
+

1

2
log(1 + β1SNR1 + β2INR1)

+
1

2
log

Å
1 +

β2SNR2 + β1INR2 + β1β2INR1INR2

1 + β2INR1

ã
, (16f)

R1 + 2R2 ≤
1

2
log

Å
1 +

β2SNR2

1 + β2INR1

ã
+

1

2
log(1 + β2SNR2 + β1INR2)

+
1

2
log

Å
1 +

β1SNR1 + β2INR1 + β1β2INR1INR2

1 + β1INR2

ã
,(16g)

B ≤ σ2
3

Å
1 + SNR31 + SNR32 + 2

√
SNR31SNR32»

(1− β1)(1− β2)

ã
, (16h)

for some (β1, β2) ∈ [0, 1]2.
The proof of Theorem 2 is presented in [24]. From the infor-
mation transmission perspective, the proof of the upper bounds
on the information rates is identical to the proof presented
in [14]. That is, (16a) and (16b) are simple cut-set bounds.
The bounds (16c) - (16g) are obtained considering genie-
aided channels and Fano’s inequality [15]. For completness,
the proof of the upper-bounds (16a)-(16g) is presented in [24].
The upper-bound on the energy transmission rate (16h) is
identical in the cases with and without feedback. Thus, the
reader is referred to Appendix B.

C. An Approximation to the Information Energy Capacity
Region

Using the inner region E and the outer region E , described
respectively by Theorem 1 and Theorem 2, the information-
energy capacity region E can be approximated in the sense of
Definition 3. The following theorem presents this result.

Theorem 3 (Approximation of E): Let E ⊂ R3
+ and E ⊂

R3
+ be the sets of tuples (R1, R2, B) described by Theorem 1

and Theorem 2, respectively. Then,

E ⊂ E ⊂ E , (17)

and for all (R1, R2, B) ∈ E it follows that
Å

(R1 −

1/2)+, (R2 − 1/2)+,

Å
B − Bmax

2

ã+ã
∈ E .

The proof of Theorem 3 is presented in [24]. It is es-
sentially algebraic and thus, no further comment is made
about this proof. Note that the approximation in Theorem
3 is not an approximation within a constant gap. This is
because the gap in the energy component is at most Bmax

2
energy units per channel use, with Bmax in (11). Thus, it
depends on σ2

3 , SNR31 and SNR32. A constant gap ap-
proximation is obtained only when considering the set of
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tuples formed by the information rates R1 and R2 in bits per
channel use and the normalized rate B

Bmax
. That is, the set

E ′ =
¶Ä
R1, R2,

B
Bmax

ä
: (R1, R2, B) ∈ E

©
is approximated

to within 1
2 units by the sets

E ′=
ßÅ

R1, R2,
B

Bmax

ã
: (R1, R2, B) ∈ E

™
and (18)

E ′=
ßÅ

R1, R2,
B

Bmax

ã
: (R1, R2, B) ∈ E

™
. (19)

That is, E ′ ⊂ E ′ ⊂ E ′, and for all (R1, R2, b) ∈ E
′
, it follows

that
Å

(R1 − 1/2)+, (R2 − 1/2)+, (b− 1/2)
+
ã
∈ E ′.

IV. MAIN RESULTS: CASE WITH PERFECT
CHANNEL-OUTPUT FEEDBACK

The information-energy capacity region EF is approximated
by the regions EF ⊂ R3

+, which represents an information-
energy achievable region (Theorem 4); and EF ⊂ R3

+, which
represents an information-energy converse region (Theorem
5). Regions EF and EF satisfy EF ⊆ EF ⊆ EF and approx-
imate the information-energy region E to within a given gap
(Definition 3).

A. An Achievable Region

The following theorem introduces an achievable
information-energy region.

Theorem 4: The information-energy capacity region EF
contains the set EF ⊆ R3

+ of all rate tuples (R1, R2, B) that
satisfy:

R1≤
1

2
log

Å
1+(1−λ1e)SNR1+(1−λ2e)INR1+2ρ

√
SNR1INR1

1+λ2pINR1

ã
,

(20a)

R1≤
1

2
log

Å
1 + (1− (ρ+ λ1e))INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 + λ1pSNR1 + λ2pINR1

1 + λ2pINR1

ã
, (20b)

R2≤
1

2
log

Å
1+(1−λ2e)SNR2+(1−λ1e)INR2+2ρ

√
SNR2INR2

1+λ1pINR2

ã
,

(20c)

R2≤
1

2
log

Å
1 + (1− (ρ+ λ2e))INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + λ2pSNR1 + λ1pINR1

1 + λ1pINR1

ã
, (20d)

R1 +R2≤
1

2
log

Å
1 + λ1pSNR1 + λ2pINR1

1 + λ2pINR1

ã
+

1

2
log

Å
1+(1−λ2e)SNR2+(1−λ1e)INR2+2ρ

√
SNR2INR2

1+λ1pINR2

ã
,

(20e)

R1 +R2≤
1

2
log

Å
1 + λ2pSNR1 + λ1pINR1

1 + λ1pINR1

ã

+
1

2
log

Å
1+(1−λ1e)SNR1+(1−λ2e)INR1+2ρ

√
SNR1INR1

1+λ2pINR1

ã
,

(20f)

B ≤ σ2
3

Å
1 + SNR31 + SNR32 + 2

√
SNR31SNR32(ρ

+
√
λ1eλ2e)

ã
, (20g)

for some (ρ, λip, λie) ∈ [0, 1]3 such that ρ + λip + λie ≤ 1,
for all i ∈ {1, 2}.
The proof of Theorem 4 is presented in Appendix A and it
is based on random coding arguments using rate-splitting [6],
[20]; block Markov superposition coding [3], [11]; backward
decoding [40], [41]; and power splitting [1].

The codebook of transmitter i, with i ∈ {1, 2}, is gen-
erated by super-imposing four different sub-codebooks. This
contrasts with the three-layer codebook used in the case
without feedback. However, both codebooks share profound
similarities. The first layer in the case with and without
feedback are identical and play the same role. The second
layer of the codebook with feedback is obtained by the union
of the second layers of both transmitters in the case without
feedback. The third and fourth layers of the codebook with
feedback are identical to the second and third layers of the
codebook without feedback. The roles of these two layers are
identical in the case with and without feedback.
The convenient exploitation of this four-layer codebook is
possible thanks to a rate splitting argument similar to the one
used in the case without feedback. The rate of transmitter i is
split into a common and a private component with message
indices W (t)

ic and W
(t)
ip . The super-index t is used to denote

the block, e.g., sequences of N channel uses. Assume that
T blocks are transmitted. At the beginning of block t, each
transmitter possesses five indices: the random index Ω(t);
the common and private message indices W

(t)
ic and W

(t)
ip ;

and the common messages W (t−1)
1c and W

(t−1)
2c . Transmitter

i obtains the message index W
(t−1)
jc of transmitter j, with

j ∈ {1, 2} \ {i}, via feedback at the end of block t − 1. For
the first block t = 1, the previous common message indices
are chosen arbitrarily as W (0)

1c = W
(0)
2c = 1 and are assumed

to be known by all transmitters and receivers. Similarly,
the last common message indices are chosen arbitrarily as
W

(T )
1c = W

(T )
2c = 1 and are also assumed to be known

by all transmitters and receivers. Under this assumption, the
random index Ω(t) is used to choose a codeword from the
first layer; the pair (W

(t−1)
1c ,W

(t−1)
2c ) are jointly used to

choose a common codeword from the second layer. Note
that the second layer of transmitter 1 is identical to the
second layer of transmitter 2 by construction of the code.
Moreover, thanks to feedback both transmitters are able to
choose the same codeword from their second layers at each
block t. The message indices W

(t)
ic and W

(t)
ip are used at

transmitter i to choose codewords from the third and fourth
layers respectively.

The channel input of transmitter i at channel use n is, as in
the case without feedback, a weighted sum of the n-th symbols
of the corresponding codewords in each of the four layers. A
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power splitting argument is also used as in the case without
feedback.

At the receivers backward decoding is used. More specifi-
cally, given that the last common indices W (T )

1c and W (T )
2c are

known at the transmitters, receiver i is capable of decoding
W

(T−1)
1c and W (T−1)

2c and W (T )
ip at the first decoding stage by

using joint-typicality arguments. At the second decoding stage,
W

(T−1)
1c and W

(T−1)
2c are used to decode W (T−2)

1c , W (T−2)
2c

and W
(T−1)
ip . The decoding goes on until decoding stage T

at which only W
(1)
ip is decoded as W (0)

1c and W
(0)
2c are both

known.
Note that Remark 1 - Remark 3 also hold for the case with
feedback taking into account the differences on the structure
of the codes with and without feedback. The role of the second
layer of the codebook with feedback becomes clearer after the
following remark.
Remark 5: The second layer of the codebooks of both
transmitters are identical and thus, given the common message
indices W

(t−1)
1c and W

(t−1)
2c at the beginning of block t,

both transmitters are able to choose the same codeword to
generate their corresponding channel inputs. This creates a
correlation between the channel input symbols X1,n and
X2,n, for all n ∈ {1, 2, . . . , N}, which is advantageous to
increase the information transmission sum-rate and the energy
transmission rate. This implies that feedback is beneficial for
both information and energy transmission.
The additional correlation highlighted in Remark 5 is captured
by the term ρ in (20). Note that the left hand side of
inequalities (20e) and (20g) (information transmission sum-
rate) are monotonically increasing with ρ and so is the left
hand side of (20g) (energy transmission rate). The benefits of
feedback in SIET are studied in Section V.

B. A Converse Region

The following theorem describes a converse region denoted
by EF.

Theorem 5: The information-energy capacity region EF is
contained into the set EF ∈ R3

+ of all rate tuples (R1, R2, B)
that satisfy:

R1 ≤
1

2
log

Å
1+β1SNR1+β2INR1+2ρ

√
β1SNR1β2INR1

ã
,

(21a)

R1 ≤
1

2
log

Å
1 +

β1(1− ρ2)SNR1

1 + β1(1− ρ2)INR2

ã
+

1

2
log

Å
1 + β1(1− ρ2)INR2

ã
, (21b)

R2 ≤
1

2
log

Å
1+β2SNR2+β1INR2+2ρ

√
β2SNR2β1INR2

ã
,

(21c)

R2 ≤
1

2
log

Å
1 +

β2(1− ρ2)SNR2

1 + β2(1− ρ2)INR1

ã
+

1

2
log

Å
1 + β2(1− ρ2)INR1

ã
, (21d)

R1 +R2 ≤
1

2
log

Å
1 +

β1(1− ρ2)SNR1

1 + β1(1− ρ2)INR2

ã
+

1

2
log

Å
1+β2SNR2+β1INR2+2ρ

√
β2SNR2β1INR2

ã
,

R1 +R2 ≤
1

2
log

Å
1 +

β2(1− ρ2)SNR2

1 + β2(1− ρ2)INR1

ã
+

1

2
log

Å
1+β1SNR1+β2INR1+2ρ

√
β1SNR1β2INR1

ã
,

(21e)

B ≤ σ2
3

Å
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

(ρ
√
β1β2 +

»
(1− β1)(1− β2))

ã
, (21f)

for some (β1, β2, ρ) ∈ [0, 1]3.
The proof of Theorem 5 is presented in Appendix B. The intu-
itions behind this proof are not different from those discussed
in the case without feedback. Probably, the most important
step on this proof is that codebooks are not assumed to be
formed by codewords with zero mean. That is, the codeword
considered in this proof might have a non-zero mean, as energy
can also be carried in this way. The upper bounds on the
information rates heavily rely on cut-set bounds [13], Fano’s
inequality [15] and genie aided models. The upper-bound on
the energy transmission rate is an immediate consequence of
Markov’s inequality [16].

C. An Approximation to the Information-Energy Capacity
Region

Using the inner region EF and the outer region EF,
described respectively by Theorem 4 and Theorem 5, the
information-energy capacity region EF can be approximated
in the sense of Definition 3.

Theorem 6 (Approximation of EF): Let EF ⊂ R3
+ and

EF ⊂ R3
+ be the sets of tuples (R1, R2, B) described by

Theorem 4 and Theorem 5, respectively. Then, EF ⊂ EF ⊂ EF,

and for all (R1, R2, B) ∈ EF it follows that
Å

(R1−1)+, (R2−

1)+,

Å
B − Bmax

2

ã+ ã
∈ EF.

The proof of Theorem 6 is presented in [24]. Note that a
constant gap approximation can be obtained by normalizing
the energy transmission rate as suggested in the case without
feedback.

D. Maximum Energy Rate Improvement with Feedback

Consider the following sets of energy rates: B = {b ∈
R+ : (R1, R2, b) ∈ E}, B = {b ∈ R+ : (R1, R2, b) ∈ E},
BF = {b ∈ R+ : (R1, R2, b) ∈ EF}, and BF = {b ∈ R+ :
(R1, R2, b) ∈ EF}. The maximum improvement that can be
achieved on the energy rate due to feedback can be shown to be
at most a factor of two. The following proposition shows this
by providing upper bounds on the ratios maxB

F

maxB and maxBF

maxB
.

Proposition 1 (Rate improvement with Feedback): The en-
ergy rate achievable in the two-user G-IC with perfect
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Fig. 2. 3-D superposition of E and E , with parameters SNR1 = SNR2 = 20
dB, INR1 = INR2 = SNR31 = SNR32 = 10 dB, and σ2

3 = 1.

channel-output feedback can be twice the energy rate achiev-
able in the two-user G-IC without feedback. That is,

1<
maxBF
maxB 6 2. (22)

Any improvement beyond a factor of two is not feasible. That
is,

1<
maxBF
maxB 62. (23)

The proof of Proposition 1 is presented in [24]. The main
conclusion from Proposition 1 is that channel-output feedback
can at most double the energy rate in the G-IC. Note that
a similar observation is made in the case of the Gaussian
multiple access chanel [1].
A tighter upper bound on the fractions maxBF

maxB and maxBF

maxB
can be obtained by considering the exact values of σ2

3 , SNR31

and SNR32. In the next section, some numerical examples are
presented.

V. NUMERICAL ANALYSIS

Consider the two-user G-ICs with and without channel-
output feedback depicted in Figure 1(a) and Figure 1(b) with
parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB, and σ2

3 = 1. The corresponding
achievable region E and converse region E are shown in Figure
2. In the case with feedback, the corresponding achievable
region EF and converse region EF are shown in Figure 3.
Note the strict inclusions E ⊂ E and EF ⊂ EF (Definition 3).
Note also that for all B 6 21 energy units, the set of triplets
(R1, R2, B) ∈ EF and the set of triplets (R1, R2, B) ∈ EF
are prisms whose bases correspond to the inner and outer
regions approximating the information capacity region. For
all B > 21, the trade-off between information transmission
rates and the energy transmission rate becomes evident as both
regions EF and EF monotonically shrink when B increases
(Remark 3). The same observation can be made for the case

00
0

20

22

40

44

60

Fig. 3. 3-D superposition of EF and EF
, with parameters SNR1 = SNR2 =

20 dB, INR1 = INR2 = SNR31 = SNR32 = 10 dB and σ2
3 = 1.

0 1 2 3 4
0

5

10

15

20

25

30

35

40

45

R1 = 0
R1 = 3

Fig. 4. Convex hull of pairs (R2, B) that are in the sets {(R2, B) ∈ R2
+ :

(r1, R2, B) ∈ E} (solid line) and {(R2, B) ∈ R2
+ : (r1, R2, B) ∈ EF}

(dashed line), with r1 ∈ {0, 3}. Parameters SNR1 = SNR2 = 20 dB,
INR1 = INR2 = SNR31 = SNR32 = 10 dB, and σ2

3 = 1.

without feedback. Figure 4 shows the pairs (R2, B) that are
in the sets {(R2, B) ∈ R2

+ : (r1, R2, B) ∈ E} (solid line)
and {(R2, B) ∈ R2

+ : (r1, R2, B) ∈ EF} (dashed line),
with r1 = 0 and r1 = 3. Note that thanks to feedback, the
information rate R2 can be increased by one bit per channel
use while keeping both the information rate R1 and the energy
rate B invariant.
Figure 5 shows the set of pairs (R1, R2) that are in the
sets {(R1, R2) ∈ R2

+ : (R1, R2, b) ∈ E} (solid line) and
{(R1, R2) ∈ R2

+ : (R1, R2, b) ∈ E
F} (dashed line), with

b = 21 and b = 35. Note that thanks to feedback, both the
information rates R1 and R2 can be increased more than half a
bit per channel use while keeping the energy rate B constant.
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B = 35

B = 21

Fig. 5. Convex hull of pairs (R1, R2) that are in the sets {(R1, R2) ∈ R2
+ :

(R1, R2, b) ∈ E} (solid line) and {(R1, R2) ∈ R2
+ : (R1, R2, b) ∈ EF}

(dashed line), with b ∈ {21, 35}. Parameters SNR1 = SNR2 = 20 dB,
INR1 = INR2 = SNR31 = SNR32 = 10 dB, and σ2

3 = 1.
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1.5

1.6

1.7

1.8

1.9

2

2.1

Fig. 6. The ratio maxBF

maxB for different ratios of SNR at the EH, i.e.,

SNR31 = SNR32 = SNR; SNR31
2

= SNR32 = SNR; and SNR31
10

=
SNR32 = SNR, respectively. Parameters SNR1 = SNR2 = 20 dB,
INR1 = INR2 = SNR31 = SNR32 = 10 dB, and σ2

3 = 1.

Figure 6 shows the ratio maxBF

maxB
for different ratios of SNR

at the EH, i.e., SNR31 = SNR32 = SNR; SNR31

2 = SNR32 =
SNR; and SNR31

10 = SNR32 = SNR, respectively. Note that
the upper bound in Proposition 1 is tight in the case of the
symmetric case.

VI. CONCLUSIONS

In this paper, the information-energy capacity regions of the
two-user Gaussian interference channel with and without per-
fect channel output feedback have been approximated by two
regions, i.e., an achievable region and a converse region. When
the energy transmission rate is normalized by the maximum

energy rate, the approximation of these information-energy
capacity regions is within a constant gap. In the proof of
achievability, the key idea is the use of power-splitting between
two signal components: an information-carrying component
and a no-information component. Random coding arguments
are used for the case of the information-carrying component,
whereas a deterministic sequence known by all transmitters
and receivers is used for the no-information component. The
proof of the converse of the information rates follows along the
same lines of the case in which only information is transmitted.
The difference stems from lifting the constraints on the mean
of the channel input signals. The proof of converse of the
energy rate uses Markov’s concentration inequality.
The results presented in this paper are a first step in the study
of the fundamental limits of simultaneous information and
energy transmission, nonetheless many questions are left open.
On the one hand, there exits sufficient evidence that the use
of multiple antennas at either the transmitters or the receivers
enhances the energy rate [42]. However, very little is known
from the perspectives of fundamental limits. On the other
hand, an interesting question is about the degradation of the
energy rates due to noisy feedback or rate-limited feedback.
Similarly, another interesting question is about the benefits of
other topologies of feedback, i.e., feedback from the receivers
to both transmitters.

APPENDIX A
PROOF OF THEOREM 4

The proof of Theorem 4 is divided into two parts. The first
part consists of the proof of (20a)-(20g); and the second part
consists of the proof of (20g).

A. Proof of (20a)-(20g)

Codebook Generation: Fix a strictly positive joint proba-
bility distribution:

PV UU1U2S1S2
(v, u, u1, u2, s1, s2) = PV (v)PU |V (u|v)

PU1|UV (u1|u, v)PU2|U,V (u2|u, v)PS1|UU1V (x1|u, u1, v)

PS2|UU2V (s2|u, u2, v), (24)

for all (v, u, u1, u2, s1, s2) ∈ (X1 ∩ X2)2 × (X1 ∩ X2)2.
Let RE , R1,C , R2,C , R1,P and R2,P be non-negative real
numbers. For transmitter 1, generate 2NRE i.i.d N-length
codewords v(ω) = (v1(ω), . . . , vN (ω)) according to

PV (v(ω)) =
N∏
m=1

PV (vm(ω)), (25)

with ω ∈ {1, 2, . . . , 2NRE}. For each codeword v(ω), gen-
erate 2N(R1,C+R2,C) i.i.d. N-length codewords u(ω, s, r) =
(u1(ω, s, r), . . . , uN (ω, s, r)) according to

PU |V (u(ω, s, r)|v(ω)) =
N∏
m=1

PU |V (um(ω, s, r)|vm(ω)),

(26)
with s ∈ {1, . . . , 2NR1,C} and r ∈ {1, . . . , 2NR2,C}. For trans-
mitter 1, for each codeword u(ω, s, r), generate 2NR1,C i.i.d.
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N-length codewords u1(ω, s, r, k) = (u1,1(ω, s, r, k), . . . ,
u1,N (ω, s, r, k)) according to

PU1|UV

Å
u1(ω, s, r, k)|u(s, r),v(ω)

ã
=

N∏
m=1

PU1|UV

Å
u1,m(ω, s, r, k)|um(ω, s, r), vm(ω)

ã
, (27)

with k ∈ {1, . . . , 2NR1,C}. For each tuple of
codewords (v(ω),u(ω, s, r),u1(ω, s, r, k)), generate
2NR1,P i.i.d. N-length codewords s1(ω, s, r, k, l) =
(s1,1(ω, s, r, k, l), . . . , s1,N (ω, s, r, k, l)) according to

PS1|U1UV

Å
s1(ω, s, r, k, l)|u1(ω, s, r, k),u(ω, s, r),v(ω)

ã
=

N∏
m=1

PS1|U1UV

Å
s1,m(ω, s, r, k, l)|u1,m(ω, s, r, k), um(ω, s, r),

vm(ω)

ã
, (28)

with l ∈ {1, . . . , 2NR1,P }.
For encoder 2, for each codeword u(ω, s, r), gener-
ate 2NR2,C i.i.d. N-length codewords u2(ω, s, r, q) =
(u2,1(ω, s, r, q), . . . , u2,1(ω, s, r, q)) according to

PU2|UV (u2(ω, s, r, q)|u(ω, s, r),v(ω)) =
N∏
m=1

PU2|UV

Å
u2,m(ω, s, r, q)|um(ω, s, r),

vm(ω)

ã
, (29)

with q ∈ {1, . . . , 2NR2,C}. For each tuple of
codewords (v(ω),u(ω, s, r),u2(ω, s, r, q)), generate
2NR2,P i.i.d. N-length codewords s2(ω, s, r, q, z) =
(s2,1(ω, s, r, q, z), . . . , s2,N (ω, s, r, q, z)) according to

PS2|U2UV (s2(ω, s, r, q, z)|u2(ω, s, r, q),u(ω, s, r),v(ω))

=
N∏
m=1

PS2|U2UV (s2,m

Å
ω, s, r, q, z)|u2,m(ω, s, r, q), um(ω, s, r),

vm(ω)

ã
, (30)

with z ∈ {1, . . . , 2NR2,P }.
Encoding: Let W

(t)
i be represented by the message

index W
(t)
i,C ∈ {1, 2, . . . , 2NRi,C} and the message index

W
(t)
i,P ∈ {1, 2, . . . , 2NRi,P }. The message index W (t)

i,P must be
reliably decoded at receiver i and the message index Ω(t) is
known by both transmitters and receivers. The index W (t−1)

i,C

must be reliably decoded by both receivers and transmitter j
(via feedback). Consider Markov encoding over T blocks. At
encoding step t, with t ∈ {1, 2, . . . , T}, transmitter 1 sends

the codeword x
(t)
1 = θ1

Å
v(Ω(t),u

Ä
Ω(t),W

(t−1)
1,C ,W

(t−1)
2,C

ä
,

u1

Ä
Ω(t),W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
1,C

ä
, s1

(
Ω(t),W

(t−1)
1,C ,W

(t−1)
2,C ,

W
(t)
1,C ,W

(t)
1,P

)ã
, where θ1 : XN × (X1 ∪ X2)N ×

X1 × XN1 → XN1 is a function that transforms

the codewords v(Ω(t)), u

Å
Ω(t),W

(t−1)
1,C ,W

(t−1)
2,C

ã
,

u1

Ä
Ω(t),W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
1,C

ä
, and s1

(
Ω(t),W

(t−1)
1,C ,

W
(t−1)
2,C ,W

(t)
1,C ,W

(t)
1,P

)
into the N -dimensional vector x

(t)
1 .

The indices W (0)
1,C = W

(T )
1,C = s∗ and W (0)

2,C = W
(T )
2,C = r∗, and

the pair (s∗, r∗) ∈ {1, 2, . . . , 2NR1,C} × {1, 2, . . . , 2NR2,C}
are pre-defined and known by both receivers and transmitters.
Transmitter 2 follows a similar encoding scheme.
Decoding: Both receivers decode their message indices at
the end of block T in a backward decoding fashion. At each
decoding step t, with t ∈ {1, 2, . . . , T}, receiver 1 obtains the

indices
Å
Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C , Ŵ

(T−(t−1))
1,P

ã
from the channel

output y1.

The tuple
Å
Ŵ

(T−t)
1,C ,Ŵ (T−t)

2,C ,Ŵ (T−(t−1))
1,P

ã
is the unique tuple

that satisfy:Å
(v(Ω(t)),u

Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C

ä
,

u1

Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1))
1,C

ä
,

s1
Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1))
1,C , Ŵ

(T−(t−1))
1,P

ä
,

u2

Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1))
2,C

ä
,y

(T−(t−1))
1

ã
∈ T (N,ε)

V UU1S1U2Y1
, (31)

where W
(T−(t−1))
1,C and W

(T−(t−1))
2,C are assumed to be

perfectly decoded in the previous decoding step t − 1. The
set T (N,ε)

V UU1S1U2Y1
represent the set of jointly typical N -length

sequences of the random variables V,U, U1, S1, U2, and Y1,
with ε > 0. Finally, receiver 2 follows a similar decoding
scheme.
Probability of Error Analysis: An error might occur during
encoding step t at transmitter 1 if the index Ŵ

(t−1)
2,C is

not correctly decoded. Without any loss of generality, let
W

(t−1)
2,C = 1 and Ŵ

(t−1)
2,C = k. Define the event Ek that

describes the case in which there exist another message index
k 6= 1 that satisfy:Å
v(Ω(t)),u

Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C

ä
,

u1

Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C ,W

(t−1)
1,C

ä
,

s1
(
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C ,W

(t−1)
1,C ,W

(t−1)
1,P

)
,

u2

Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C , k

äã
∈ T (N,ε)

V UU1S1U2Y1
, with

t ∈ {2, 3, . . . , T} and W
(t−2)
2,C is assumed to be perfectly

decoded in the previous block t− 1. Then, the probability of
event Ek can be bounded as follows:

Pr(Ek)
(a)
= Pr

ï
(V ,U ,U1,S1,U2,Y 1) ∈ T (N,ε)

V UU1S1U2Y1

ò
62−N(I(Y1;U2|X1,V )−4ε),

where the probability operator Pr[.] in (a) applies with respect
to a probability distribution PV UU1X1U2Y 1

that factorizes
as PV PU ,U1,X1,Y 1|V PU2|V given that all the codewords u2
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are independent from the output of the channel y1. The error
probability becomes arbitrarily small (as N goes to infinity) if

R2c ≤ I(U2, ;Y1|X1, U, V ). (32)

An error might occur during the (backward) decoding step t

if the indices Ŵ (T−t)
1,C ,Ŵ (T−t)

2,C or Ŵ (T−(t−1)
1,P are not decoded

correctly given that the indices W (T−(t−1))
1,C and W (T−(t−1))

2,C

were correctly decoded in the previous decoding step t − 1.
These errors might arise for two reasons: (i) there does not

exist a tuple
Å
Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C , Ŵ

(T−(t−1))
1,P

ã
that satisfies

(31), or (ii) there exist several tuples
Å
Ŵ

(T−t)
1,C ,Ŵ (T−t)

2,C

,Ŵ (T−(t−1))
1,P

ã
that simultaneously satisfy (31). From the

asymptotic equipartition property [10], the probability
of error due to (i) tends to zero when N grows to
infinity. Consider the error due to (ii) and define the event
Esrl that describes the case in which the codewords
v(Ω(t)),u

(
Ω(t), s, r

)
,u1

Ä
Ω(t), s, r,W

(T−(t−1))
1,C

ä
,

s1
Ä
Ω(t), s, r,W

(T−(t−1))
1,C , l

ä
, and u2

Ä
Ω(t), s, r,W

(T−(t−1))
2,C

ä
are jointly typical with y

(T−(t−1))
1 during decoding step t.

Assume now that the codeword to be decoded at decoding
step t corresponds to the indices (s, r, l) = (1, 1, 1). This is
without loss of generality due to the symmetry of the code.
Then, the probability of error due to (ii) during decoding
step t, can be bounded as follows:

Pr

 ⋃
(s,r,l)6=(1,1,1)

Esrl

≤ 2N(R1C+R2C+R2P−I(U,X1,U2;Y1|V )+4ε)

+2N(R1C+R2C−I(U,X1,U2;Y1|V )+4ε)

+2N(R1C+R1P−I(U,X1,U2;Y1V )+4ε)

+2N(R1C−I(U,X1,U2;Y1|V )+4ε)

+2N(R2C+R1P−I(U,X1,U2;Y1|V )+4ε)

2N(R2C−I(U,X1,U2;Y1|V )+4ε)

+2N(R1P−I(X1;Y1|U,U1,U2,V )+4ε). (33)

The same analysis of the probability of error holds for
transmitter-receiver pair 2. Hence in general, from (33), re-
liable decoding holds under the following conditions:

R2C ≤I(U2;Y1|X1, U, V ), (34a)
R1P ≤I(X1;Y1|U1, U2, U, V ), (34b)

R1C +R2C +R1P≤I(U,X1, U2;Y1|V ), (34c)
R1C ≤I(U1;Y2|X2, U, V ), (34d)
R2P ≤I(X2;Y2|U1, U2, U, V ), (34e)

R1C +R2C +R2P≤I(U,X2, U1;Y2|V ). (34f)

The proof continues by applying a Fourrier-Motzkin elimina-
tion on (34), which yields,

R1 ≤ I(U,X1, U2;Y1|V ), (35a)
R1 ≤ I(U1;Y2|U,X2, V ) + I(X1;Y1|U1, U2, U, V ), (35b)
R2 ≤ I(U,X2, U1;Y2|V ), (35c)

R2 ≤I(U2;Y1|U,X1, V ) + I(X2;Y2|U1, U2, U, V ),(35d)
R1 +R2≤I(X1;Y1|U1, U2, U, V ) + I(V,U2, X1;Y1), (35e)
R1 +R2≤I(X2;Y2|U1, U2, U, V ) + I(V,U2, X1;Y1). (35f)

The proof of Theorem 4 continues as follows. Let k ∈ {0, 1}
be fixed and consider that the distribution in (24) is the
following Gaussian input distribution:

V ∼ N (0, 1); U ∼ N (0, ρ); Uk ∼ N (0, λkc);

and Sk ∼ N (0, λkp), (36)

where (ρ, λkp, λkc, λke) ∈ [0, 1]4 and ρ+ λkp + λkc + λke ≤
1. The input symbol is generated deterministically given the
mutually independent random variables V , U , Uk, and Xkp

as follows:

Xk =
√
PkU +

√
PkXkp +

√
PkUk +

√
λkePkV. (37)

By symmetry, it suffices to prove (20a), (20b) and (20e).
The choice of the Gaussian input distribution in (35) yields:

I(U,X1, U2;Y1|V )

=
1

2
log

Å
1+(1−λ1e)SNR1+(1−λ2e)INR1+2ρ

√
SNR1INR1

1+λ2pINR1

ã
,

(38a)

which proves (20a). With the same power setting in (36), the
following holds

I(U1;Y2|U,X2, V ) =
1

2
log

Å
1 + (1− (ρ+ λ1e))INR2

1 + λ1pINR2

ã
,

(38b)
and

I(X1;Y1|U,U1, U2, V ) =
1

2
log

Å
1 + λ1pSNR1 + λ2pINR1

1 + λ2pINR1

ã
.

(38c)

This proves (20b). Finally, using (38b) and (38c), yields the
proof of (20e).

B. Proof of 20g

The choice of the channel input in (36) guarantees that
the random variables Y3,1, . . . , Y3,n are independently and
identically distributed. For all n ∈ {1, 2, . . . , N}, Y3,n follows
a zero-mean Gaussian distribution with variance B̄ given by

B̄ = E
[
Y 2
3,n

]
≤ h231P1 + h232P2 + 2h31h32

√
P1P2

(ρ+
√
λ1eλ2e) + σ2

3 .

By the weak law of large numbers, it holds that

lim
N→∞

Pr
î
B(N) < B̄

ó
= 0. (39)

From (39), it holds that for any energy B which satisfies 0 <
B ≤ B̄, it holds that

lim
N→∞

Pr
î
B(N) < B

ó
= 0. (40)

This proves (20g) and completes the proof of Theorem 4.
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APPENDIX B
PROOF OF THEOREM 5

Fix an information-energy rate triplet (R1, R2, B) achiev-
able with a given coding scheme (Definition 1). Denote by
X1 and X2 the channel inputs resulting from transmitting the
independent messages (W1,Ω) and (W2,Ω) using such coding
scheme. Denote by Y 1 and Y 2 the corresponding channel
outputs. Define the following random variables:

S1 = h21X1 + Z2 and (41)
S2 = h12X2 + Z1, (42)

where, Z1 and Z2 are real Gaussian random variables inde-
pendent of each other with zero means and variances σ2

1 and
σ2
2 , respectively. Using assumption (13a), Fano’s inequality

and following similar steps as in [30], it can be shown that
the information rates R1 and R2 must satisfy the following
inequalities

NR1 ≤
N∑
n=1

[h(Y1,n)− h(Z1,n)] + o(N), (43a)

NR1 ≤
N∑
n=1

[h(Y2,n|X2,n)− h(Z2,n) (43b)

+h(Y1,n|X2,n, S1,n)− h(Z1,n)] + o(N),

NR2 ≤
N∑
n=1

[h(Y2,n)− h(Z2,n)] + o(N), (43c)

NR2 ≤
N∑
n=1

[h(Y1,n|X1,n)− h(Z1,n) (43d)

+h(Y2,n|X1,n, S2,n)− h(Z2,n)] + o(N),

N(R1 +R2) ≤
N∑
n=1

[h(Y1,n|S1,n, X2,n)− h(Z1,n) + h(Y2,n)

−h(Z2,n)] + o(N), (43e)

N(R1 +R2) ≤
N∑
n=1

[h(Y2,n|S2,n, X1,n)− h(Z2,n) + h(Y1,n)

−h(Z1,n)] + o(N), (43f)

where o(N)
N tends to zero as N tends to infinity. Using

assumption (13b), for any η > 0 there exists N0(η) such that
for any n ≥ N0(η) it holds that

Pr
î
B(N) > B

ó
> 1− η. (44)

Using Markov’s inequality, the probability in (44) can be
upper-bounded as follows:

BPr
î
B(N)(Y 3) > B

ó
6 E[B(N)]. (45)

Combining (44) and (45) yields: B(1 − η) 6 E[B(N)(Y 3)],
which can be written as

(B − δ(N)) 6 E[B(N)(Y 3)], (46)

for some δ(N) > 0 (for sufficiently large N ). The bounds
in (43) and (46) are evaluated assuming that the channel
inputs X1,n and X2,n are arbitrary correlated random vari-
ables, such that µi,n

4
= E[Xi,n]; γ2i,n

4
= Var[Xi,n]; and

λn
4
= Cov[X1,nX2,n], for all n ∈ {1, . . . , N} and for all

i ∈ {1, 2}. The input sequence must satisfy the input power
constraint which can be written, for i ∈ {1, 2}, as follows:

1

N

N∑
n=1

E
[
X2
i,n

]
=

(
1

N

N∑
n=1

γ2i,n

)
+

(
1

N

N∑
n=1

µ2
i,n

)
6 Pi.

(47)
Using this notation, the following holds:

h(Y1,n)61

2
log

Å
2πe(h211γ

2
1,n+h212γ

2
2,n+2h11h12λn + σ2

1)

ã
,

(48a)

h(Y2,n|X2,n)61

2
log

Å
1 + γ21,n

Ç
1− λ2n

γ21,nγ
2
2,n

å
h221
σ2
2

ã
+

1

2
log(2πeσ2

2), and (48b)

h(Y1,n|X2,n, S1,n) 6 1

2
log

Ö
1+

γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
11

σ2
1

1 + γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
21

σ2
2

è
+

1

2
log(2πeσ2

1). (48c)

Finally, the bounds in (43) can be rewritten as follows:

NR1 6
N∑
n=1

1

2
log

Ç
h211γ

2
1,n

σ2
1

+
h212γ

2
2,n

σ2
1

+
2h11h12λn

σ2
1

+1

å
+o(N), (49a)

NR1 6
N∑
n=1

1

2
log

Ç
1 + γ21,n(1− λ2n

γ21,nγ
2
2,n

)
h221
σ2
2

å
+

N∑
n=1

1

2
log

Ö
1 +

γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
11

σ2
1

1 + γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
21

σ2
2

è
+o(N), (49b)

NR2 6
N∑
n=1

1

2
log

Ç
h222γ

2
2,n

σ2
2

+
h221γ

2
1,n

σ2
2

+
2h22h21λn

σ2
2

+1

å
+o(N), (49c)

NR2 6
N∑
n=1

1

2
log

Ç
1 + γ22,n

Ç
1− λ2n

γ21,nγ
2
2,n

å
h221
σ2
1

å
+

N∑
n=1

1

2
log

Ö
1 +

γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
22

σ2
2

1 + γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
12

σ2
1

è
+o(N), (49d)

N(R1+R2) 6
N∑
n=1

1

2
log

Ç
h222γ

2
2,n

σ2
2

+
h221γ

2
1,n

σ2
2

+
2h22h21λn

σ2
2

+1

å
+

N∑
n=1

1

2
log

Ö
1 +

γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
11

σ2
1

1 + γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
21

σ2
2

è
+ o(N),

(49e)
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N(R1+R2) 6
N∑
n=1

1

2
log

Ç
h211γ

2
1,n

σ2
1

+
h212γ

2
2,n

σ2
1

+
2h11h12λn

σ2
1

+1

å
+

N∑
n=1

1

2
log

Ö
1 +

γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
22

σ2
2

1 + γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
12

σ2
1

è
+ o(N).

(49f)

The average received energy rate is given by

E

[
1

N

N∑
n=1

Y 2
3,n

]
= σ2

3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)

+h232

(
1

N

n∑
n=N

(γ22,n + µ2
2,n)

)

+2h31h32

(
1

N

N∑
n=1

(λn + µ1,nµ2,n)

)
. (50)

Using Cauchy-Schwarz inequality, the expected value of the
energy rate in (50) can be upper-bounded as follows:

E

[
1

N

N∑
n=1

Y 2
3,n

]
6 σ2

3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)

+h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32

Å ∣∣∣∣∣ 1

N

N∑
n=1

λn

∣∣∣∣∣
+

(
1

N

N∑
n=1

µ2
1,n

)1/2(
1

N

N∑
n=1

µ2
2,n

)1/2 ã
.

(51)

Combining (46) and (51) yields the following upper-bound on
the energy rate B:

B 6 σ2
3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
(52)

+h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32

Å ∣∣∣∣∣ 1

N

N∑
n=1

λn

∣∣∣∣∣
+

(
1

N

N∑
n=1

µ2
1,n

)1/2(
1

N

N∑
n=1

µ2
2,n

)1/2 ã
+ δN . (53)

In order to obtain a single-letterization of the upper-bound
given by constraints (49) and (52), define also µ2

i
4
=

1
N

N∑
n=1

µ2
i,n; γ2i

4
= 1

N

N∑
n=1

γ2i,n; βi
4
=

γ2
i

Pi
=

Pi−µ2
i

Pi
; and

ρ
4
=

(
1

N

N∑
n=1

λn

)
|γ1||γ2| . With this notation, the input power

constraint in (47) can be rewritten as

γ2i + µ2
i 6 Pi, i ∈ {1, 2}. (54)

The following inequality is proved in [24].

1

N

N∑
n=1

1

2
log

Ö
1 +

γ2i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ii

σ2
i

1 + γ2i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ji

σ2
j

è
6

1

2
log

Ö
1 +

γ2i
(
1− ρ2

) h2
ii

σ2
i

1 + γ2i (1− ρ2)
h2
ji

σ2
j

è
. (55)

By the concavity of the mutual information, applying Jensen’s
inequality and (55) in the bounds (49) yields,

R1 6 1

2
log

Ç
h211γ

2
1

σ2
1

+
h212γ

2
2

σ2
1

+ 2ρ

 
h211h

2
12γ

2
1γ

2
2

σ4
1

å
,

(56a)

R1 6 1

2
log

Å
1 +

h221
σ2
2

γ21
(
1− ρ2

)ã
+

1

2
log

Ñ
1 +

γ21(1− ρ2)
h2
11

σ2
1

1 + γ21(1− ρ2)
h2
21

σ2
2

é
, (56b)

R2 6 1

2
log

Ç
h222γ

2
2

σ2
2

+
h221σ

2
1

σ2
2

+ 2ρ

 
h22h21γ21γ

2
2

σ4
2

å
,

(56c)

R2 6 1

2
log

Å
1 +

h212
σ2
1

γ22
(
1− ρ2

)ã
+

1

2
log

Ñ
1 +

γ22
(
1− ρ2

) h2
22

σ2
2

1 + γ22 (1− ρ2)
h2
12

σ2
1

é
, (56d)

R1 +R2 6 1

2
log

Ç
h222γ

2
2

σ2
2

+
h221γ

2
1

σ2
2

+2ρ

 
h222h

2
21γ

2
1γ

2
2

σ4
2

å
+

1

2
log

Ñ
1+

γ21(1− ρ2)
h2
11

σ2
1

1 + γ21(1− ρ2)
h2
21

σ2
2

é
, (56e)

R1 +R2 6 1

2
log

Ç
h211γ

2
1

σ2
1

+
h212γ

2
2

σ2
1

+2ρ

 
h211h

2
12γ

2
1γ

2
2

σ4
1

å
+

1

2
log

Ñ
1+

γ22(1− ρ2)
h2
22

σ2
2

1 + γ22(1− ρ2)
h2
12

σ2
1

é
. (56f)

The upper-bound on the energy rate (52) satisfies :

B 6 σ2
3 + h231(γ21 + µ2

1) + h232(γ22 + µ2
2)

+2h21h22(|ρ| |γ1||γ2|+ |µ1||µ2|). (56g)

In the limit when N tends to infinity, any information-energy
rate triplet (R1, R2, B) ∈ EF satisfies (56) for some γ1, γ2,
µ1, µ2 according to (54) and for some ρ ∈ [−1, 1]. Let
RF(γ1, γ2, µ1, µ2, ρ) denote the set of information-energy rate
triplets satisfying (56), for some γ1, γ2, µ1, µ2 satisfying (54)
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and for some ρ ∈ [−1, 1]. Thus, it holds that

EF ⊆
⋃

06γ2
1+µ

2
16P1

06γ2
2+µ

2
26P2

−16ρ61

RF(γ21 , γ
2
2 , µ1, µ2, ρ). (57)

In this union, it suffices to consider 0 6 ρ 6 1
because for any −1 6 ρ 6 1, RF(γ21 , γ

2
2 , µ

2
1, µ

2
2, ρ)

⊆ RF(γ21 , γ
2
2 , µ

2
1, µ

2
2, |ρ|). Thus,

EF ⊆
⋃

06γ2
1+µ

2
16P1

06γ2
2+µ

2
26P2

−16ρ61

RF(γ21 , γ
2
2 , µ1, µ2, ρ) ⊆

⋃
γ2
1+µ

2
1=P1

γ2
2+µ

2
2=P2

06ρ61

RF(γ21 , γ
2
2 , µ1, µ2, ρ). (58)

Using the definition of βi, any region R(γ1, γ2, µ1, µ2, ρ) in
the union over all (µ1, µ2, γ1, γ2) that satisfy γ21 + µ2

1 = P1,
γ22 + µ2

2 = P2 and 0 6 ρ 6 1, can be rewritten as follows:

R1 61

2
log

Ç
h211β1P1

σ2
1

+
h212β2P2

σ2
1

+2ρ

 
h211h

2
12β1β2P1P2

σ4
1

å
,

(59a)

R1 6 1

2
log

Å
1 +

h221
σ2
2

β1P1

(
1− ρ2

)ã
(59b)

+
1

2
log

Ñ
1 +

β1P1(1− ρ2)
h2
11

σ2
1

1 + β1P1(1− ρ2)
h2
21

σ2
2

é
, (59c)

R2 61

2
log

Ç
h222β2P2

σ2
2

+
h221β1P1

σ2
2

+2ρ

 
h22h21β1β2P1P2

σ4
2

å
,

(59d)

R2 6 1

2
log

Å
1 +

h212
σ2
1

β2P2

(
1− ρ2

)ã
+

1

2
log

Ñ
1 +

β2P2

(
1− ρ2

) h2
22

σ2
2

1 + β2P2 (1− ρ2)
h2
12

σ2
1

é
, (59e)

R1+R2 61

2
log

Ç
h222β2P2

σ2
2

+
h221β1P1

σ2
2

+2ρ

 
h222h

2
21β1β2P1P2

σ4
2

å
+

1

2
log

Ñ
1 +

β1P1

(
1− ρ2

) h2
11

σ2
1

1 + β1P1 (1− ρ2)
h2
21

σ2
2

é
, (59f)

R1+R2 61

2
log

Ç
h211β1P1

σ2
1

+
h212β2P2

σ2
1

+2ρ

 
h211h

2
12β1β2P1P2

σ4
1

å
+

1

2
log

Ñ
1 +

β2P2

(
1− ρ2

) h2
22

σ2
2

1 + β2P2 (1− ρ2)
h2
12

σ2
1

é
, (59g)

B 6 σ2
3+h

2
31P1+h

2
32P2 + 2h31h32(|ρ|

√
β1P1β2P2

+
»

(1− β1)(1− β2)P1P2), (59h)

for some (β1, β2) ∈ [0, 1]2 and ρ ∈ [0, 1]. Hence, using
the definitions in (7) and (10), the region (59) contains all

information-energy rate triplets (R1, R2, B) satisfying con-
straints (21), which completes the proof of Theorem 5.

REFERENCES

[1] S. Belhadj Amor, S. M. Perlaza, I. Krikidis, and H. V. Poor, “Feedback
enhances simultaneous wireless information and energy transmission in
multiple access channels,” IEEE Trans. Inf. Theory, vol. 63, no. 8, pp.
5244–5265, Aug. 2017.

[2] S. M. Belhadj Amor and S. M. Perlaza, “Fundamental limits of simulta-
neous energy and information transmission,” in Proc. 23rd International
Symposium on Telecommunications, Thessaloniki, Greece, May 2016.

[3] P. Bergmans, “Random coding theorems for broadcast channels with
degraded components,” IEEE Trans. Inf. Theory, vol. 19, no. 2, pp.
197–207, Mar. 1973.

[4] R. A. Berry and D. N. C. Tse, “Shannon meets Nash on the interference
channel,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 2821–2836, May
2011.

[5] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities :
A Nonasymptotic Theory of Independence. New York, USA: Oxford
University Press, Mar. 2013.

[6] A. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. 24,
no. 1, pp. 60–70, Sep. 1978.

[7] S. Chao, W.-C. Li, and T.-H. Chang, “Simultaneous information and
energy transfer: A two-user MISO interference channel case,” in Proc.
Signal Processing for Communications Symposium, Anaheim, CA, USA,
Dec. 2012, pp. 3862–3867.

[8] ——, “Wireless information and energy transfer in multi-antenna in-
terference channel,” IEEE Transactions on Signal Processing, vol. 62,
no. 23, pp. 6249–6264, Dec. 2014.

[9] H.-F. Chong, M. Motani, H. K. Garg, and H. El Gamal, “On the Han-
Kobayashi region for the interference channel,” IEEE Trans. Inf. Theory,
vol. 54, no. 7, pp. 3188–3195, Jul. 2008.

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley-Interscience Publication, 2005.

[11] T. M. Cover and C. S. K. Leung, “An achievable rate region for
the multiple-access channel with feedback,” IEEE Trans. Inf. Theory,
vol. 27, no. 3, pp. 292–298, May 1981.

[12] Z. Ding, S. M. Perlaza, I. Esnaola, and H. V. Poor, “Power allocation
strategies in energy harvesting wireless cooperative networks,” IEEE
Transactions on Wireless Communications, vol. 13, no. 2, pp. 846–860,
Feb. 2014.

[13] P. Elias, A. Feinstein, and C. E. Shannon, “A note on the maximum flow
through a network,” IEEE Trans. Inf. Theory, vol. 2, no. 4, pp. 117–119,
Dec. 1956.

[14] R. H. Etkin, D. N. C. Tse, and H. Wang, “Gaussian interference channel
capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12,
pp. 5534–5562, Dec. 2008.

[15] R. Fano, Transmission of Information - A Statistical Theory of Commu-
nication. Cambridge, MA: MIT Press, Mar. 1961.

[16] W. Feller, An Introduction to Probability Theory and Its Application,
2nd ed. New York, NY: John Wiley and Sons, 1971, vol. 2.

[17] A. M. Fouladgar; and O. Simeone, “On the transfer of information and
energy in multi-user systems,” IEEE Communications Letters, vol. 16,
no. 11, pp. 1733–1736, Nov. 2012.

[18] M. Gastpar, “Gaussian multiple-access channels under received-power
constraints,” in Proc. IEEE Information Theory Workshop, San Antonio,
TX, USA, Mar. 2004, pp. 452–457.

[19] P. Grover and A. Sahai, “Shannon meets Tesla: Wireless information and
power transfer,” in Proc. IEEE International Symposium on Information
Theory, Austin, TX, USA, Jun. 2010, pp. 2363–2367.

[20] T. S. Han and K. Kobayashi, “A new achievable rate region for the
interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–
60, 1981.

[21] ——, “A new achievable rate region for the interference channel,” IEEE
Trans. Inf. Theory, vol. 27, pp. 49–60, Jan. 1981.

[22] N. Khalfet and S. M. Perlaza, “Simultaneous information and energy
transmission in Gaussian interference channels with feedback,” in Proc.
55th Annual Allerton Conference on Communications, Control, and
Computing, Monticello, IL, USA, Oct. 2017.

[23] ——, “Simultaneous information and energy transmission in Gaussian
interference channels,” in Proc. International Zurich Seminar on Infor-
mation and Communication, Zurich, Switzerland, Feb. 2018.

[24] ——, “Simultaneous information and energy transmission in the inter-
ference channel,” INRIA Grenoble - Rhône-Alpes, Grenoble, France,
Tech. Rep. 9102, Oct. 2017.



15

[25] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and
R. Schober, “Simultaneous wireless information and power transfer
in modern communication systems,” IEEE Communications Magazine,
vol. 52, no. 11, pp. 104–110, Nov. 2014.

[26] J. Park and B. Clerckx, “Joint wireless information and energy transfer
in a two-user MIMO interference channel,” IEEE Trans. Wireless
Commun., vol. 12, no. 8, pp. 4210–4221, Aug. 2013.

[27] S. M. Perlaza, R. Tandon, H. V. Poor, and Z. Han, “Perfect output
feedback in the two-user decentralized interference channel,” IEEE
Trans. Inf. Theory, vol. 61, no. 10, pp. 5441–5462, Oct. 2015.

[28] S. M. Perlaza, A. Tajer, and H. V. Poor, “Simultaneous energy and
information transmission: A finite block-length analysis,” in Proc. 19th
IEEE International Workshop on Signal Processing Advances in Wireless
Communication, Kalamata, Greece, Jun. 2018.

[29] P. Popovski, A. M. Fouladgar, and O. Simeone, “Interactive joint transfer
of energy and information,” IEEE Transactions on Communications,
vol. 61, no. 5, pp. 2086–2097, May 2013.

[30] V. Quintero, S. M. Perlaza, I. Esnaola, and J.-M. Gorce, “Approximate
capacity region of the two-user Gaussian interference channel with noisy
channel-output feedback,” IEEE Trans. Inf. Theory, vol. 64, no. 7, pp.
5326 – 5358, Jul. 2018.

[31] D. Sacristan-Murga and D. Guenduez, “Joint energy and information
transmission in a two-user symmetric interference channel,” in Proc.
20th European Wireless Conference, Barcelona, Spain, 2014.

[32] K. G. Shenoy and V. Sharma, “Finite blocklength achievable rates for
energy harvesting AWGN channels with infinite buffer,” in Proc. IEEE
International Symposium on Information Theory (ISIT), Barcelona,
Spain, Jul. 2016.

[33] C. Suh and D. N. C. Tse, “Feedback capacity of the Gaussian interfer-
ence channel to within 2 bits,” IEEE Trans. Inf. Theory, vol. 57, no. 5,
pp. 2667–2685, May 2011.

[34] N. Tesla, Apparatus for transmitting electrical energy. New York, NY:
United States Patent Office, Dec. 1914, vol. US1119732 A.

[35] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and
K. Huang, “Energy harvesting wireless communications: A review of
recent advances,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 3, pp. 360–381, Mar. 2015.

[36] M. Varasteh, B. Rassouli, and B. Clerckx, “On capacity-achieving
distributions over complex AWGN channels under nonlinear power con-
straints and their applications to SWIPT,” CoRR, vol. abs/1712.01226,
2017. [Online]. Available: http://arxiv.org/abs/1712.01226

[37] ——, “Wireless information and power transfer over an AWGN chan-
nel: Nonlinearity and asymmetric Gaussian signaling,” in Proc. IEEE
Information Theory Workshop, Kaohsiung, Taiwan, Nov. 2017.

[38] L. R. Varshney, “Transporting information and energy simultaneously,”
in Proc. IEEE International Symposium on Information Theory, Toronto,
ON, Canada, Jul. 2008, pp. 1612–1616.

[39] ——, “On energy/information cross-layer architectures,” in Proc. IEEE
International Symposium on Information Theory, Cambridge, MA, USA,
Jul. 2012, pp. 1356–1360.

[40] F. M. J. Willems, “Information theoretical results for multiple access
channels,” Ph.D. dissertation, Katholieke Universiteit, Department of
Electrical Engineering, Leuven, Belgium, Oct. 1982.

[41] F. M. J. Willems and E. C. Van Der Meulen, “The discrete memory-
less multiple-access channel with cribbing encoders,” IEEE Trans. Inf.
Theory, vol. IT-31, no. 3, pp. 313–327, May. 1985.

[42] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wire-
less information and power transfer,” IEEE Transactions on Wireless
Communications, vol. 12, no. 5, pp. 1989–2001, May. 2013.

http://arxiv.org/abs/1712.01226

	Introduction
	System Model
	Information Transmission Task
	Energy Transmission Task
	Simultaneous Information and Energy Transmission
	A Note on the Main Results

	Main Results: Case without Channel-Output Feedback
	An Achievable Region
	A Converse Region
	An Approximation to the Information Energy Capacity Region

	Main Results: Case with Perfect Channel-Output Feedback
	An Achievable Region
	A Converse Region
	An Approximation to the Information-Energy Capacity Region
	Maximum Energy Rate Improvement with Feedback

	Numerical Analysis
	Conclusions
	Appendix A: Proof of Theorem 4
	Proof of (20a)-(20g)
	Proof of 20g

	Appendix B: Proof of Theorem 5 
	References

