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Abstract

The fast assembling of stiffness and mass matrices is a key issue in
isogeometric analysis, particularly if the spline degree is increased. If the
assembling is done in a naive way, the computational complexity grows
with the spline degree to a power of 3d, where d is the spacial dimen-
sion. Recently much progress was achieved in improving the assembling
procedures, particularly in the methods of sum factorization, low rank
assembling, and weighted quadrature. A few years ago, it was shown that
the computational complexity of the sum factorization approach grows
with the spline degree to a power of 2d+1. We show that it is possible to
decrease this to a power of d+ 2 without loosing generality or accuracy.

1 Introduction

Isogeometric Analysis, [10], was proposed around a decade ago as a new ap-
proach for the discretization of partial differential equations (PDEs) and has
gained much interest since than. Spline spaces, such as spaces spanned by ten-
sor product B-splines or NURBS, are typically used for geometry representation
in standard CAD systems. In Isogeometric Analysis, one uses such spaces for
the geometry representation of the computational domain and as space of ansatz
functions for solution of the PDE.

The fast assembling of stiffness and mass matrices is a key issue in Isogeometric
Analysis, particularly if the spline degree is increased. If the assembling is done
in a naive way, and pd quadrature points are used per element, the computa-
tional complexity of assembling a standard mass or stiffness matrix has order
Np3d , where N is the number of unknowns, p is the spline order (degree + 1),
d is the domain dimension. In recent years, much effort was set on proposing
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faster assembling schemes; we want to name particularly the methods of sum
factorization, low rank assembling, and weighted quadrature.

Sum factorization was originally proposed for spectral methods and later applied
to high-order finite element methods [13, 1]. Antolín, Buffa, Calabro, Martinelli,
and Sangalli [2] have carried over this approach to the case of Isogeometric
Analysis and have shown that the computational complexity of assembling a
standard mass of stiffness matrix can be reduced to order Np2d+1. The idea of
this approach is to perform the required computational steps in a smart way
and to reuse already computed quantities accordingly.

Authors from the same group have then further reduced the computational
complexity by weighted quadrature, cf. the publication by Calabrò, Sangalli, and
Tani [7]. Here, the idea is to reduce the number of quadrature points by setting
up appropriately adjusted quadrature rules. This allows to assemble a standard
mass or stiffness matrix with a computational complexity of order Npd+1. This,
however, comes with the cost that the resulting matrix is non-symmetric and a
careful analysis is necessary to show that the overall discretization satisfies the
error bounds that are typically expected for isogeometric discretizations.

Low rank assembling is based on a completely different idea. It is observed that
for practical problems, evaluation of the geometry function on the quadrature
points does not have the maximum possible rank. Note that often the geometry
is already represented exactly on coarse grid levels and the grid is only refined
for a better resolution of the solution of the PDE. In this case, the rank of the
geometry function is unchanged during refinement and is small compared to
the maximum possible rank. It was observed that low rank geometry functions
yield to mass and stiffness matrices which typically have a small tensor rank.
Mantzaflaris, Jüttler, Khoromskij, and Langer [12] have discussed how to set up
an assembling algorithm based on this approach. Hofreither [9] has shown that
by rewriting the problem accordingly, standard adaptive cross approximation
algorithms can be used as black-box methods to determine the mass or stiffness
matrices. For these approaches, the overall computational complexity has order
NRpd, where R is the (unknown) tensor-rank of the resulting matrix. If the
coefficients of the matrix are not actually needed, it is possible to compute a
low-tensor rank representation of the matrix and to compute the corresponding
matrix-vector products with a computational complexity of order NRp.

In this note, we want to have again a look onto the approach of sum factor-
ization. We will show that by performing a global variant of sum factorization,
the computational complexity is reduced to order Npd+2. Still, this algorithm
yields exactly the same matrix which would be obtained with straight-forward
assembling and the algorithm is as general and as extendable to other differential
equation as straight-forward assembling. We will then see that the computa-
tional complexity is still preserved for a localized approach. We will observe
that also here, like for the low rank assembling, the formation of the matrix is
the most expensive part and that the corresponding matrix-vector products has
a computational complexity of order Npd+1.
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This article is organized as follows. In Section 2, we state the abstract formu-
lation of the problem and give examples of bilinear forms falling into the class.
We introduce a fast assembling procedure in Section 3. In Section 4, we discuss
the localization of sum factorization and its applications. Then, in Section 5,
we give an algebraic description of the proposed algorithm. In Section 6, we
explain why the evaluation of the basis functions and the geometry function is
non trivial. We comment on matrix-free implementations in Section 7. Finally,
in Section 8 we give numerical experiments and draw conclusions.

2 Preliminaries

In the following L2, L∞ and H1 denote the standard Lebesgue and Sobolev
spaces with standard scalar products. Consider a bilinear form of the type

a : L2([0, 1]d)× L2([0, 1]d)→ R,

a(u, v) := (Fu, v)L2([0,1]d) =

∫
[0,1]d

F(x)u(x)v(x) dx,
(1)

where d ∈ N is the domain dimension and F ∈ L∞([0, 1]d) is a given coefficient
function. At a first glance, this model problem looks rather restrictive as it is
only an L2-like scalar product. However, we will see in Section 2.1 that we can
write the variational form of any PDE, like Poisson, or system, like Stokes, as a
sum of bilinear operators of the form (1).

The goal of this article is to formulate fast algorithms that compute the ma-
trix corresponding to a Petrov-Galerkin discretization of a. (This, of course,
also covers the special case of standard Galerkin discretizations.) Let Φ =
(φn)Nn=1,Ψ = (ψm)Mm=1 be two generating systems of functions that span corre-
sponding subspaces of L2([0, 1]d). Following the Petrov-Galerkin approach, the
restriction of a to span Φ× span Ψ is represented by the matrix

A := [a(φn, ψm)]m=1,...,M
n=1,...,N . (2)

In practice, the coefficients of A are not computed exactly, but they are ap-
proximated using a quadrature rule. This means that A is approximated by

A := [a(φn, ψm)]m=1,...,M
n=1,...,N , (3)

with
a(φn, ψm) :=

∑
x∈X

ω(x)F(x)φn(x)ψm(x), (4)

where X is the set of quadrature points and ω(x) are the corresponding quadra-
ture weights. The techniques in this note require a tensor-product structure.
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• Tensor-product discretization: For each direction δ = 1, . . . , d, there exist
Φδ, Ψδ such that{

Φ = Φ1 ⊗ . . .⊗ Φd, Φδ = (φ=δ
n )Nδn=1,

Ψ = Ψ1 ⊗ . . .⊗Ψd, Ψδ = (ψ=δ
m)Mδ

m=1,
(5)

• Tensor-product quadrature: For each direction δ = 1, . . . , d, there exist Xδ
and ωδ such that {

X = X1 × . . .× Xd,
ω(x) = ω1(x1) . . . ωd(xd).

(6)

The meaning of (5) is that the d-variate functions in Φ are the products of the
univariate functions in Φ1, . . . ,Φd (and analogously the functions in Ψ). By
convention, we assume the lexicographic ordering. For a rigorous definition, let
π : {1, . . . , N} → {1, . . . , N1} × · · · × {1, . . . , Nd} be a lexicographic ordering,
i.e., the bijection defined by

π := (π1, . . . , πd), πδ(n) :=

⌊
(n− 1) mod N ≤δ

N ≤δ−1

⌋
+ 1, N ≤δ :=

δ∏
i=1

Ni.

Define σ : {1, . . . ,M} → {1, . . . ,M1} × · · · × {1, . . . ,Md} analogously. Using
these orderings, we denote the generating functions for Φ and Ψ as follows:{

φn(x1, . . . , xd) = φ=1
π1(n)(x1) · · ·φ=d

πd(n)(xd), n = 1, . . . , N,

ψm(x1, . . . , xd) = ψ=1
σ1(m)(x1) · · ·ψ=d

σd(m)(xd), m = 1, . . . ,M.

Analogous to N ≤δ, it is convenient to define

M ≤δ :=

δ∏
i=1

Mi and X≤δ :=
δ

ą

i=1

Xi.

Moreover, for the complexity analysis, we need some bounds on the supports of
the functions in Φδ and Ψδ. As usual in the context of Sobolev spaces, supports
are always closed, i.e., we define supp f := {x : f(x) 6= 0}.

• Bounded number of active functions: for all δ ∈ {1, . . . , d} and xδ ∈ Xδ :{
#{n : xδ ∈ suppφ=δ

n } ≤ pδ,
#{m : xδ ∈ suppψ=δ

m} ≤ pδ.
(7)

• Bounded overlap: for all δ ∈ {1, . . . , d} and all φ=δ
n ∈ Φδ :

#{m : suppφ=δ
n ∩ suppψ=δ

m ∩ Xδ 6= ∅} ≤ kδ pδ. (8)
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For the convenience of the reader, we will often express the main results in
simplified form using p := max{p1, . . . , pd}.
Remark 1. The condition (8) bounds the number of test functions that interact
with any of the trial functions; the presented complexity analysis could also be
done if the roles of the trial functions and the test functions as well as of N and
M are interchanged.

To keep the notation tight, here and in what follows, a . b means that there is
a constant c > 0 (which does not depend on any of the quantities discussed in
this paper) such that a ≤ c b and a h b means that a . b and b . a.

2.1 Bilinear forms that depend on derivatives

The described algorithms are not limited to the computation of the mass matrix,
but can be employed for Isogeometric Analysis of linear and non-linear PDEs
or systems of PDEs. In this subsection we show how an assembling procedure
for Petrov-Galerkin discretization of bilinear form of (1) extends naturally to
bilinear forms that depend on the derivatives of their arguments.

Any bilinear form a : Hr([0, 1]d)×Hr([0, 1]d)→ R can be written as:

a(φ, ψ) =
∑

θ,η∈Θr

(Fθ,η∂θφ, ∂ηψ)L2 =:
∑

θ,η∈Θr

aθ,η(∂θφ, ∂ηψ), (9)

where Θr ⊂ Nd is the set of multiindices θ = (θ1, . . . , θd) corresponding to
partial derivatives of order up to r. Analogously, the matrix A representing its
restriction to Φ×Ψ decomposes as

A =
∑

θ,η∈Θr

Aθ,η,

where Aθ,η is the matrix representing the restriction of aθ,η to ∂θΦ× ∂ηΨ with{
∂θΦ := ( ∂θ1

∂xθ1
· · · ∂

θd

∂xθd
φn)Nn=1,

∂ηΨ := ( ∂η1

∂xη1
· · · ∂

ηd

∂xηd ψm)Mm=1.

To extend any assembling procedure from a as in (1) to a as in (9), it is sufficient
to prove that the assumptions on Φ and Ψ hold for the associated spaces ∂θΦ
and ∂ηΨ so that the procedure can be applied on each aθ,η. This is done in the
next lemma.

Lemma 1. If Φ,Ψ ⊂ Hr([0, 1]d) satisfy any of the conditions (5), (7), (8) then
also ∂ηΦ, ∂θΨ satisfies that condition for all θ, η ∈ Θr.

Proof. First of all the tensor product structure carries over because

∂θΦ = ( ∂θ1

∂xθ1
· · · ∂

θd

∂xθd
φn)Nn=1 = ∂θ1Φ1 ⊗ · · · ⊗ ∂θdΦd,
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where ∂θδΦδ := ( ∂θδ

∂xθδ
φ=δ
n )Nδn=1. The same applies to ∂ηΨ. For a sufficiently

smooth function f : [0, 1]→ R and using that the supports are closed, we have
supp ∂

∂xf ⊆ supp f . In particular, we deduce

supp ∂θδφ
=δ ⊆ suppφ=δ, supp ∂ηδψ

=δ ⊆ suppψ=δ,

so that (7) and (8) carry over to ∂ηΦ, ∂θΨ with the same values of pδ and kδ.

Remark 2. Note that considering a Petrov-Galerkin approach (different spaces
for test and trial functions) is required for the application of the algorithms to
higher order problems even if Φ = Ψ because for any θ 6= η, typically the two
spaces ∂θΦ and ∂ηΨ differ.

2.2 Examples: B-spline based discretizations

Lemma 2. If Φδ := (φ=δ
n )Nδn=1 and Ψδ := (ψ=δ

m)Mδ
m=1 are univariate B-spline bases

of order not more than pδ (degree not more than pδ − 1) and sharing the same
knot vectors such that no knot coincides with a quadrature point in Xδ, then (7)
and (8) hold with kδ = 2.

The same holds if the knot vector of Φδ is a refinement of the knot vector of Ψδ,
i.e., it contains additional knots or some knots have a larger multiplicity.

Proof. Let qΦ,δ and qΨ,δ the orders of Φδ and Ψδ, respectively. Denote the
knot vector of Φδ by Ξ := (ξ−qΦ,δ+1, . . . , ξNδ+qΦ,δ−1). Note that suppφ=δ

n =
[ξn, ξn+qΦ,δ ]. Consider some quadrature point x ∈ (ξj , ξj+1) and observe that the
supports only of the functions φ=δ

j+1−qΦ,δ , . . . , φ
=δ
j include the quadrature point x,

which are qΦ,δ functions. The same arguments hold for Ψδ. This shows (7). Ob-
serve that the supports only of the functions ψ=δ

n−qΨ,δ+1, . . . , ψ
=δ
n+qΦ,δ

contribute
to (ξn, ξn+qΦ,δ) ⊇ suppφ=δ

n ∩ Xδ. This shows condition (8) with kδ = 2.

If now the functions in Φδ are based on a refinement of Ξ, we know that the
supports of the functions in Φδ shrink. More precisely, we have suppφ=δ

n ∩Xδ ⊆
(ξn′ , ξn′+qΦ,δ) for some accordingly chosen n′. So, (8) stays true.

Remark 3. If some quadrature points coincide with a knot, we obtain an analo-
gous result with kδ = 3 if only B-splines with orders up to pδ−1 are considered.

Example 1 (Convection diffusion equation). We consider a standard single-
patch isogeometric discretization, so we assume that the computational domain
Ω is parameterized by a diffeomorphism

G : Ω̂ := [0, 1]d → Ω := G(Ω̂) ⊂ Rd.

We assume that a source function f ∈ L2(Ω) and coefficient-functions A ∈
L∞(Ω,Rd×d), b ∈ L∞(Ω,Rd) and c ∈ L∞(Ω) are given. The boundary value
problem reads as follows. Find u ∈ H1(Ω) such that

−∇ · (A∇u) + b · ∇u+ cu = f in Ω,
∂u

∂n
= 0 on ∂Ω.
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The variational formulation reads as follows. Find u ∈ H1(Ω) such that

a(u, v) :=
([ c 0

b A

] [
u
∇u

]
,

[
v
∇v

])
L2(Ω)

= (f, v)L2(Ω) for all v ∈ H1(Ω).

A standard isogeometric discretization is set up on the parameter domain, i.e.,
we first define the spline space

V̂h := span{B̂1, . . . , B̂N} :=

d⊗
δ=1

span{B̂(δ)
1 , . . . , B̂

(δ)
Nδ
} ⊂ H1(Ω̂),

where B̂(δ)
n are the standard B-spline basis functions as given by the Cox-de Boor

formula. Then, the ansatz functions are transferred to the physical domain using
the pull-back principle

Vh := V̂h ◦G−1, Bn := B̂n ◦G−1.

For the computation of the stiffness matrix A, we transfer the functions of in-
terest to the parameter domain and obtain

A = [a(Bn, Bm)]m=1,...,N
n=1...,N

=
[(
|JG|

[
I

J−>G

] [
ĉ 0

b̂ Â

] [
I

J−1
G

]
︸ ︷︷ ︸

F :=

[
1
∇

]
︸ ︷︷ ︸
D :=

B̂n,

[
1
∇

]
B̂m

)
L2(Ω̂)

]m
n

=

d∑
θ=0

d∑
η=0

[
(Fθ,ηDθB̂n,DηB̂m)L2(Ω̂)︸ ︷︷ ︸
aθ,η(DθB̂n,DηB̂m) :=

]m=1,...,N

n=1,...,N
, (10)

where JG is the Jacobi matrix of the geometry function, |JG| the absolute value
of its determinant and

Dα :=

{
1 for α = 0
∂
∂xα

for α ∈ {1, . . . , d}.

Note that for each (θ, η), ∂θB̂n and ∂ηB̂m are tensor-products of B-spline ba-
sis functions and/or their derivatives. Using Lemmas 1 and 2, we obtain that
(∂θB̂n, ∂ηB̂m) satisfies (7) and (8). So, we immediately observe that the com-
putation of Aθ,η,h belongs to the abstract problem (1) – (2) with F := Fθ,η.

Example 2 (Stokes equation). As a second example, consider the Stokes sys-
tem, which reads in variational form as follows{

(∇u,∇w)L2(Ω) + (∇p, w)L2(Ω) = (f, w)L2(Ω)

(∇ · u, q)L2(Ω) = 0
. (11)
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A Galerkin discretization of such a system yields a block-matrix, which looks
for two dimensions as follows

A =

[
A B>

B 0

]
=

 A11 A12 B>1
A21 A22 B>2
B1 B2 0

 .
Each of the blocks Aij and Bi is obtained by a Galerkin discretization of a scalar
valued differential equation, which can be treated analogously to Example 1.

The discretization has to be chosen such that inf-sup stability holds; in [4],
inf-sup stability has been shown for the isogeometric Taylor-Hood and the iso-
geometric sub-grid method.

In the isogeometric Taylor-Hood method, the pressure variable is discretized with
B-splines of some order p with maximum smoothness. Each of the components
of the velocity variable is discretized with B-splines of order p+ 1 and reduced
smoothness, p− 2, obtained by taking each knot in the knot vector twice.

In the isogeometric sub-grid method, the pressure variable is again discretized
with B-splines of some order p with maximum smoothness. Each of the com-
ponents of the velocity variable is discretized with B-splines of order p+ 1 with
maximum smoothness on a grid obtained from the pressure grid by one uniform
refinement step.

Here, the idea of sum factorization can be employed for each of the blocks of
the overall system, where due to symmetry it suffices to discretize the Laplace
operator A and the divergence operator B. The conditions of Lemmas 1 and 2
hold for A because Φ = Ψ, i.e., the spaces of the trial and the test functions
coincide; they hold for B because the knot vector of the trial function space Φ
is a refinement of that of the space of test functions Ψ.

3 Sum factorization

The method of sum factorization is based on the observation that expanding
each term in (4) with respect to its components yields

a(φn, ψm) =
∑
x1∈X1

· · ·
∑
xd∈Xd

d∏
δ=1

ωδ(xδ)

d∏
δ=1

φ=δ
πδ(n)(xδ)

d∏
δ=1

ψ=δ
σδ(m)(xδ)F(x)

=
∑
xd∈Xd

φ=d
πd(n)(xd)ψ

=d
σd(m)(xd)ωd(xd)

∑
x1∈X1

· · ·
∑

xd−1∈Xd−1

d−1∏
δ=1

ωδ(xδ)

d−1∏
δ=1

φ=δ
πδ(n)(xδ)

d−1∏
δ=1

ψ=δ
σδ(m)(xδ)F(x)

︸ ︷︷ ︸
=: a≤d−1

xd
(φ≤d−1
n , ψ ≤d−1

m )

,
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that is

a(φn, ψm) =
∑
xd∈Xd

φ=d
πd(n)(xd)ψ

=d
σd(m)(xd)ωd(xd) a

≤d−1
xd

(φ≤d−1
n , ψ ≤d−1

m ), (12)

where

φ≤δ
n :=

δ∏
i=1

φ=i
πi(n) and ψ ≤δ

m :=

δ∏
i=1

φ=i
σi(m).

The term a≤d−1
xd

(φ≤d−1
n , ψ ≤d−1

m ) is independent of the d-th components of Φ,Ψ, ω
and it appears for many (φn, ψm) pairs. The advantage of (12) over (4) is that
it shows that a≤d−1

xd
(φ≤d−1
n , ψ ≤d−1

m ) can be computed once and used many times.
By rewriting a≤d−1

xd
(φ≤d−1
n , ψ ≤d−1

m ) as

a≤d−1
xd

(φ≤d−1
m , ψ ≤d−1

n ) =
∑

x∈X≤d−1

ω ≤d−1(x)φ≤d−1
n (x)ψ ≤d−1

m (x)F(x, xd), (13)

we see that, analogously to (4), it is an approximation with the quadrature
(X≤d−1, ω ≤d−1) of the bilinear form on L2([0, 1]d−1) defined by

a≤d−1
xd

(φ, ψ) =

∫
[0,1]d−1

φ(x)ψ(x)F(x, xd) dx.

Let A≤d−1
xd

be the matrix representing the Petrov-Galerkin restriction of a≤d−1
xd

to span Φ≤d−1 × span Ψ≤d−1, i.e.,

A≤d−1
xd

= [a≤d−1
xd

(φ≤d−1
n , ψ ≤d−1

m )]n=1,...,N ≤d−1

m=1,...,M ≤d−1
.

According to (12), the entries of A are linear combinations of the entries in
A≤d−1
xd

for different xd ∈ Xd, but for the same φ≤d−1
n and ψ ≤d−1

n . This suggests
the decomposition of A into blocks corresponding to the d-th components of
φn and ψm, i.e. φ=d

πd(n) and ψ=d
σd(m). They identify a block of A = A≤d of size

M ≤d−1 ×N ≤d−1. Let B=d
i,j denote these blocks as in

A≤d =

 B=d
1,1 . . . B=d

1,Nd
...

...
B=d
Md,1

. . . B=d
Md,Nd

 . (14)

Combining (14) and (12) we obtain the following recursive assembling procedure.
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Algorithm 1 Recursive sum-factorization

1: procedure Assemble([Xδ]dδ=1, [ωδ]
d
δ=1, [Φδ]

d
δ=1, [Ψδ]

d
δ=1, [F(x)]x∈X)

2: if d=0 then
3: return [F(x)]x∈X
4: end if
5: A≤d ← 0 . start with null matrix
6: for all xd ∈ Xd do . sum all A≤d−1

xd

7:
A≤d−1
xd

← Assemble([Xδ]d−1
δ=1 , [ωδ]

d−1
δ=1 ,

[Φδ]
d−1
δ=1 , [Ψδ]

d−1
δ=1 , [F(x, xd)]x∈X≤d−1)

8: for all nd with φ=d
nd

(xd) 6= 0 do
9: for all md with ψ=d

md
(xd) 6= 0 do

10: B=d
md,nd

← B=d
md,nd

+ ωd(xd)φ
=d
nd

(xd)ψ
=d
md

(xd)A
≤d−1
xd

. cf. (14)
11: end for
12: end for
13: end for
14: return A = A≤d

15: end procedure

For the complexity analysis, we assume that the values of F , φn and ψm are al-
ready available; cf. Section 6 on evaluating them and the related computational
complexity. The recursive assembling procedure provides a recursive formula
for the computational costs for assembling:

C≤d h #Xd
(
C≤d−1 + p2

d nnz(A≤d−1
xd

)
)
,

where C≤d−1 is the cost of assembling A≤d−1
xd

and nnz(A≤d−1
xd

) is the number of non-
zero entries of A≤d−1

xd
. Here, the factor p2

d comes from the number of iterations
at line 8 and 9 that are bounded using (7) . Letting A≤d−2

xd−1,xd
be the analogous

of A≤d−1
xd

and so on till A≤0
x = F(x) and expanding the recursive cost formula

yields

C≤d h
d∑
i=1

( d∏
δ=i+1

#Xδ
)

(p2
i#Xi) nnz(A≤i−1

xi,...,xd
). (15)

Note that (15) was obtained using (7) alone. The assumption (8) allow us to
bound the number of non-zero entries as follows:

nnz(A≤i−1
xi,...,xd

) ≤
i−1∏
δ=1

kδpδNδ,

which yields

C≤d .
d∑
i=1

p2
i

( d∏
δ=i

#Xδ
)( i−1∏

δ=1

kδpδNδ

)
≤

d∑
i=1

p2
i#Xd

d−1∏
δ=1

max{#Xδ, kδpδNδ}.

(16)
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Depending on the maximum, we obtain

∀δ, #Xδ ≤ kδpδNδ ⇒ C≤d . d 2d pd+2N, (17)

∀δ, #Xδ ≤ kδNδ ⇒ C≤d . d 2d pd+1N, (18)

∀δ, #Xδ ≥ kδpδNδ ⇒ C≤d . d p2#X, (19)

where we assume in all cases that kδ = 2.
Remark 4. To achieve the above cost, it is necessary to implement Algorithm 1
properly. From the tensor product structure of the spaces, it follows that the
sparsity pattern of A≤d−1

xd
and that of the non-zero blocks B=δ

mδ,nδ
are the same.

By pre-computing the sparsity pattern, the sums at line 10 of the algorithm can
be performed at a cost proportional to the number of non-zeros entries in A≤d−1

xd
.

Example 3 (Gauss quadrature). In Isogeometric Analysis, typically spline
spaces are used for discretization (cf. Examples 1 and 2). The breakpoints
of these spline spaces introduce a decomposition of the parameter domain into

Kδ ≤ Nδ − pδ + 1

elements on which the splines are polynomial. For assembling, typically Gauss
quadrature with pδ quadrature nodes per element and direction is performed,
so using (17) we obtain

#Xδ = pδKδ ≤ pδNδ and C≤d . d 2d pd+2N.

Example 4 (Weighted quadrature). A way to reduce the computational costs
is to reduce the number of quadrature points. In [7] it was shown, that this can
be done without loosing accuracy using test-function dependent weights:

ω(x,m) =

d∏
δ=1

ωδ(xδ, σδ(m)).

The adaptation of Algorithm 1 to test-function-dependent quadrature formu-
las is straightforward. Indeed, it can equivalently be thought as a quadrature
with constant weights ω(x) = 1 and a different test space Ψ̃ whose functions
are pre-multiplied by the quadrature weights. It is interesting to note that the
computational cost reported in [7] is explained by (18). Indeed with their con-
struction #Xδ . Nδ. Note however that this strategy breaks the symmetry
between test and trial functions and consequently the symmetry of the assem-
bled matrix.

4 Localized sum factorization

We have described sum factorization as a global assembling procedure that
requires the pre-computation of the weights F on the whole domain. This is

11



in contrast to the usual FEM assembling procedure which is performed element
by element. The idea of this section is to consider a domain that is a union of
disjoint boxes and to apply sum factorization on each box.

Such a localization makes sense even if a global tensor-product discretization
is chosen because the localization reduces the memory footprint required to
store precomputed values of F and improves locality of the data which might
lead to positive caching effects. The case of localizing a global tensor-product
discretization is discussed in Section 4.1. It is worth noting that the possibilities
opened by localized sum factorization go beyond that case and allow interesting
applications, like multipatch domains and adaptive methods, see Section 4.2.

We start our discussion with a given collection P of pairwise disjoined, axis
aligned boxes D =

Śd
δ=1Dδ ⊂ Rd. For each box D, let ΦD = (φD,n)NDn=1

and ΨD = (ψD,m)MDm=1 be generating systems of functions D → R and XD a
quadrature on D fulfilling (5), (6), (7) and (8).

Let Φ = (φn)Nn=1 and Ψ = (ψm)Mm=1 be two generating systems of functions
defined on the union of the boxes in P, which satisfy the following assumptions.

• Representability by box-local generators: For each box D ∈ P, we have{
∀n = 1, . . . , N, φn|D ∈ ΦD ∪ {0},
∀m = 1, . . . ,M, ψm|D ∈ ΨD ∪ {0}.

(20)

• Bounded number of box-local generators: There is some R > 0 such that∑
D∈P

ND ≤ RN where ND = # ΦD, (21)∑
D∈P

#{n : suppφn ∩ XD 6= ∅} ≤ RN. (22)

Analogously to Lemma 1, we obtain the following statement.

Lemma 3. If Φ,Ψ ⊂ Hr([0, 1]d) and ΦD,ΨD ⊂ Hr(Dd) satisfy any of the con-
ditions (20), (21) or (22) then also ∂ηΦ, ∂θΨ, ∂ηΦD, ∂θΨD satisfy that condition
for all θ, η ∈ Θr.
Remark 5. Note that (22) is equivalent to

N∑
n=1

#{D ∈ P : suppφn ∩ XD 6= ∅} ≤ RN,

which follows from the stronger condition

∀φn ∈ Φ, #{D ∈ P : suppφn ∩ D 6= ∅} ≤ R. (23)

Remark 6. Provided that (20) holds and that for all D ∈ P we have

m 6= n ⇒ φn|D 6= φm|D ∨ φn|D = φm|D = 0,

then the condition (21) implies the condition (22) with the same value of R.

12



Let a : L2([0, 1]d)× L2([0, 1]d)→ R be a bilinear form of the form (1) and A be
the matrix associated to the restriction of a to span Φ×span Ψ. Then, it follows
from (20) that A can be decomposed as in

A =
∑
D∈P

M>Ψ,DADNΦ,D. (24)

where the matrices NΦ,D and MΨ,D are selection matrices whose columns con-
tain at most a non zero coefficient. The cost decomposes in two parts:

C = Cass + Cacc, (25)

where Cass is the cost of assembling the matrices AD for all D ∈ P and Cacc is
the cost of accumulating the AD into A.

The matrix products in (24) realize only a selection and relabeling of the non
zero entries to sum to A, thus the cost Cacc of accumulating the result in A is
bounded by the number of selected non zero coefficients. As the number of
non zero columns in ADNΦ,D is ≤ #{n : suppφn ∩ XD 6= ∅} and each column
contains at most

∏d
δ=1 kδpδ non zeros because of (8), we obtain

Cacc .
∑
D∈P

d∏
δ=1

kδpδ#{n : suppφn ∩ XD 6= ∅}.

Using (22) and assuming kδ = 2, we further obtain

Cacc . 2dpdRN.

If #XD,δ ≤ kδpδND,δ for all D ∈ P and δ = 1, . . . , d, then (17) and (21) yield

Cass .
∑
D∈P

d2dpd+2ND ≤ d2dRpd+2N. (26)

Similarly, under the stronger hypothesis #XD,δ ≤ kδNδ, (18) and (21), we
obtain

Cass .
∑
D∈P

≤ d2dRpd+1N. (27)

Concluding, C is dominated by Cass and thus we have the following analogues
to (17), (18) and (19):

∀D, δ, #XD,δ ≤ ND,δkδpδ ⇒ C . d 2dRpd+2N, (28)

∀D, δ, #XD,δ ≤ ND,δkδ ⇒ C . d 2dRpd+1N, (29)

∀D, δ, #XD,δ ≥ ND,δkδpδ ⇒ C . dR p2#X. (30)
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4.1 Localized sum factorization for tensor-product B-spline
bases

In this subsection, we again consider the discretization from Example 3: Φ is a
B-spline basis defined on [0, 1]d.

Again, the breakpoints of Φ define a partitioning of the domain [0, 1]d into
elements on which the basis functions are polynomials. On each element, tensor
product Gauss quadrature of order pδ is employed.

Now, we localize sum-factorization to a partition P in which each box D is
aligned with the element boundaries and we study the dependence of the as-
sembling cost on the size of the boxes measured by the number of contained
elements. The main advantages of partitioning the assembling process are re-
ducing the memory requirement and allow for parallelization. By assembling
a box at at time only F(XD) needs to be pre-computed and stored instead
of F(X). Assembling on different boxes can be done in parallel provided that
data-races are avoided when the result is gathered to the final matrix.

First, we observe that the restriction to axes-aligned boxes does not destroy the
tensor-product structure.

Lemma 4. Assume that Φ and Ψ satisfy (5) and P is a partition of [0, 1[d into
boxes of the type [a1, b1[× · · · × [ad, bd[, then{

ΦD := {φn|D : n = 1, . . . , N}\{0},
ΨD := {ψm|D : m = 1, . . . ,M}\{0}

satisfies (5) for all D. For this choice, (22) implies (21).

Proof. We have φn(x) =
∏d
δ=1 φ

=δ
πδ(n)(xδ), and D = D1×· · ·×Dd. So, we obtain

(φn|D) (x) =
∏d
δ=1

(
φ=δ|Dδ

)
(xδ) and, therefore,

φn|D ∈ Φ1|D1 ⊗ · · · ⊗ Φd|Dd ,

and if φn|D 6= 0

φn|D ∈ (Φ1|D1
\{0})⊗ · · · ⊗ (Φd|Dd\{0}),

which shows (20). The same is possible for Ψ.

If suppφn ∩ XD 6= ∅ then 0 6= φn|D and φn|D ∈ ΦD. Then, we have ΦD =
{φn|D : φn|D 6= 0}, so (22) implies (21).

As next step, we show (22) for B-spline bases.
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Lemma 5. If Φ is a tensor-product B-spline basis of order p1, . . . , pd, then
taking P such that each D ∈ P contains at least s1 × . . . × sd ≥ 1 elements,
yields (21) and (22) with

R =

d∏
δ=1

⌈
sδ + pδ − 1

sδ

⌉
.

Proof. The support of φ=δ
n contains at most pδ elements in direction δ. The the

number of boxes containing sδ elements intersecting suppφ=δ
n is maximized if

the end of the leftmost box coincide with the end of the leftmost element. In
this case the total number of boxes intersecting suppφ=δ

n is

1 +

⌈
pδ − 1

sδ

⌉
=

⌈
sδ + pδ − 1

sδ

⌉
.

Using Remark 5, we obtain (22) and using Lemma 4 further (21).

Finally, we give an estimate for the number of quadrature points per box.

Lemma 6. If Φ is a tensor-product B-spline basis of order p1, . . . , pd, and we
perform Gauss-quadrature with pδ quadrature points per element and direction,
then we have for each box D of size s1 × . . .× sd ≥ 1 elements that

#XD,δ ≤
sδ pδ

sδ + pδ − 1︸ ︷︷ ︸
∈ [1, pδ[

ND,δ.

Proof. We have on the one hand for Gauss quadrature #XD,δ = sδpδ and on
the other hand sδ + pδ − 1 ≤ ND,δ, where equality is obtained for B-splines of
maximum smoothness.

Lemmas 5 and 6 show two competing effects on the cost of localized sum fac-
torization. On one hand, the upper bound for R from Lemma 5 deteriorates
for small boxes. On the other hand, Lemma 6 states that the ratio between
quadrature points and basis function decreases for small boxes allowing one to
apply the bound in (29) instead of that in (28). This observation allows to
conclude as follows.

Example 5 (Per-element sum-factorization). Let Φ be a B-spline space of order
p1, . . . , pd. In this example, P is the collection of the elements associated to Φ.
The local spaces ΦD,ΨD and the local quadrature XD are defined by

ΦD,δ = {φ=δ
n |Dδ : φ=δ

n ∈ Φδ}\{0},
ΨD,δ = {ψ=δ

m|Dδ : ψ=δ
m ∈ Ψδ}\{0},

XD is the standard Gauss quadrature on the box D.
(31)
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Lemma 5 yields (22) with R = pd and, by Lemma 4, we have (21). In this case
#XD,δ = ND,δ = pδ so that (29) holds and, as proved in [2],

C . d 2d p2d+1N.

Note that this example employs the sum factorization approach which was pro-
posed in [2].

Example 6 (Per macro-element sum-factorization). Let Φ be again a B-spline
space of order p1, . . . , pd. In this example, we now consider a partition P of
[0, 1]d such that all boxes have size of at least p1× · · · × pδ elements. Again, we
assume (31). For this case, we obtain from Lemmas 5 and 6 and (28)

C . d 4d pd+2N, (32)

i.e., asymptotically the same costs as for the global approach.

This description can be refined leading to a compromise that allows for more
freedom in the choice of the partitioning P. The following Lemma is a refinement
of Lemma 5 that allows for macro-elements that have size 1 in one direction,
possibly different for each macro-element. It will be used in Example 7.

Lemma 7. For all 2 ≤ p1, . . . , pd ∈ N and covering P of
Śd

δ=1[0, pδ[ such that
for all D ∈ P

D ∩

(
d

ą

δ=1

[0, pδ[

)
6= ∅, (33)

D = [a1, b1[× · · · × [ad, bd[, ai, bi ∈ Z, (34)

bδ − aδ =

{
pδ δ 6= jD

1 δ = jD
(35)

for some jD ∈ {1, . . . , d} that depends on D, the following sharp inequality holds

#P ≤ 2d−1
d∑
δ=1

(pδ − 2) + 2d.

Proof. We prove the bound by induction on the dimension d. For d = 1 any
partition of [0, p] in segments of length 1 has exactly p elements. Let P be a
partition realizing the maximum cardinality in dimension d and define PB to
be the subset of P containing the boxes that intersect some box B. Then for
L = [0, 1[×

Śd
δ=2[0, pδ[, R = [p1 − 1, p1[×

Śd
δ=2[0, pδ[ we have

#P = #PL + #PR + #(P \ PL∪R).

A box D ∈ P \ PL∪R can not have length p1 in the first direction. Thus, D has
size 1×p2×· · ·×pd and is contained in [i, i+1[×Rd−1 for some i ∈ {1, . . . , p1−2}.
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Applying Lemma 5 yields that for each i = 1, . . . , p1− 2, there are at most 2d−1

such boxes so that we have

#(PS \ PL∪R) ≤ 2d−1(p1 − 2).

The projection (x1, . . . , xd) → (x2, . . . , xd) maps the boxes in PL to disjoint
boxes in Rd−1 that cover

Śd
δ=2[0, pδ[. By induction hypothesis they are at

most 2d−2
∑d
δ=2(pδ − 2) + 2d−1. The same reasoning applies to PR so that we

obtain

#PS ≤ 2[2d−2
d∑
δ=2

(pδ − 2) + 2d−1] + 2d−1(p1 − 2)

= 2d−1
d∑
δ=1

(pδ − 2) + 2d.

For d = 1 the result is sharp as we can cover [0, p[ with p segments of length 1.
Given a covering P̃ of

Śd
δ=2[0, pδ[ with cardinality 2d−2

∑d
δ=2(pδ − 2) + 2d−1

we construct a maximal cardinality covering of
Śd

δ=1[0, pδ[ by setting

PL = {[1− p1, 1[×D̃ : D̃ ∈ P̃} ,

PR = {[p1 − 1, 2p1 − 1[×D̃ : D̃ ∈ P̃} ,

and completing PL ∪ PR to a covering P of
Śd

δ=1[0, pδ[ using the boxes

D = [i, i+ 1[×
d

ą

δ=2

[tipδ + 1, (ti + 1)pδ + 1[

for i = 1, . . . , p1 − 2 and ti ∈ {−1, 0}.

Example 7 (Narrow macro-elements). Using the last lemma, we obtain that
macro-elements D ∈ P of size s1× · · · × sd with sδ ≥ pδ for δ 6= jD and sjD ≥ 1
achieve the same asymptotic costs in p as we have obtained in Example 6.

From Lemma 7 and Remark 5, we have (21) and (22) with R = d2d−1p. On
each macro-element D the cost CD . d2dpd+1ND can be achieved by permuting
the coordinates so that jD, the direction of size one element, comes last. Indeed,
if jD = d, we have #XD,d = #ND,d = pδ and the cost in (18) is achieved. Since
the estimate holds for all boxes, we have (29) and

C . d24dpd+2N.

Narrow macro-elements are particularly of interest for the construction of hier-
archical LR splines, [3], where local refinement is done in alternating directions.
Note that additional costs are caused by the reordering of F and by the permu-
tation of the coefficients in AD.
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4.2 Localized sum factorization for some non-tensor-product
bases

Example 8 (Multipatch domains). Another example of localized sum factor-
ization is Isogeometric Analysis on multipatch geometries. The domain Ω of the
PDE is the union of the subdomains Ω`, ` = 1, . . . , L each parameterized by a
map G` defined on Ω̂` = [0, 1]d:

Ω =

L⋃
`=1

G`(Ω̂`), where Ω̂` = [0, 1]d.

This means that the assembling is done on L copies of the parametric domain
[0, 1]d. This can be expressed on the framework form the beginning of this
section by writing

Ω̂ := {1, . . . , L} × [0, 1]d.

The partition P contains the parametric patches

D` := {`} × [0, 1]d,

where we have a tensor product spline space ΦD` on each of those patches. The
global space Φ is obtained by identifying matching functions that are non-zero
on the glued boundaries of the patches.

The condition (21) and (22) are fulfilled according to Remark 5 with R that is
the maximum number of patches on which a function φ ∈ Φ is active. In cases
of practical interest the patches are big compared to the supports of the basis
functions and their angles at the vertices (and edges in 3D) are close to π/2.
Consequently the value of R is small ≈ 2d. However, in contrived examples, it
can be made arbitrarily big by constructing a multipatch in which many patches
contain a common vertex.

Example 9 (HB-splines). The Hierarchical B-spline (HB) is a basis that breaks
the global tensor product structure and allows for adaptive methods in which
only a part of the domain is refined, see [6]. The basis is obtained by selecting
functions from different tensor product B-spline bases on different regions of the
domain.

Let B1, . . . ,BL be the tensor product B-spline bases of the same degree defined
on the domain Ω that generate nested spaces

i < j ⇒ spanBi ⊂ spanBj . (36)

Let Ω ⊇ Ω1 ⊇ · · · ⊇ ΩL = ∅ be corresponding closed domains. For simplicity
we further assume that the Bi are a sequence of dyadically refined spaces and
that each of the Ωi is a union of elements associated to Bi. The hierarchical
basis (HB-splines) is defined by Kraft’s selection criteria [11]:

H =

L⋃
i=1

{γ ∈ Bi : supp γ ⊆ Ωi and supp γ ∩ (Ωi \ Ωi+1) 6= ∅} . (37)

18



A HB basis is said to be β-admissible if for all x ∈ Ω,

max{i : ∃γ ∈ Bi ∩H : x ∈ supp γ}−min{i : ∃γ ∈ Bi ∩H : x ∈ supp γ} ≤ β + 1.
(38)

The localized sum factorization applies to β-admissible (usually 2-admissible)
HB bases Φ and Ψ if the collection P is chosen such that each box D is contained
in one of the rings

∆i := Ωi \ Ωi+1.

In this case, the restriction of the functions in H to any of the boxes D is
contained in the union of β tensor product spaces. If each ring ∆i allows a
partition into macro-elements of size pδ elements per direction, then (21) and
(22) hold with R = 3d. For Gauss quadrature, we obtain using (28) the following
bound for the costs C, bounded as follows:

C . d6dpd+2N.

Note that narrow macro-elements are also possible as a consequence of Lemma 7.
Remark 7. Note that localized sum factorization cannot be applied directly to
Truncated Hierarchical B-spline bases, cf. [8], even if it spans the same space.
The problem is that truncation breaks the tensor structure, i.e. that the ΦD
corresponding to the truncated basis do not fulfill (5). Nevertheless, it is possible
to express the matrix Atrunc corresponding to the truncated basis as

Atrunc = M>Ψ ANΦ

where A is the system matrix for the hierarchical basis and MΨ, NΦ are the
change of basis. Since the number of non zero entries in each column of MΨ,
NΦ is bounded by 2βd+1pd for β-admissible hierarchical splines we obtain that

Ctrunc = C + Cpost, and Cpost . 2βd+1p2dNΦ.

Interestingly it has the same asymptotic complexity as the cost for hierarchical
splines for two dimensional domains (2d = d+ 2).
Remark 8. The extension to trimmed domains would be a challenge. So far,
there is no clear solution for such discretizations. A straight-forward approach
would be to compute the discretization ignoring the trimming first and recom-
pute the matrix elements corresponding to the basis functions whose support
intersects with the trimming curve. In reasonable cases, one could assume that
the number of those matrix elements is small compared to the total number.
Remark 9. The presented examples are not exhaustive. Surely, different gen-
erating systems fulfill the assumptions, for instance the hierarchical LR splines
[3] do. Moreover, multipatch domains (Example 8) and adaptivity (Example 9)
can be combined effortless.
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5 Two algebraic descriptions

We called the described recursive algorithm sum factorization, but it differ from
the original description in [2]. The unifying idea is that the map from the value
of the coefficients on the quadrature points to the system matrix is linear and
can be represented as a tensor. Moreover it has a Kronecker-like structure that is
inherited from the tensor structure of the discrete spaces and of the quadrature.

Let X be lexicographically ordered and its points be xi1,...,id with iδ = 1, . . . ,#Xδ
and F be the d tensor defined as

Fi1,...,id = F(xi1,...,xid ).

Then the 2d tensor T that corresponds to A through π and σ

Tσ1(m),...,σd(m),π1(n),...,πd(n) = a(φn, ψm) = Am,n

can be written as

Tm1,...,md,n1,...,nd = Fi1,...,idQm1,...,md,n1,...,nd,i1,...,id

where, using Einstein notation, repeated indices denote sums and Q is the 3d
tensor corresponding to the linear maps from F to Th, i.e.,

Qσ1(m),...,σd(m),π1(n),...,πd(n),i1,...,id = φn(xi1,...,id)ψm(xi1,...,id)ω(xi1,...,id).

The Cartesian structure of the quadrature points, together with the tensor struc-
ture of the generators allow for a factorisation of the above as

Tm1,...,md,n1,...,nd = Fi1,...,idQ
=1
m1,n1,i1 . . . Q

=d
md,nd,id

.

The original description of sum factorisation corresponds to the partial evalua-
tions

T ≤δ
m1,...,mδ,n1,...,nδ,iδ+1,...,id

= Fi1,...,idQ
=1
m1,n1,i1 . . . Q

=δ
mδ,nδ,iδ

where the temporaries for all iδ+1, . . . , id are computed at each step. This
achieves a cost reduction because nnz(Q=δ) ≈ kδpδNδ while nnz(Q) ≈

∏d
δ=1 kδpδNδ

and this impact the cost of computing the tensor contraction. The recursive de-
scription corresponds to the computation of a slice of T ≤δ

m1,...,mδ,n1,...,nδ,iδ+1,...,id
corresponding to fixed indices iδ+1, . . . , id at a time.

They do exactly the same operation, although in a different order, but the
recursive implementation requires less temporary memory. The complexity gain
with respect to a standard per-element quadrature is given by the fact that in
standard per-element assembling, the coefficients of the composition of the Q=δ

are recomputed for each element.
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The same factorisation can be explained, without recurring tensors, using a
Kronecker construction. This second description correspond to the first by the
flattening of the indices i1, . . . , id. Let X be lexicographically ordered and define

QΦ = [φn(x)]x∈Xn=1,...,N , QΨ = [ω(x)ψm(x)]x∈Xm=1,...,M

and F as the diagonal matrix containing F(x) for x ∈ X. Then

A = (QΨ)>FQΦ. (39)

The factorization can be now expressed by decomposing QΦ and QΨ as Kro-
necker products:

QΦ =
d

K
δ=1

Q=δ
Φ , Q=δ

Φ = [φ=δ
n (xδ)]

xδ∈Xδ
n=1,...,Nδ

QΨ =
d

K
δ=1

Q=δ
Ψ , Q=δ

Ψ = [ψ=δ
m(xδ)ωδ(xδ)]

xδ∈Xδ
m=1,...,Mδ

.

Note that we have the following correspondence with the previous representa-
tion: ∀mδ, nδ, iδ

Q=δ+1
mδ,nδ,iδ

= Q=δ
Ψmδ,iδ

Q=δ
Φmδ,iδ

.

Since for all matrices C,D

C K D = (C K I)(I K D)

we have

A = (I K . . . K Q=d
Ψ )> . . . (Q=1

Ψ K . . . K I)>F (Q=1
Φ K . . . K I) . . . (I K . . . K Q=d

Φ ).
(40)

Note that

(Q=1
Ψ K . . . K I)>F (Q=1

Φ K . . . K I) =


. . .

A=1
x2,...,xd

. . .


xi∈Xi

where the right hand side is the block diagonal matrix with blocks A=1
x2,...,xd

for xi ∈ Xi, i = 2, . . . , d. The blocks are lexicographically ordered along the
diagonal. More generally after δ products we obtain

(I K . . . Q=δ
Ψ . . . K I)> . . . F . . . (I K . . . Q=δ

Φ . . . K I) =


. . .

A=δ
xδ+1,...,xd

. . .


xi∈Xi

.
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The improved performance can then easily explained by the cost of matrix-
matrix multiplication:

nnz(I K . . . Q=δ
Φ . . . K I) ≤ #Xpδ

while

nnz(QΦ) ≤ #X
d∏
δ=1

pδ.

By computing the product step by step the cost h
∑
δ pδ, while if the product

is computed in one step the cost is h
∏
δ pδ.

6 Pre-assembling costs

The overall costs presented in the last sections only covers the costs of assembling
the matrix, assuming that the values of the functions in the generating sets Φδ
and Ψδ and the values of the coefficient function F are already known or can
be computed in constant time. This follows the presentation in the literature,
however it is worth to have a closer look onto the corresponding computational
costs. Our aim is to show algorithms for which the computation of Φδ, Ψδ

and F can be performed at a cost that is inferior to the assembling cost. For
simplicity, we focus on the global sum-factorization approach, but the results
hold also for the localized version as they apply to each box separately.

6.1 Evaluation of the functions in the generating sets Φ
and Ψ

The evaluation of a B-spline function φn or ψm cannot be done in constant time.
As we have a tensor-product structure, an efficient approach is to pre-compute
the function values for the corresponding univariate functions φ=δ

n or ψ=δ
m.

For a standard B-spline basis, this yields costs C, which are bounded as follows

C .
d∑
δ=1

p2
δ#Xδ ≤ 2p3

d∑
δ=1

Nδ, (41)

where the second estimate holds for #Xδ ≤ kδpδNδ with kδ = 2 as in (17) and
(18). The resulting costs are always much smaller than pd+2N , the costs of
assembling.

6.2 Evaluation of the coefficient function F

As mentioned in Section 2, we have to evaluate the function F for every quadra-
ture point. The computational costs related to this task are often not addressed
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in standard papers on assembling in Isogeometric Analysis. If the computational
costs for evaluating F at one quadrature point, grows faster than p2, then a di-
rect approach for evaluating F would lead to computational costs which exceed
the costs of the assembling strategy.

In classical Isogeometric Analysis, we assume that the computational domain Ω
is parameterized by a diffeomorphism

G : Ω̂ := [0, 1]d → Ω = G(Ω̂) ⊂ Rs,

which is an element of span Φ and has the form

G =

N∑
n=1

cnφn.

In this case, also the evaluation of F involves the evaluation of G and/or its
derivatives, cf. (10). For ease of the presentation, in the following we only present
the evaluation of G, the evaluation of its derivatives is completely analogous.

For the evaluation of G at the quadrature points X, we can again exploit the
tensor product structure of Φ. This yields the following algorithm:

Algorithm 2 Recursive function computation

1: procedure Eval([Xδ]dδ=1, [Φδ]
d
δ=1, [cn]Nn=1)

2: if d=0 then
3: return c1 . Here, N = 1
4: end if
5: G≤d ← 0
6: for all nd ∈ {1, . . . , Nd} do
7: G≤d−1

nd
←Eval([Xδ]d−1

δ=1 , [Φδ]
d−1
δ=1 , [cn]n:πd(n)=nd

)

8: for all xd ∈ Xd : φ=d
nd

(xd) 6= 0 do
9: G≤d(x, xd)← G≤d(x, xd) + φ=d

nd
(xd)G

≤d−1
nd

(x)
10: end for
11: end for
12: return G≤d

13: end procedure

Again, we derive the number of floating point operations, assuming that the
functions in the generating set Φδ have already been evaluated. By counting
the number of invocations of lines 7 and 9 and using (7), we obtain that the
costs C≤d satisfy

C≤d . NdC
≤d−1+spd #X≤d,

where s comes from the fact that the ci are vectors in Rs. Recursively plugging
in yields

C≤d . s

d∑
δ=1

(
d∏

i=δ+1

Ni

)
pδ #X≤δ.
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Depending on the ratio between #Xδ and Nδ and assuming kδ = 1, as with
Gauss quadrature, we obtain the following costs

∀δ, #Xδ ≤ kδpδNδ ⇒ C≤d . sd pd+1N, (42)

∀δ, #Xδ ≤ kδNδ ⇒ C≤d . sd pN, (43)

∀δ, #Xδ ≥ kδpδNδ ⇒ C≤d . sd p#X. (44)

Here, d is the dimension of parametric domain and s is the dimension of the
target space. So, for a surface embedded in R3, we have d = 2 and s = 3.

The computation of the map is not sufficient to IGA applications: as shown in
Example 1, it is often the case that the Jacobian of G, its pseudoinverse and the
determinant of the Jacobian are required. The i-th column of JG is computed
using the presented algorithm by replacing Φi with ∂Φi. Remembering that JG
has d columns, we have the following costs:

∀δ, #Xδ ≤ pδNδ ⇒ Cjac . sd2 pd+1N, (45)

∀δ, #Xδ ≤ Nδ ⇒ Cjac . sd2 pN, (46)

∀δ, #Xδ ≥ pδNδ ⇒ Cjac . sd2 p#X. (47)

For second order PDEs, the coefficients F are computed as in (10). If s = d,
i.e. G : Rd → Rd then J−1

G can be computed in ≈ d3 operations per quadrature
point using LU factorization. If G : Rd → Rs, s > d then the formula in (10)
is still applicable by denoting with J−1

G the left pseudoinverse of JG and with
|JG| the area density, i.e.

J−1
G := (J>GJG)−1J>G, (48)

|JG| := det(J>GJG)
1
2 . (49)

Both can be computed with ≈ sd2 operations per quadrature point using LU
factorization to invert J>GJG giving

Cinv . sd2 #X.

The costs Cmult of evaluating the product in (10) is of the same order as the
costs for evaluating the block J−TG AJ−1

G . This has costs of order ≈ s2d per
quadrature point. Thus the costs of computing F according to (10) decomposes
as

CF = Cjac + Cinv + Cmult . Cjac + s2d#X

and, since s ≥ d, we conclude

∀δ, #Xδ ≤ pδNδ ⇒ CF . s2d pd+1N, (50)

∀δ, #Xδ ≤ Nδ ⇒ CF . s2d pN, (51)

∀δ, #Xδ ≥ pδNδ ⇒ CF . s2d p#X. (52)
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7 A note about matrix-free implementations

In this section, we remark on matrix-free implementation. Matrix-free methods
are often combined with iterative solvers. Iterative solvers typically require only
the ability to compute matrix-vector products v = Au, while a direct access to
the entries of A is not required. By definition

Au =
(∫

[0,1]d
ψm(x)u(x)

)M
m=0

,

where

u(x) =

N∑
n=1

unφn(x).

For this case, unfortunately, the cost of matrix-free setting must be counted
based on M , i.e., on the dimension of the test space. So, we assume N = M for
simplicity.

Algorithm 1 can be changed to a matrix-free setting by removing the loop at
line 8 and pre-multiplying F(X) by u(X). This gives the following algorithm,
where the blocks w≤d

md
are the blocks of M ≤d−1 coefficients in v = v≤d:

v = (v1, . . . ,vM ≤d−1︸ ︷︷ ︸
w1

, . . . ,vM ≤d−M ≤d−1+1, . . . ,vM ≤d︸ ︷︷ ︸
wMd

).

Algorithm 3 Matrix-free sum-factorization

1: procedure Apply([Xδ]dδ=1, [ωδ]
d
δ=1, [Ψδ]

d
δ=1, [F(x)u(x)]x∈X,)

2: if d=0 then
3: return [F(x)u(x)]x∈X
4: end if
5: v≤d ← 0 . start with null vector
6: for all xd ∈ Xd do . sum all v≤d−1

xd

7: v≤d−1
xd

←Apply([Xδ]d−1
δ=1 , [ωδ]

d−1
δ=1 , [Ψδ]

d−1
δ=1 , [F(x, xd)u(x, xd)]x∈X≤d−1)

8: for all md with ψ=d
md

(xd) 6= 0 do
9: w≤d

md
← w≤d

md
+ ωd(xd)ψ

=d
md

(xd)v≤d−1
xd

10: end for
11: end for
12: return v = v≤d

13: end procedure

The above yields a cost that, excluding the computation of u(X), is

C≤d
app h #Xd

(
C≤d−1
app + pd M

≤d−1
)
.
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This, remembering the simplification Mδ = Nδ, leads analogously to (15) to the
following bound for the costs:

C≤d
app h

d∑
i=1

( d∏
δ=i+1

#Xδ
)

(pi#Xi) N ≤i−1. (53)

Depending on the relative ratio between Nδ and #Xδ, we obtain

∀δ, #Xδ ≤ pδNδ ⇒ C≤d
app . d pd+1N, (54)

∀δ, #Xδ ≤ Nδ ⇒ C≤d
app . d pN, (55)

∀δ, #Xδ ≥ pδNδ ⇒ C≤d
app . d p#X. (56)

By comparing the estimate (55) with (18) and (51), we observe that a matrix
free approach can achieve significant saving if weighted quadrature is employed
as proposed in [14]. Indeed in this case, both the computation of the coefficients
and the application of the matrix are computed with a cost ≈ pN . Note that
this is a factor of pd less than the assembling of the matrix and the same factor
less than the cost of the multiplication of the assembled matrix with some given
vector.

However, by comparing the estimates estimate (54) and (56) with (17), (19),
(50) and (52), we observe that for standard Gauss quadrature, the potential
saving is “only” for a factor of p.

8 Numerical experiments and conclusions

We have implemented the global strategy and the per-(macro)-element strategies
and have tested their behavior for a few sample problems. Our implementation
is a C++ code which has been carefully optimized. It is available online1 as an
stand-alone assembling library.

In the numerical experiments, we assemble a standard stiffness matrix for the
2D and 3D domains depicted in Fig. 1. The 2D domain is decomposed into
200 × 200 elements, the 3D domain into 22 × 22 × 22 elements. On each do-
main, we assemble the stiffness matrix for splines of several orders p using Gauss
quadrature of the same order and we compare the time used by different algo-
rithms. This was done on a single socket machine with an Intel(R) Core(TM)
i3-8100 CPU running at 3.60GHz.

In Fig. 2 and 3, we report the assembling times for standard per-element assem-
bling (standard), per-element sum factorization (element), per-macro-element
sum factorization (macroS) and global sum-factorization (global). The macro-
elements have size p × p in 2D and p × p × p in 3D. Standard per-element

1https://github.com/IgASF/IgASF
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(a) 2D domain: quarter annulus

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

(b) 3D domain: bended and twisted box

Figure 1: Computational domains

assembling uses the same Gauss quadrature and was performed using the freely
available IGA library G+Smo [5].

In Fig. 4 and 5, we focus on the effect of the macro-element size. The considered
approaches are: standard macro-elements (macroS) corresponding to a size of
p × p in 2D and p × p × p in 3D, narrow macro-elements (macroN) having size
p × 1 in 2D and p × p × 1 in 3D and rotated narrow macro-elements (macroR)
having size 1×p in 2D and 1×p×p in 3D. According to Example 7, the narrow
dimension should come last in sum factorization. As our code does not reorder
the dimensions we expect the same behavior for macroS and macroN, but a cost
higher by a factor p for macroR. This means that macroR behaves as element
in 2D and as p6N in 3D.

2 4 6 8 10 12 14 16 18 20 22
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101

102

103

104

standard
element
macroS
global

Figure 2: Time in seconds for assembling the stiffness matrix on the 2D domain
depending on the polynomial order p.
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Figure 3: Time in seconds for assembling the stiffness matrix on the 3D domain
depending on the polynomial order p.
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Figure 4: Time in seconds for assembling the stiffness matrix on the 2D domain
with macro-elements depending on the polynomial order p.
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Figure 5: Time in seconds for assembling the stiffness matrix on the 3D domain
using macro-elements depending on the polynomial order p.

We observe that in any case, the sum factorization approaches are faster than
the standard approach. Conforming with the theory, we see that global is
significantly faster than element. Moreover, we obtain that the macro-element
approaches macro and macroN are indeed almost as fast as the global sum-
factorization approach global.

The results are used for fitting the parameters c and e in the formula

t = cpeN(p),

where t is the measured time, N(p) =
∏d
δ=1(p+Kδ−1) is the number of degrees

of freedom and Kδ is the number of elements in the corresponding direction,
i.e., K1 = K2 = 200 for d = 2 and K1 = K2 = K3 = 22 for d = 3. The fitted
curves are dashed in Fig. 2–5. The fitting procedure yields the following values
for the exponent e:

2D domain 3D domain

theory experiments theory experiments

standard 6 4.98 9 8.05
element 5 3.92 7 5.18
macroN 4 3.26 5 3.75
macroR 5 3.99 6 4.51
macroS 4 3.30 5 3.76
global 4 3.47 5 3.70
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threads
dim p 1 2 4 6 8 12 16 20 24 28 32 36

2 3 1 1.9 3.5 4.7 5.9 7.6 9.3 10.6 11.3 12.4 13.5 12.8
2 5 1 2.0 3.6 4.9 6.2 8.5 10.3 11.9 14.0 15.2 15.8 16.1
2 7 1 2.0 3.8 5.1 6.6 8.9 11.0 13.2 15.2 16.9 18.4 19.8

3 3 1 1.9 3.7 5.2 6.6 8.9 11.0 12.9 14.2 16.7 15.0 17.4
3 5 1 2.0 3.7 5.2 6.6 9.0 10.9 12.8 14.3 15.2 15.6 17.6
3 7 1 2.0 3.7 5.0 6.6 8.3 10.9 11.4 13.6 13.6 17.4 17.5

Table 1: Speed-up factors for assembling the stiffness matrix using a parallel
macro-element implementation.

We observe that the exponents e obtained in our experiments are significantly
lower than those predicted by the theory. We believe that the huge difference
between the speed in performing computation and the speed in accessing mem-
ory in modern processors, is masking one order in p. For the 3D example,
there is also another reason: the fitting is distorted by the small number of
elements, i.e., the approximation pdN ≈ #X does not apply: Lδ = 22 so that
pNδ = 22p+ p2 − p is twice bigger than #Xδ = 22p for p = 20.

In Fig. 6 and 7, we report the assembling times using a proof-of-concept multi-
threaded approach based on macro-elements of size p× p in 2D and p× p× p in
3D (macroS). To have a sufficient number of macro-elements the 2D domain is
split in 2000×2000 elements and the 3D domain is split in 64×64×64 elements.
The lines correspond to the polynomial orders p = 4, 6 and 8, and the abscissa
is the number of parallel threads. The tests have been executed on a dual socket
machine with Intel(R) Xeon(R) CPU E5-2695 v4 running at 2.10GHz. The fig-
ures show that the macro-element approach is viable to parallelization. Table 1
shows the corresponding speed-up factors, i.e. the ratio between the time for
the single-threaded execution and the time for the multi-threaded execution.

In this paper, we have developed a unified complexity analysis for sum fac-
torization approaches. The theory shows that in Isogeometric Analysis, the
computational costs can be reduced significantly by using the technique of sum
factorization. This might be of interest because sum factorization can use the
standard Gauss quadrature yielding exactly the same matrix as the standard
approach.

We show that sum factorization does not yield its optimal complexity if it is
applied on each element separately. However, we do not need to consider the
global approach to obtain its optimal complexity: it is sufficient to apply it to
blocks of at least p elements in each direction.

Moreover, we have shown that parallel implementations of localized sum-factorization
are a viable strategy for fast assembling of the system matrix in IgA applications.
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Figure 6: Times in seconds for assembling the stiffness matrix on the 2D domain
using a parallel macro-element implementation.
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Figure 7: Times in seconds for assembling the stiffness matrix on the 3D domain
using a parallel macro-element implementation.
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