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Abstract

In this paper, we revisit the principle of bounded rationality applied to dynamic traffic assignment to evaluate its
influences on network performance. We investigate the influence of different types of bounded rational user behavior
on: (i) route flows at equilibrium; and (ii) network performance in terms of its internal, inflow and outflow capacities.
We consider the implementation of a bounded rational framework based on Monte Carlo simulation. A Lighthill-
Whitham-Richards (LWR) mesoscopic traffic simulator is considered to calculate time-dependent route costs that
account for congestion, spillback and shock-wave effects. Network equilibrium is calculated using the Method of
Successive Averages. As a benchmark, the results are compared against both Deterministic and Stochastic User
Equilibrium. To model different types of bounded rational user behavior we consider two definitions of user search
order (stochastic and strict preferences) and two settings of the indifference band. We also test the framework on a
toy Braess network to gain insight into changes in the route flows at equilibrium for both search orders and increasing
values of aspiration levels.
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1. Introduction

The first notions of traffic assignment were introduced by Wardrop (1952). According to the first Wardrop prin-
ciple, users aim to minimize their personal route travel times. This leads to a network equilibrium called the Deter-
ministic User Equilibrium (DUE) and it is that most commonly used in dynamic traffic assignment (DTA) problems.
Under DUE conditions, no user can decrease his/her own travel time by unilaterally switching routes. However,
the first Wardrop principle assumes that users are perfectly rational and perceive all routes and network traffic states
perfectly although information on route travel times (i.e., traffic states) is not necessarily perfect. To overcome this
problem, Daganzo and Sheffi (1977) and Daganzo (1982) introduced the Stochastic User Equilibrium (SUE), to take
into account the uncertainty of route travel times. The Multinomial Logit and C-Logit are the Random Utility models
(RUM) most commonly used in DTA problems. Nonetheless, both these models present several limitations when
dealing with correlations between routes. In this study we focus in particular on the Probit model solved using Monte
Carlo simulations (Sheffi, 1985).

Revealed (Zhu, 2011) and stated (Avineri and Prashker, 2004) preference surveys show that users tend to choose
sub-optimal routes instead of optimal ones (Zhu and Levinson, 2015). We emphasize that a sub-optimal route is
understood as a route with a longer travel time than the minimum one for the origin-destination (od) pair. In the
literature on static traffic assignment, there are other alternative model frameworks that take into account different
types of user behavior. One example is the Prospect Theory (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992) which consider the users risk-seeking and risk-aversion behavior. It was adapted to the context of route choice
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by Avineri (2006). In the Prospect Theory, users evaluate the different routes in terms of time prospect and choose
the route with the maximum prospect. Users are risk-averse when confronted with prospects of gains and risk-seekers
when confronted with prospects of losses and are more sensitive to losses than gains (loss effect). Another example
is the Regret Theory (Bell, 1982; Loomes and Sugden, 1982). The users aim to minimize their regret with respect to
the non-selected routes (Chorus, 2012; Li and Huang, 2016). If the users choose the route with the minimum travel
time, they will feel joy or feel regret otherwise. Another example is the notion of bounded rationality introduced by
the seminal works of Simon (1957, 1966, 1990, 1991). He stated that users choices are driven by aspiration levels
(AL), which represent a set of goal or target variables that should be achieved or exceeded for the users satisfaction.
In his original idea, the user searches until a satisfactory alternative is found. This term used to describe this process
was coined by Simon as satisficing, which stands for the combination of satisfy and suffice. In this study, we focus on
the application of the notion of bounded rationality in a dynamic context, by considering distributions of route travel
times and a traffic simulator. The goal of this paper is to investigate the influence of bounded rational user behavior
on individual route flows and network performance. This type of study is very important for decision-making in
transportation planning.

Mahmassani and Chang (1987) discussed the first notion of bounded rationality applied to traffic assignment,
but no mathematical formulation was given. To define users AL, Mahmassani and Chang (1987) introduced the
concept of indifference band (IB), where a route is satisficing if the difference between its travel cost and that of
the best available route is lower than a given threshold (or IB). The implementation of bounded rationality in traffic
assignment is challenging as: (i) the calibration of the AL is context dependent (Vreeswijk et al., 2013); and (ii) the
BR-UE solutions are not unique (Lou et al., 2010; Di et al., 2013, 2014). Thus, to analyze the BR-UE solutions,
some authors have focused on the analysis of the best and worst BR-UE flows of the network (Lou et al., 2010;
Di et al., 2013; Eikenbroek et al., 2018). Moreover, the AL can change from user to user. A thorough review of
bounded rationality in traffic assignment was provided in Di and Liu (2016). There are two main ingredients that
dictate bounded rational network equilibrium: (i) the definition of the AL that dictates whether a route is satisficing or
not; and (ii) the users search order that defines how users are guided in their choice of a satisficing route.

For a route to be considered as satisficing, its route utility must satisfy:

Uk ≤ ALod,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (1)

where Uk is the perceived route utility; ALod is the aspiration level we consider in this paper, to be defined at the od
level; Ωod is the route choice set for the od pair; and Ξ is the set of all od pairs of the network.

The ALod can be calibrated exogenously by route choice surveys or calibrated endogenously by explicit formu-
lations. The most commonly used definition is based on the concept of indifference band (Mahmassani and Chang,
1987; Huang and Lam, 2002; Szeto and Lo, 2006):

ALod = min(V⃗) + ∆od,∀(o, d) ∈ Ξ (2)

where V⃗ is a vector containing all deterministic route utilities Vk,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ and Ωod contains N routes.
∆od is the tolerance or IB at the od level.

Ge and Zhou (2012) proposes a variable definition of the IB (∆od):

ALod = min(V⃗) +max(|Up − Uq|δpδq),∀p, q ∈ Ωod ∧ p , q ∧ ∀(o, d) ∈ Ξ (3)

where δp and δq are dummy variables that equal 1 if routes p and q belong to Ωod, respectively.
Ge et al. (2015) analyzed the BR-DUE equilibrium, considering exogenously fixed AL and fixed and endogenously

variable AL. In their model framework, the authors showed that the DUE is a special case of the BR-DUE and
discussed the existence conditions of the BR-DUE. However, the uncertainty on the travel times was not considered.

Di and Liu (2016) highlighted that a bounded rational behavior can be due to the users habits and inertia, or
their cognitive costs or individual preferences. In this paper, we focus our attention on the users preferences as a
bounded rational behavior to define the search order for the satisficing alternatives. Zhao and Huang (2016) defined a
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search order based on a strict preference order for all users sharing the same od pair. This strong assumption allowed
obtaining unique BR-UE solutions. To the authors knowledge, the framework of Zhao and Huang (2016) has never
been tested in a dynamic context, i.e. considering a traffic simulator and time-dependent path costs. In addition, its
dynamic implementation using a traffic simulator is highly challenging because it requires solving sub-optimization
problems to calibrate the AL of the sub-most preferred routes. Thus, a framework capable of solving the global
optimization problem is required and discussed further on in this paper. On the other hand, users may also have
an indifferent preference for any of the satisficing routes (i.e., that satisfy Eq. 1). This is adopted from the notions
discussed in (Aguiar et al., 2016). In this case, we consider that all users sharing the same od pair have a similar
indifference preference. The choice is modeled by uniform random sampling of any of the satisficing routes. Users
are then assigned to the satisficing route sampled.

Szeto and Lo (2006)1 discussed an analytical BR-UE dynamic traffic assignment model. The authors proposed a
route swapping algorithm, but no clear definition of the users search order was discussed. Instead, the authors targeted
certain users on the most congested routes and switched them to less congested ones for each od pair. Moreover,
the BR-UE solutions were not unique. Han et al. (2015) discussed a dynamic simultaneous departure time and route
choice bounded rational framework. However, neither of these frameworks included travel time distributions. In
this paper, we revisit the notions of bounded rationality by considering the distribution of travel times rather than
deterministic values.

The literature includes a large number of applications of a bounded rational framework to static (Di et al.,
2013) and dynamic traffic assignment (Szeto and Lo, 2006; Han et al., 2015), transportation planning (Gifford and
Checherita, 2007), traffic policy making (Marsden et al., 2012), congestion pricing (Lou et al., 2010) and traffic safety
(Sivak, 2002). However, to the authors knowledge, there is no study in the literature that investigates the influence of
users preferences (indifferent and strict) for a bounded rational behavior on individual route flows and network perfor-
mance in terms of the internal level of congestion and inflow and outflow capacities. The goal of this paper is to fill this
gap. We consider time-dependent path costs that account for congestion, shock-waves and spillback effects calculated
using a mesoscopic Lighthill-Whitham-Richards (LWR) model (Leclercq and Becarie, 2012). A spillback effect is
the reduction of a link capacity that spreads over other connected links in the network. To model bounded rationality
behavior, we relax the definition of the search order of the DUE and SUE frameworks (Sheffi, 1985). In both the DUE
and SUE cases, users are assigned to the routes with the minimum travel times based on an all-or-nothing procedure.
The search order is relaxed to account for the users indifferent and strict preferences. In the case of the indifferent
preference search order, users present indifference behavior when choosing any of the satisficing routes, whereas in
the case of the strict preference search order (Zhao and Huang, 2016), users are assigned to the most preferred route
if this route is perceived as satisficing (Eq. 1), or to the first sub-most preferred route that satisfies Eq. 1. We make use
of Monte Carlo simulations (Sheffi, 1985) to account for travel times distribution and consider the classical Method
of Successive Averages to calculate the network equilibrium. First, we test the bounded rationality methodology in
a toy Braess network and consider a simple linear static and flow dependent utility function. We then consider the
two settings of the search order previously mentioned and the ALod defined exogenously. These initial tests allow
acquiring insight into how the route flows at equilibrium change according to the two definitions of the search order
and increasing values of ALod. Second, for the dynamic implementation, we also consider the two settings of the users
search order (i.e. stochastic and strict preferences) and the concept of the IB (Eq. 2 and Eq. 3) to define the ALod.
The dynamic tests are performed on a Manhattan network. We investigate the influence of the definition of the search
order on the individual route flows and analyze the network performance in terms of the internal, inflow and outflow
capacities, given the two search orders and different values of the ALod. The results are compared against both DUE
and SUE as benchmarks.

This paper is organized as follows. In Sect. 2, we discuss the bounded rational model framework considered in
this paper. In Sect. 3, we discuss a simple static test scenario on the Braess network, considering both the stochastic
and strict preferences search order. In Sect. 4, we discuss the influence of the bounded rationality behavior on the
network performance also considering the two search orders. In Sect. 5, we outline the conclusions of this paper.

1The BR-UE (Mahmassani and Chang, 1987) and Tolerance-based Dynamic User Optimum principle (Szeto and Lo, 2006) have been used
interchangeably in the traffic assignment literature. For the sake of simplicity, we refer to both as BR-UE.
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2. Bounded rational framework

The analysis of the effect of users’ behavior on network performance in terms of its internal inflow and outflow
capacities is very important for policy makers, in particular when determining policies aimed at increasing network
performance. In this paper, we focus on two types of bounded rational user behavior.

We start by introducing the general formulation of the route utilities. The perceived route utility, Uk, is:

Uk = Vk + ϵk,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4)

where Vk is the deterministic route utility; and ϵk is the uncertainty or error term as often referred to in the literature.
The DUE assumes that users are utility minimizers and the error terms ϵk are set to 0. Users are assigned based on

an all-or-nothing procedure to the route with the minimum travel time. In the case of the SUE, users are also utility
minimizers, but they perceive travel times with uncertainty, meaning that the error terms ϵk are not 0. Theoretically,
the Probit model (Daganzo and Sheffi, 1977) is the most attractive model for solving the SUE. However, it requires
the computation of a covariance matrix and integrating the multivariate normal distribution. The complexity of the
computation increases with the number of routes per od pair. An alternative to this is to use Monte Carlo to consider
the distributions of route travel times (Sheffi, 1985). We consider that the error terms are defined at the link level (i.e.,
ϵa,∀a ∈ Γ) instead at the route level. This allows capturing existing correlations between different routes sharing the
same links. In addition, we consider that the terms ϵa are gamma distributed (Nielsen, 1997). The principle of the
Monte Carlo simulations is to discretize the error terms ϵa into M samples or draws and locally solve DUE problems.
In this case, for each error draw the deterministic utility for route k is defined as Um

k ,m = 1, . . . ,M.
Due to the strong assumption of perfect rationality of the DUE with respect to user behavior Mahmassani and

Chang (1987) introduced the first notions of bounded rationality applied to route choice. Lou et al. (2010) and Di
et al. (2013) formulated the BR-DUE mathematically. Under BR-DUE, all users are satisfied with their choices and
no longer consider switching routes. It should be noted that the DUE is an extreme case of the BR-DUE. To extend
the BR-DUE in order to include the stochasticity of travel times, we consider Monte Carlo simulations as discussed
previously and solve BR-DUE problems locally in a similar spirit. In this case, the network equilibrium corresponds
to the Bounded Rational Stochastic User Equilibrium (BR-SUE). Under BR-SUE conditions, users are satisfied with
their current choices and no longer consider switching routes given their perception of the route travel times.

In this paper, we relax the assumption of the users search order on the settings of the DUE and SUE. The idea is
that users are assigned to satisficing routes instead of optimal routes (i.e., routes with the minimum perceived travel
times). We reinforce the idea that a satisficing route has to satisfy Eq. 1. Note that, in the case of the BR-DUE
the condition is Uk = Vk ≤ ALod,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ; for the BR-SUE the condition is Um

k ≤ ALod,∀m =
1, . . . ,M ∧ ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ. We denote ωod as the set of satisficing routes for the od pair. We consider two
definitions of the user’s search order:

• indifferent preferences, where users are randomly assigned based on an all-or-nothing procedure, to one of the
routes listed in ωod. If ωod is empty (i.e., there are no satisficing routes), users are assigned to the route with the
minimum travel time. In reality, this is consistent with human behavior. If there are no alternatives that satisfy
our expectations or goals, we seek to choose the route with the minimum travel time given our perception. This
setting of the search order is in line with the original ideas of Simon (1957, 1966, 1990, 1991) and represent the
users’ indifference to choosing any of the satisficing routes. This is modeled by a uniform distribution.

• strict preference order (Zhao and Huang, 2016), where users are assigned based on an all-or-nothing procedure
to the most preferred route, if it is satisficing. If not, users are assigned to the first sub-most preferred route that
is satisficing. We define Υod as the users strict preference order set.

The idea of the strict preference order was introduced by Zhao and Huang (2016), to deal with the non-uniqueness
of the equilibrium solution. However, we highlight two main differences between our methodology and that discussed
in Zhao and Huang (2016):

• we consider that routes are satisficing if and only if their perceived utility satisfies: Uk = Vk ≤ ALod,∀k ∈
Ωod ∧ ∀(o, d) ∈ Ξ for the BR-DUE; or Um

k ≤ ALod,∀m = 1, . . . ,M ∧ ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ for the BR-SUE.
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Zhao and Huang (2016) consider that routes are satisficing according to the strict preference order, i.e. the users
are first assigned to the most preferred route and then consecutively to the sub-preferred routes, until all the
users are assigned.

• we consider that AL is defined at the od level (i.e., ALod), while Zhao and Huang (2016) considers its definition
at the route level. We also assume that all users sharing the same od pair have the same ALod. We consider that
is more realistic from the user’s perspective to set a global ALod instead of establishing AL for the sub-preferred
routes based on the most preferred ones.

In this paper, we consider the two definitions of ALod as defined in Eq. 2 and Eq. 3.
To reach a solution for the BR-SUE, we consider Monte Carlo simulations as discussed in Sheffi (1985) and the

classical Method of Successive Averages (MSA). The MSA solves a fixed point problem and is commonly used in
traffic assignment to solve both the DUE and SUE (Sheffi, 1985). The Monte Carlo simulations consist in discretizing
the distributions of the link travel times into M samples or draws and solving BR-DUE problems locally. For each
discretization, we identify the satisficing routes and assign the users based on an all-or-nothing assignment following
the search order established. If the search order is considered to be the indifferent preferences, all the users are
assigned randomly to any of the satisficing alternatives. On the other hand, if the search order follows a strict user
preference order, all users are assigned to the first satisficing alternative found on this strict sequence of preferences.
The new temporary route flows, Q∗k, correspond to averaging all the local BR-DUE solutions. This corresponds to the
temporary route flows Q∗k, that will be used to update the new route flows Q j+1

k at iteration j + 1, as:

Q j+1
k = Q j

k + α j{Q∗k − Q j
k},∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (5)

where Q j
k represent the route flows at iteration j of the MSA; and α j is the descent step. This process is repeated at

every descent step of the MSA algorithm.
The sequence of descent steps α j guarantees the convergence of the MSA. For the theoretical convergence of the

algorithm, the following two conditions must be satisfied (Sheffi, 1985):

∞∑
j=1

α j = ∞ (6)

lim
j→∞
α j → 0 (7)

One definition of α j that satisfies both of the previous conditions is: α j =
1
j . We consider this definition of α j

in this paper. Other definitions of the descent step size are discussed in the literature (Polyak, 1990; Liu et al., 2007;
Taale, 2008; Chen et al., 2011).

A commonly used convergence or stopping criterion is based on the comparison between the current and the
previous descent step of the MSA that must be lower to a pre-defined threshold. Instead we consider the number of
violations N(λ) and the relative gap (Sbayti et al., 2007). N(λ) represents the number of cases where |Q j+1

k − Q j
k | is

higher than a pre-defined path convergence threshold Φ. Note that Φ represents an upper bound. The convergence of
the algorithm is achieved if N(λ) ≤ Φ. The relative gap for the DUE is (Sbayti et al., 2007):

Gap =
∑

o
∑

d
∑

k∈Ωod Qod
k (Vod

k −min(Vod))∑
o
∑

d Dod min(Vod)
(8)

where Dod is the total demand for the od pair; and Vod
k is the average travel time of route k; and min(Vod) is the

minimum route travel time for the od pair.
The Gap function (Eq. 8) represents the difference between the travel costs and the equilibrium travel costs. Thus,

under perfect DUE conditions, Gap = 0. This means that all users choose the routes with the minimum travel times.
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Under SUE conditions, the Gap is higher than 0, however small. In this case not all users choose the routes with
the minimum travel times. In the case of bounded rationality, the Gap value increases as ALod increases. The Gap
function is also a measure of how close users are to the equilibrium route travel times (or T UE). The definition of
the GAP as defined in Eq. 8 is valid for DUE and SUE and informs on how far we are from the DUE. For both the
BR-DUE and BR-SUE convergence, we modify the Gap function as follows:

GapBRUE =

∑
o
∑

d
∑

k∈ωod Qod
k max(Vod

k − ALod, 0)∑
o
∑

d DodALod (9)

Thus, under BR-DUE or BR-SUE conditions, the Gap is about 0 if min(Vod) ≤ Vod
k ≤ ALod,∀(o, d) ∈ Ξ and

the equilibrium condition is fulfilled. Note that throughout the paper, we use the definition of the Gap as in Eq. 8
as an indicator that measures how far the bounded rational equilibria from the DUE; and Eq. 9 as the equilibrium
convergence criterion for the MSA.

We present the solution algorithm of this framework in Algorithm 1. Note that the difference between Algorithm
1 and that proposed by Sheffi (1985) is that we assign the users to satisficing routes instead of routes with the minimal
travel times. They are assigned to these satisficing routes according to one of the search orders discussed previously
(i.e. indifferent or strict preferences) at every descent step of the MSA. The first step before entering the MSA loop
consists in calculating the route choice set Ωod, for each od pair. It defines the set of routes for the users choices.
We then perform an initial loading on these routes and consider the number of violations, the GAP (Eq. 9) and the
maximum number of iterations for the MSA convergence criteria. The corresponding tol, Φ and Nmax are set. It is
also necessary to define the input scale (η) and shape (ζ) parameters of the link travel time gamma distributions for the
first Monte Carlo simulations. We then enter in the MSA loop and the ALod is first updated based on the average route
travel times (see Eq. 2 or Eq. 3). The next step consists in performing the link error sampling considering the η and
ζ parameters. This is done through Monte Carlo simulations. The algorithm then loops over all the M error samples
and locally solves the BR-DUE problems. For each sample, the route utilities are computed to identify the satisficing
routes based on ALod. This defines the satisficing set of routes ωod. Users are assigned based on the pre-defined
search order (indifferent or strict preferences) based on an all-or-nothing procedure to one route in ωod. It should
be noted that in the case of solving the BR-SUE and taking the indifferent preferences into account, it is necessary
to repeat the all-or-nothing assignment on the satisficing routes A times. The users choices for the local BR-DUE
correspond to averaging the previous choices. By applying the law of large numbers, when A is large, we converge
to the same average values. The new temporary route flows Q∗k correspond to the average of all the local BR-DUE
choices. The new route flows Q j+1

k are updated according to Eq. 5 and the network loading is updated. To determine
time-dependent link costs that consider congestion, shock-waves and spillback effects, we run an LWR mesoscopic
traffic simulator (Leclercq and Becarie, 2012). The link travel time distributions are obtained based on the simulated
vehicle travel times. To update η and ζ, we fit a gamma distribution to each link travel time distribution. The updated
values of η and ζ will be used to perform the error samplings in the next MSA descent step. The GapBRUE (Eq. 9) and
number of violations N(λ) are updated based on the new average route travel times through the individual vehicles
travel times. This process is repeated until convergence is achieved. Note that Algorithm 1 also allows solving the
BR-DUE by setting η = 0 and ζ = 0.

In Tab. 1 we summarize the notations of all symbols and variables used in this paper.
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Input the ALod (if they are set exogenously).
Input the network, demand scenario and simulation duration T .
Calculate the route choice set Ωod for each od pair.
Perform an initial network loading.
Set N(λ) > Φ and GapBRUE > tol. Initialize j = 1, η, ζ, α j = 1 and Q j=1

k = 0.
Set the MSA stopping criterion tol.
while Gap ≥ tol or N(λ) ≥ Φ or j ≤ Nmax do

Set Q j
k = Q j+1

k .
If set endogenously, update the ALod based on Eq. 2 or Eq. 3.
Perform M error samplings at the link level, based on η and ζ.
for m=1 to M do

Compute the route utilities.
Determine the satisficing routes and update ωod,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Based on the defined search order, perform an all-or-nothing assignment 2. If ωod = ∅, all users are
assigned to the minimum utility route.

end
Update the new route flows Q∗k,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ, based on an averaging of the users choices over all

error samples.
Update the route flows as: Q j+1

k = Q j
k + α j{Q∗k − Q j

k},∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Run the LWR mesoscopic simulator (Leclercq and Becarie, 2012).
Based on the link travel times, fit a gamma distribution to update η and ζ.
Calculate the Gap (Eq. 8) and the number of violations N(λ).
Update α j =

1
j .

Set j = j + 1.
end
Save the route flows: Q j+1

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Algorithm 1: Dynamic implementation algorithm of the satisficing model.
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k Route.
a Link.
o Origin.
d Destination.
Qod Total demand for the od pair.
Ξ Set of all od pairs of the network.
Uk Perceived route utility.
Vk Deterministic route utility.
ϵk Uncertainty or error term.
ϵa Link error term.
Ωod Route choice set for od pair.
N Number of routes listed in the route choice set per each od pair.
Qk Flow of route k.
qa Link flow.
δak Dummy variable that equals 1 if link a belongs to route k.
Γa Set of links that define the graph.
ALod Aspiration level defined at the od level.
V⃗ Vector containing all deterministic route utilities.
∆od Tolerance or Indifference Band.
δp Dummy variable that equals 1 if route p is listed on the choice set.
δq Dummy variable that equals 1 if route q is listed on the choice set.
ωod Set of satisficing routes.
T UE User Equilibrium route travel time.
Υod Users’ strict preference order for the od pair.
M Number of draws for the error term discretization.
N(λ) Number of violations.
Φ Pre-defined path convergence threshold.
η and ζ Scale and shape parameters of a gamma distribution.
j Iterative counter of the MSA method.
tol Tolerance for the stopping criterium of the MSWA-I.
Nmax Maximum number of descent step iterations.
T a

f f Free-flow travel time of link a.
T Simulation period.
A Number of assignment repetitions for BR-SUE and indifferent prefer-

ences search order.

Table 1: Notations used in this paper.
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3. First tests on a toy network

We first test the bounded rational model framework discussed in the previous section, on a toy Braess network and
consider a static flow dependent utility function. The goal of these simple initial tests are to assess and acquire insight
into how the route flows at equilibrium change according to the two definitions of the search order (i.e. indifferent and
strict preference search order) and increasing values of ALod. The ALod are defined exogenously.

3.1. Definition of the test network
For the first test, we consider that the perceived travel times (i.e., route utility) depend only on route flows and

route free-flow travel times. We resort to the following definition of the perceived route utility, Uk(Qk):

Uk(Qk) =
∑
a∈Γa

(Va(qa) + ϵa)δak,∀k ∈ Ωod (10)

where Va(qa) = θ1T a
f f + θ2qa and qa =

∑
l∈a
δalQl; T a

f f is the link free-flow travel time of link a; qa is the flow of link a;

δal is a dummy variable that equals 1 if route l uses link a, or 0 otherwise; Ql is the total flow of route l; and ϵa is the
error term associated with link a. θ1 and θ2 are parameters set to 1.

For the static tests, we consider the Braess network (Fig. 1). The choice set is: Ωk={1,4;2,5;1,3,5}, ∀k = 1, 2, 3.
The following sets of link free-flow travel times are considered: T 1

f f = 5, T 2
f f = 45, T 3

f f = 10, T 4
f f = 30, T 5

f f = 5.

Figure 1: Braess network.

For the MSA convergence, we set tol = 10−2,Φ = 0 and Nmax = 10000. A total demand of Qod = 10 is considered.
As a reference of user perfect rationality, we consider the DUE. Note that the ϵa terms are set to 0 for both the DUE and
the BR-DUE calculations. For the BR-SUE calculations, we consider a gamma distribution with a shape parameter
set to η = 1 and a scale parameter set to ζ = 4; and a total of M = 2000 error samples. The BR-DUE and BR-SUE are
calculated based on Algorithm 1, except that the link travel times are not updated considering the LWR mesoscopic
traffic simulator (Leclercq and Becarie, 2012). Instead, we consider the route utility as defined in Eq. 10, which does
not depend on congestion. The link travel times are only sampled at the initiation of the MSA descent procedure.

3.2. Indifferent preference search order and exogenous ALod

In this section, we analyze both the BR-DUE and BR-SUE results considering the users indifferent preference
search order and an exogenous definition of the ALod. We also analyze the algorithms convergence towards the
equilibrium solution through the Gap function. To define the search order, we consider a uniform distribution to
simulate the users choices among the set of satisficing routes ωod. This procedure must be repeated many times to
reach convergence by the Law of large numbers (on average) with the same solution of route flows. Then, for each
value of ALod, we repeat the assignment procedure 1000 times and calculate the average route flows and corresponding
standard deviation. We do so for both the BR-DUE and BR-SUE calculations. First, under DUE conditions, only
routes 1 and 3 are used. This means that T UE = U1 = U3 < U2 and corresponds to the route flows: Q1 = 1.7, Q2 = 0
and Q3 = 8.3. Note that T UE is the route travel times at the User Equilibrium.

We first analyze the BR-DUE results, calculated for increasing values of ALod. These results are listed in Table 2.
The first test consists in reproducing the perfect rationality behavior, by setting ALod = T UE = 46.7. The route flows
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under BR-DUE are similar to the DUE. Then, to analyze the equilibrium results for increasing values of ALod ∈
[0,+∞[, we must first identify the critical points for the BR-DUE, that is to say the utility values of each route when
the total demand Qod is assigned to each of the routes. We first consider Q1 = 10, Q2 = 0 and Q3 = 0, which yields
U1 = 55. Similarly for route 2, U2(Q1 = 0,Q2 = 10,Q3 = 0) = 60, and route 3, U3(Q1 = 0,Q2 = 0,Q3 = 10) = 50.
These critical points play an important role in analyzing the equilibrium solutions. The minimum of the critical
points indicate the value of ALod from which the objective function is no longer convex. We analyze the BR-DUE
route flows for increasing values of ALod in more detail. For ALod ∈ [T UE , 50[, the users switch from route 3 to 1.
Note that the users switch from the satisficing routes with higher route flows to the ones with lower route flows. For
ALod ∈ [50, 55[, the algorithm does not converge to the same solution as evidenced by the standard deviation values
listed in Table 2. For example, for ALod = 50, two feasible solutions are found: (Q1 = 5,Q2 = 0,Q3 = 5) which
yields (U1 = 50,U2 = 55,U3 = 40); and (Q1 = 0,Q2 = 0,Q3 = 10) that yields (U1 = 45,U2 = 60,U3 = 50).
The convergence of the algorithm to any of these feasible solutions depends on the initial loading of the network
for the MSA algorithm. This explains why we do not converge to the same set of route flows for ALod ≥ 50. For
ALod ∈ [55, 60[, route 2 becomes satisficing and users switch from routes 3 and 1 to route 2. For ALod ≥ 60, the route
flows will converge to 1/3 as the value of ALod increases. This represents the users indifference for choosing any of
the satisficing routes.

ALod Q1/Qod Q2/Qod Q3/Qod U1 U2 U3 Gap
46.7 0.17 ± 0.00 0.00 ± 0.00 0.83 ± 0.00 46.7 58.2 46.7 0.00
47.5 0.25 ± 0.00 0.00 ± 0.00 0.75 ± 0.00 47.5 57.4 45.0 0.01
48.0 0.30 ± 0.00 0.00 ± 0.00 0.70 ± 0.00 48.0 56.9 44.0 0.03
48.5 0.35 ± 0.00 0.00 ± 0.00 0.65 ± 0.00 48.5 56.4 43.0 0.04
49.0 0.40 ± 0.00 0.00 ± 0.00 0.60 ± 0.00 49.0 55.9 42.0 0.06
49.5 0.45 ± 0.00 0.00 ± 0.00 0.55 ± 0.00 49.5 55.4 41.0 0.09
50.0 0.34 ± 0.23 0.00 ± 0.00 0.66 ± 0.23 48.4 56.6 43.1 0.11
51.0 0.35 ± 0.23 0.00 ± 0.00 0.65 ± 0.23 48.5 56.5 42.9 0.12
52.0 0.35 ± 0.23 0.00 ± 0.00 0.65 ± 0.23 48.4 56.5 43.0 0.12
53.0 0.36 ± 0.23 0.00 ± 0.00 0.64 ± 0.23 48.5 56.4 42.7 0.12
54.0 0.36 ± 0.23 0.00 ± 0.00 0.64 ± 0.23 48.5 56.4 42.8 0.12
55.0 0.43 ± 0.31 0.01 ± 0.01 0.56 ± 0.31 49.2 55.7 41.1 0.24
56.0 0.43 ± 0.32 0.04 ± 0.04 0.53 ± 0.33 48.8 56.1 40.6 0.23
57.0 0.42 ± 0.31 0.08 ± 0.07 0.50 ± 0.32 48.3 56.6 40.0 0.26
58.0 0.41 ± 0.30 0.13 ± 0.10 0.46 ± 0.31 47.8 57.1 39.1 0.28
59.0 0.37 ± 0.31 0.16 ± 0.13 0.47 ± 0.33 47.0 57.9 39.4 0.30
60.0 0.37 ± 0.29 0.21 ± 0.15 0.41 ± 0.30 46.6 58.4 38.2 0.33
65.0 0.40 ± 0.28 0.24 ± 0.15 0.36 ± 0.26 46.5 58.4 37.1 0.34
70.0 0.35 ± 0.29 0.30 ± 0.26 0.35 ± 0.29 45.4 59.5 37.0 0.41
75.0 0.35 ± 0.28 0.33 ± 0.27 0.33 ± 0.27 45.2 59.7 36.5 0.44

100.0 0.32 ± 0.28 0.33 ± 0.28 0.35 ± 0.29 44.9 60.0 36.9 0.45

Table 2: BR-DUE route flows for different values of the ALod . The Gap values represent average values based on 1000 repetitions of the BR-DUE
calculations.

We investigate the algorithms convergence for different values of ALod, as shown in Fig. 2. To do this, we consider
a total of 50 descent steps j of the MSA algorithm, despite the convergence criterion of Gap ≤ 10−2 being verified
for a lower number of j. This allows observing that the solution no longer changes after the convergence criterion
is satisfied. In Fig. 2, we show the evolution of the Gap and route flows for increasing values of j, for the DUE and
ALod = T UE , 48, 53, 100. For all five cases, the Gap value converges to a constant value for increasing values of j as
well as the route flows.

We analyze the BR-SUE results for increasing values of ALod. These results are listed in Table 3. Under SUE
conditions, only routes 1 and 3 are satisficing. But, due to the users perception of travel times, there is a residual flow
on route 2. For ALod ∈ [48, 55], the users change from route 3 to 1. For ALod ≥ 60, route 2 becomes satisficing and
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the users also start choosing this route. The comparison of the BR-DUE and BR-SUE results for ALod ≥ 65 are of
particular interest. In both cases, the route flows converge to 1/3 when the value of ALod is sufficiently large. This
represents the users indifference for choosing any of the satisficing behaviors, since all the routes comply with the
condition defined by Eq. 1. The effect of the perception of the route travel times explains the small differences verified
in the route flows between the BR-DUE and BR-SUE for the same value of ALod. For example, it is interesting to
consider the case where ALod = 70. The BR-DUE route flows are (Q1 = 3.5; Q2 = 3; Q3 = 3.5) and the BR-SUE
route flows are (Q1 = 3.8; Q2 = 2.5; Q3 = 3.7). It can also be seen from the BR-SUE results shown in Table 3, that the
MSA algorithm converges to the same solution, as evidenced by the standard deviation of the route flows. To solve the
BR-SUE, we solve M BR-DUE problems locally, and since the search order is the indifference preferences, the users
are assigned A times for each BR-DUE problem. By applying the Law of large numbers, we converge on average to
the same solution when A is sufficiently large.

ALod Q1/Qod Q2/Qod Q3/Qod U1 U2 U3 Gap
∼ 0.35 0.03 0.62 48.2 56.8 42.4 0.005

46.7 0.35 ± 0.00 0.03 ± 0.00 0.62 ± 0.00 48.2 56.8 42.6 0.06
48.0 0.35 ± 0.00 0.03 ± 0.00 0.62 ± 0.00 48.1 56.9 42.4 0.06
50.0 0.35 ± 0.00 0.03 ± 0.00 0.62 ± 0.00 48.2 56.8 42.3 0.08
55.0 0.40 ± 0.00 0.03 ± 0.00 0.57 ± 0.00 48.6 56.4 41.4 0.08
60.0 0.42 ± 0.01 0.09 ± 0.01 0.49 ± 0.01 48.3 56.7 39.7 0.13
65.0 0.41 ± 0.01 0.18 ± 0.01 0.41 ± 0.01 47.2 57.8 38.2 0.19
70.0 0.38 ± 0.01 0.25 ± 0.01 0.37 ± 0.01 46.3 58.7 37.4 0.24
75.0 0.36 ± 0.01 0.29 ± 0.01 0.35 ± 0.01 45.6 59.4 37.0 0.26
100.0 0.33 ± 0.00 0.33 ± 0.00 0.33 ± 0.00 45.0 60.0 36.7 0.29

Table 3: BR-SUE route flows for different values of the ALod .

We also observe that for both the BR-DUE and BR-SUE results, the average Gap values increase as we increase
ALod, as expected. This represents the effect of the satisficing behavior, where users choose satisficing routes instead
of the routes with the shortest travel times.

3.3. Strict preference search order and exogenous ALod

In this section, we analyze the BR-DUE results calculated considering an exogenous definition of ALod and a strict
preference search order (Zhao and Huang, 2016). We calculate the BR-DUE results for the Braess network (Fig. 1),
considering the six possible strict preference search orders (Υod,∀k = 1, 2, 3). For the calculations, we consider
our bounded rational model framework and the model discussed by Zhao and Huang (2016). The mathematical
methodology discussed by Zhao and Huang (2016) is not suitable for a dynamic implementation considering a traffic
simulator. This is because it requires solving sub-optimization problems to calibrate the AL of the sub-preferred routes.
In this section, we compare the route flows calculated considering the two frameworks and the six preference search
orders. The ALod are set exogenously according to each strict preference order. We apply the model discussed by Zhao
and Huang (2016), considering that the utility of the most preferred route is equal to the value of the aspiration level
ALod; and the route flows of the remaining routes correspond to the result obtained by solving the sub-UE problem,
as done by Zhao and Huang (2016). The results are listed in Tab. 4.

It can be seen that when ALod = T UE = 46.6, the route flows obtained for both models are equivalent to the DUE
result. Thus, both models are able to reproduce the users perfect rationality whatever the preference order.

Consider the first strict preference order Υod = 1, 2, 3. For 47.5 ≤ ALod < 50, in both models the users switch
directly from route 3 to the most preferred route 1. The flows on these two routes are equal for both models. But in
our model, route 2 is not selected because it is not considered as satisficing whereas in the model of Zhao and Huang
(2016), the assignment problem solved is: U1 = A1 and U2 = U3. Under sub-User Equilibrium (sub-UE) conditions,
U2 > U3. This means that the remaining users that have not chosen the most preferred route 1 will choose route 3.
In our model, the users are assigned to the most preferred route until the satisficing condition (Eq. 1) is satisfied.
Users are then assigned to the sub-preferred routes if and only if they are satisficing. Since route 2 is not satisficing,
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Our model Zhao and Huang (2016)
ALod Q1/Qod Q2/Qod Q3/Qod U1 U2 U3 Q1/Qod Q2/Qod Q3/Qod U1 U2 U3

Preference order Υod = 1 2 3
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.5 0.25 0.00 0.75 47.5 57.5 45.0 0.25 0.00 0.75 47.5 57.5 45.0
50.0 0.50 0.00 0.50 50.0 55.0 40.0 0.50 0.00 0.50 50.0 55.0 40.0
52.5 0.87 0.13 0.00 52.5 52.5 30.0 0.75 0.00 0.25 52.5 52.5 35.0
55.0 1.00 0.00 0.00 55.0 50.0 30.0 1.00 0.00 0.00 55.0 50.0 30.0

Preference order Υod = 1 3 2
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.5 0.25 0.00 0.75 47.5 57.5 45.0 0.25 0.00 0.75 47.5 57.5 45.0
50.0 0.50 0.00 0.50 50.0 55.0 40.0 0.50 0.00 0.50 50.0 55.0 40.0
52.5 0.75 0.00 0.25 52.5 52.5 35.0 0.75 0.00 0.25 52.5 52.5 35.0
55.0 1.00 0.00 0.00 55.0 50.0 30.0 1.00 0.00 0.00 55.0 50.0 30.0

Preference order Υod = 2 1 3
46.6 0.17 0.00 0.83 46.7 58.3 46.7 ∼ ∼ ∼ ∼ ∼ ∼
47.5 0.25 0.00 0.75 47.5 57.5 45.0 ∼ ∼ ∼ ∼ ∼ ∼
50.0 0.50 0.00 0.50 50.0 55.0 40.0 ∼ ∼ ∼ ∼ ∼ ∼
55.0 0.75 0.25 0.00 50.0 55.0 30.0 0.50 0.00 0.50 50.0 55.0 40.0
60.0 0.50 0.50 0.00 45.0 60.0 30.0 0.125 0.125 0.75 45.0 60.0 45.0
65.0 0.25 0.75 0.00 40.0 65.0 30.0 0.00 0.50 0.50 40.0 65.0 40.0
70.0 0.00 1.00 0.00 35.0 70.0 30.0 0.00 1.00 0.00 35.0 70.0 30.0

Preference order Υod = 2 3 1
46.6 0.17 0.00 0.83 46.7 58.3 46.7 ∼ ∼ ∼ ∼ ∼ ∼
47.5 0.13 0.00 0.87 46.3 58.7 47.5 ∼ ∼ ∼ ∼ ∼ ∼
50.0 0.00 0.00 1.00 45.0 60.0 50.0 ∼ ∼ ∼ ∼ ∼ ∼
55.0 0.00 0.00 1.00 45.0 60.0 50.0 0.50 0.00 0.50 50.0 55.0 40.0
60.0 0.00 0.00 1.00 45.0 60.0 49.9 0.125 0.125 0.75 45.0 60.0 45.0
65.0 0.00 0.50 0.50 40.0 65.0 40.0 0.00 0.50 0.50 40.0 65.0 40.0
70.0 0.00 1.00 0.00 35.0 70.0 30.0 0.00 1.00 0.00 35.0 70.0 30.0

Preference order Υod = 3 1 2
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.0 0.15 0.00 0.85 46.5 58.5 47.0 0.15 0.00 0.85 46.5 58.5 47.0
48.0 0.10 0.00 0.90 46.0 59.0 48.0 0.10 0.00 0.90 46.0 59.0 48.0
49.0 0.05 0.00 0.95 45.5 59.5 49.0 0.05 0.00 0.95 45.5 59.5 49.0
50.0 0.00 0.00 1.00 45.0 60.0 50.0 0.00 0.00 1.00 45.0 60.0 50.0

Preference order Υod = 3 2 1
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.0 0.15 0.00 0.85 46.5 58.5 47.0 0.15 0.00 0.85 46.5 58.5 47.0
48.0 0.10 0.00 0.90 46.0 59.0 48.0 0.10 0.00 0.90 46.0 59.0 48.0
49.0 0.05 0.00 0.95 45.5 59.5 49.0 0.05 0.00 0.95 45.5 59.5 49.0
50.0 0.00 0.00 1.00 45.0 60.0 50.0 0.00 0.00 1.00 45.0 60.0 50.0

Table 4: Route flow distribution for the Braess network for different values of the AL and under BR-DUE conditions. A set of strict preferences is
considered for the search order.

the remaining users choose route 3. Thus, both models yield similar route flows for these two values of ALod. For
ALod = 52.5, route 2 becomes satisficing for our model. Thus the users will switch according to the strict preference
order Υod. Thus, the users will first switch from route 3 to 2 and then from 2 to 1. In the case of the model of Zhao
and Huang (2016), the sub-UE solution corresponds to U2 > U3. Thus, no user chooses route 2. For ALod ≥ 55, all
the users choose the most preferred route 1 for both models.

Consider the second strict preference order Υod = 1, 3, 2. In this case, the users switch directly from route 3 to the
most preferred route 1 as ALod increases. In the case of our model, the users are assigned to the most preferred route
until it is considered as satisficing. Then, the remaining users are assigned to the sub-preferred route 3. In the case
of the model of Zhao and Huang (2016), the sub-UE solution also corresponds to U2 > U3 and thus no users choose
route 2. So, for this strict preference order, both models give similar route flows as ALod increases.

Consider the third strict preference order Υod = 2, 1, 3. Given this preference order and for ALod ≤ 50, route 2
is not satisficing for our model. Therefore, the users will switch from route 3 (the less preferred) to the second most
preferred route 1. The model of Zhao and Huang (2016) cannot be applied for ALod < 55, since ALod , U2. This
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would lead to a violation of the strict preference order assumption. We make this assumption more flexible. Although
route 2 is the most preferred route, it is not considered as satisficing and the users choose other most preferred routes
that are satisficing. This is the case of route 1. In the case of our model, for ALod ≥ 55, all the users switch from route
1 to 2 (the most preferred one). In the case of the model of Zhao and Huang (2016), the users will switch from route 1
to routes 2 and 3 (for ALod = 55 and ALod = 60) and then from 3 to 2 (for ALod = 65 and ALod = 70). Although route
3 is that least preferred, the users switch from route 1 to 3. Note that we solve the following assignment problem for
the model of Zhao and Huang (2016): ALod = U2 and U1 = U3.

Consider the fourth strict preference order Υod = 2, 3, 1. In the case of our model, for ALod ≤ 60, route 2 is
not satisficing. Therefore, all the users switch from route 1 to 3 in accordance with the strict preference order. For
ALod ≥ 60, route 2 becomes satisficing and the users switch from route 3 to 2. In the case of the model of Zhao and
Huang (2016), the condition ALod = U2 is satisfied only for ALod ≥ 55. For ALod ≥ 55, we observe a route flow
pattern similar to that in the previous strict preference order (Υod = 2, 1, 3) for the same reasons discussed previously.

Consider the fifth and sixth strict preference orders Υod = 3, 1, 2 and Υod = 3, 2, 1. In the case of our model,
route 2 is not satisficing for these two strict preference orders. Thus, users switch directly from route 1 to 3, as ALod

increases. For ALod ≥ 50, all users choose the most preferred route 3. In the case of the model of Zhao and Huang
(2016), we solve the following assignment problem: ALod = U3 and U1 < U2 (sub-UE problem). Since U1 < U2 for
all the listed values of ALod, the remaining users that have not chosen route 3 choose route 1 for both strict preference
orders. This is why we observe similar route flows for both models and both strict preference orders.

In summary, we validate our bounded rational framework considering a strict users preference search order, by
comparing the route flows at equilibrium with the results obtained by the model of Zhao and Huang (2016). Moreover,
our bounded rational framework is suitable for dynamic implementation with a traffic simulator and will be tested in
the next section.
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Figure 2: Gap (left) and route flows (right) as a function of the increasing number of MSA descent steps j for the DUE and several values of
ALod = T UE , 48, 53, 100.
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4. Dynamic implementation on a Manhattan network

In this section, we investigate the influence of different types of bounded rational user behavior on: (i) individual
route flows; (ii) network performance in terms of its internal, inflow and outflow capacities. To do this, we consider the
implementation of the bounded rational framework described in Algorithm 1. To determine the time-dependent cost
paths that account for congestion, shock-waves and spillback effects, we consider a mesoscopic LWR traffic simulator
(Leclercq and Becarie, 2012). The tests are performed on a Manhattan network. We consider the indifferent and strict
preference search orders and both definitions of the ALod, as in Eq. 2 and Eq. 3.

4.1. Test scenario definition
For the dynamic implementation, we consider the Manhattan network composed of 134 links, as shown in Fig. 3.

All the links have the same length of 100 meters. Traffic lights regulate all the intersections. A green light duration
of 45 seconds is considered for the traffic lights of the horizontal links whereas a duration of 15 seconds is considered
for the traffic lights of the vertical links. Green times are set in the West-East and in the North-South directions. The
offsets considered are of 10 and 20 seconds.

Figure 3: Manhattan network.

A triangular fundamental diagram is considered for each lane of the network, with the following parameters:
u = 15 (m/s), for the free-flow speed; w = 5 (m/s) for the wave speed; and k jam = 0.2 (veh/m/lane) for the jam density.
The entry links (i.e., from O1 to 6) have two lanes. The total link flow is assigned equally on each lane.

The Manhattan network shown in Fig. 3, has six entries (identified by O1 to O6 in Fig. 3) and exits (identified by
D1 to D6 in Fig. 3). For each of the six entries, we consider a constant inflow (demand) of 0.5 (veh/s). There is no
capacity restriction at the exits. There is a total of 36 possible od pairs. To define the choice set Ωod, we consider
3 paths per od pair. These paths are calculated using a K-shortest path algorithm. This gives a total of 108 routes,
considering the 36 possible od pairs.

For the dynamic tests and the bounded rational route choice model, we consider the endogenous definitions of the
indifference band for ALod as defined by Eq. 2 and Eq. 3 and two settings of the search order:
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• a indifferent preference search order, where users randomly choose any of the satisficing alternatives; or, the
least worst if there are no satisficing alternatives.

• a strict preference search order, where users have a strict preference for the routes with the most reliable travel
times. We consider the variances of the route travel times as the time reliability indicator. Then, the set of strict
preference is built by ordering the routes from the lowest to the highest variance value for each od pair. This set
of preferences is updated at every descent step of the MSA, based on the route travel time distributions of the
previous simulation.

Considering this search order, users seek satisficing alternatives based on this set of strict preferences and on
ALod. Similarly, for the strict preference search order discussed in Sect. 3.3, the users choose only the most
preferred route if it is perceived as satisficing, i.e. that conforms to Eq. 1. Then, if the most preferred route
is not perceived as satisficing, the users consider the other most preferred routes until they find one that is
satisficing. If none of the routes are satisficing, the users choose the route with the minimal travel time.

As a reference, we consider the DUE and SUE. To solve the SUE, we consider the Probit model with gamma
distributed error terms and use Monte Carlo simulations (Sheffi, 1985). For the indifference band defined by Eq. 2,
we consider three exogenous values for ∆od: 0; 100; and 500. We have a total of 10 simulation scenarios, considering
both search orders defined above. The total simulation period is T = 3000 seconds. For the convergence, we set
tol = 10−2, Φ = 0 and Nmax = 250.

4.2. Analysis of the individual route flows
In this section, we analyze the individual route flows for the 10 simulation scenarios. Each scenario is identified by

one ID number, as listed in Table 5. We also list the Gap values in Table 5, that are calculated using Eq. 8. In Fig. 6,
we show the distributions of the average route travel times for the 10 simulation scenarios. Note that, the average
travel time per route for each scenario (i.e., the average of these distributions) is also listed in Table 5. In Fig. 4 and
Fig. 5, we show the route flow distributions for each od pair of the network and all ten scenarios.

Model ID Model Preference Gap TTk
[s]

DUE 1 ∼ 0.3 315
SUE 2 ∼ 0.3 295

IB (∆od = 0) 3 Indifferent 0.3 294
IB (∆od = 100) 4 Indifferent 7.3 337
IB (∆od = 500) 5 Indifferent 14.7 332

IB (Ge and Zhou, 2012) 6 Indifferent 16.2 350
IB (∆od = 0) 7 Strict 68.0 312

IB (∆od = 100) 8 Strict 68.8 297
IB (∆od = 500) 9 Strict 68.8 297

IB (Ge and Zhou, 2012) 10 Strict 69.1 297

Table 5: The Gap value and the average travel times per route TTk [in s] calculated from the distributions shown in Fig. 6 are also listed. These
values are listed for the DUE, SUE and different settings of the indifference band.

We analyze the individual route flows shown in Fig. 4 and Fig. 5. By setting ∆od = 0 (Model 3), we observe that
for the indifferent preference search order, we obtain similar route flows compared to the SUE (Model 2). However,
this is not observed for the strict preference search order, when comparing ∆od = 0 (Model 7) and the SUE (Model
2). This is due to the specific definition of the search order, where the routes with the most reliable travel times (i.e.
with the lowest variances) may not correspond to the routes with the lowest travel times. This is also evidenced by
the Gap values listed in Table 5, for the settings of the strict preference search order. Also note that in the case of
the indifferent preference search order, setting ∆od = 0, only the lowest travel time route per od pair is considered as
satisficing at each descent step of the MSA. For the indifferent preference search order, the users indifference increases
as we increase ∆od from 0 to 500,. The route flows will then converge to 1/3 for all the od pairs (Model 5, in Fig. 4
and Fig. 5). For ∆od = 500, the indifference band is sufficiently high with the result that all the routes in Ωod for
all od pairs are satisficing. Thus, the users can choose any of the routes. Since the users indifference increases, they
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are will choose routes with higher travel times and consequently the Gap value also increases. Note that here, the
Gap indicates how far the simulation results are from the DUE; also it is calculated as in Eq. 8. On the other hand,
the distributions of the average route travel times (Fig. 6) also shift towards longer travel times due to an increase in
user indifference. The average travel times per route also increase from 295 seconds for ∆od = 0 to 332 seconds for
∆od = 500. The strict preference search order reduces the variances of the distributions of the average route travel
times compared to the indifferent preference search order.

4.3. Analysis of the aggregated traffic stats of the network

In this section, we analyze the network performance in terms of its inflow capacity and internal accumulation of
vehicles. In Fig. 7, we show the evolution of the total traveled distance (TTD) as well as the outgoing flow Qout as a
function of the total travel time (TTT), for both definitions of the search orders and all the simulation scenarios. Fig. 7
shows that the network capacity is higher for the strict preference search order case. This is observed by comparing the
∆od = 500 for both search orders, where the TTD is much lower for the indifferent preference search order compared
to the strict preference search order. It can also be seen that the network capacity is approximately similar for the strict
preference search order and the different settings of the indifference band. While, for the indifferent preference search
order, the network capacity decreases with an increase of the ∆od. This also increases the average waiting time for the
vehicles to enter the network. The average waiting times per vehicle are: 51 s for the DUE; 52 s for the SUE; 52 s
for ∆od = 0; 54 s for ∆od = 100; 61 s for ∆od = 500; and 57 s for the setting of the indifference band defined by Ge
and Zhou (2012). Note that these are the averaging waiting times for the indifferent preference search order. On the
other hand, since the network capacity is approximately similar for the strict preference search order and the different
settings of ∆od, the average waiting times per vehicle to enter the network are similar. The average waiting times for
the strict preference search order are: 74 s for ∆od = 0; 73 s for ∆od = 100; 75 s for ∆od = 500; and 74 s for the setting
of the indifference band defined by Ge and Zhou (2012). From Fig. 7, we can also observe a clear impact of the users
search order on the total travel time spent on the network. For example, for ∆od = 500, the TTT is larger for the strict
preference compared to the indifferent preference search order. This induces a lower internal network performance.
Also, in the case of the indifferent preference search order, users will tend to choose routes with higher travel times
as ∆od increases. This leads to an increase of the accumulation of vehicles inside the network and consequently users
spend more time to complete their trips. Also, the outflow Qout of vehicles decreases as ∆od increases (Fig. 7). Note
that a lower outflow Qout means lower system efficiency.

In summary, we show that different types of bounded user rationality have different impacts on the network
performance. Considering the indifferent preference search order where users present an indifference behavior for all
of the satisficing routes, as ∆od increases, the internal and outflow capacities of the network decrease. However, when
considering the strict user preference order, both the internal and outflow capacities of the network are approximately
similar as ∆od increases.
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Figure 4: Route flow distributions for the 10 simulation scenarios and for the od pairs: o = 1, . . . , 6; and d = 1, 2, 3. Each simulation scenario is
identified by the Model ID equivalent to the ID values listed in Table 5.
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Figure 5: Same as in Fig. 4, but for the od pairs: o = 1, . . . , 6; and d = 4, 5, 6.
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Figure 6: Average route travel time distributions for the DUE, SUE and different settings of the indifference band.
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5. Conclusions

Users route choices determine the level of congestion on a road network. Thus understanding the effects of users
behavior is important for transportation network planning policies. In this paper, we investigated the influence of
two types of bounded rational behavior, considering users preferences for the search order (i.e. indifferent and strict
preferences), on individual route flows and network performance. To do this, we considered a dynamic implementation
of a bounded rational framework, using a mesoscopic LWR traffic simulator (Leclercq and Becarie, 2012). The route
costs were time-dependent and accounted for congestion, shock-waves and spillback effects. To model the bounded
rationality behavior, we relaxed the definition of the search order of the DUE and SUE frameworks (Sheffi, 1985).
Thus, instead of using an all-or-nothing procedure to assign the users to the route(s) with the minimum travel time(s),
they were assigned according to a more flexible definition of the search order according to user preferences. We
also considered both definitions of the indifference band (Eq. 2 and Eq. 3) for ALod. To account for the distributions
of travel times, we used Monte Carlo simulations (Sheffi, 1985) and algorithm based on the Method of Successive
Averages was presented to solve the network equilibria.

To first assess and gain insight into the changes of route flows at equilibrium, ALod, and for both user search orders,
we considered a static implementation on the toy Braess network. The results obtained with the indifferent preference
search order revealed that: (i) the bounded rational model framework is able to reproduce both DUE and SUE; (ii)
when ALod is sufficiently large, the route flows converge to 1/3, showing the user indifference for the route choice; (iii)
the algorithm discussed converges. Also, based on this simple numerical test, we showed that we converge towards
the same solution of the BR-SUE calculated, based on averaging over all local BR-DUE problems. In the second test,
considering the strict user preference order, we showed that the route flows calculated between our model and the
model of Zhao and Huang (2016) reach good agreement. This validated our methodology applied to determine the
search order in a dynamic context.

We also investigated the influence of the two settings of the users search order on the individual route flows and
network performance, considering both definitions of ALod as defined in Eq. 2 and Eq. 3. These tests were performed
in a dynamic context, using the mesoscopic LWR traffic simulator (Leclercq and Becarie, 2012). We first showed
that we were able to reproduce the SUE, by setting ∆od = 0 for the indifferent preference search order. For the strict
preference search order, we did not obtain route flows similar to the SUE when setting ∆od = 0. This is due to the fact
that routes with the most reliable travel times did not necessarily have the minimal travel time per each od pair. We
also showed that for the indifferent preference search order, the route flows also tended to 1/3 as we increased ∆od.

We then showed that bounded user rationality had a significant impact on network performance. For the indifferent
preference search orders, the network inflow capacity decreased as ∆od increased; and the network performance
decreased as ∆od increased. The outflow Qout also decreased as ∆od increased. For the strict preference search order,
the network capacity was approximately similar for the different settings of the indifference band. However, since
users were allowed to choose routes with longer travel times as ∆od increased, the TTT increased and the internal
performance of the network decreased. In brief, we showed that different types of bounded rationality have clearly
different influences on network performance. This is very important when guiding policy makers to decide the best
measures to implement in order to increase network performance.

As future work, we can extend this work in many directions. We first plan to extend this work to the macroscopic
fundamental diagram (MFD) simulation. We also plan to extend this framework to heterogeneous classes of users. The
heterogeneity can either be included in the search order or on the setting of the ALod. And, we also plan to extend this
model to a day-to-day assignment, by considering a learning process (e.g., based on reinforcement learning models)
either on the ALod or the users search order definition. We also emphasize that further research in the setting of the
ALod is required. The setting of the preference orders in the search process allows to consider heterogeneous classes
of users, with a preference for transportation mode, for example. However, we note that this users heterogeneity can
also be included in the setting of the AL instead of the search order. In this case, the total demand Q of the od pair
should be split into homogeneous groups of users with the same preference. The AL should then be defined per od
and class of users. For each class of users, they are assigned based on an all-or-nothing assignment to one of the routes
listed in ωod.
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