Alessio Alexiadis

Coupling Discrete Multiphysics with Machine Learning to attain self-learning in-silico models replicating human physiology

Objectives: The objective of this study is to devise a modelling strategy for attaining in-silico models replicating human physiology and, in particular, the activity of the autonomic nervous system.

Method: Discrete Multiphysics (a multiphysics modelling technique) and Reinforcement

Learning (a Machine Learning algorithm) are combined to achieve an in-silico model with the ability of self-learning and replicating feedback loops occurring in human physiology.

Computational particles, used in Discrete Multiphysics to model biological systems, are associated to (computational) neurons: Reinforcement Learning trains these neurons to behave like they would in real biological systems.

Results: As benchmark/validation, we use the case of peristalsis in the oesophagus. Results

show that the in-silico model effectively learns by itself how to propel the bolus in the oesophagus.

Conclusions:

The combination of first principles modelling (e.g. multiphysics) and machine learning (e.g. Reinforcement Learning) represents a new powerful tool for in-silico modelling of human physiology. Biological feedback loops occurring, for instance, in peristaltic or metachronal motion, which until now could not be accounted for in in-silico models, can be tacked by the proposed technique

Introduction

Computational methods such as Computational Fluid Dynamics and, more in general, Multiphysics were initially designed for problems in physics and engineering. Nowadays, however, they also are widespread in biology and medicine, and the scientific literature contains many examples of in-silico models dedicated, for instance, to the respiratory system [START_REF] Koullapis | In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways[END_REF][START_REF] Kassinos | Discrete multi-physics simulations of diffusive and convective mass transfer in boundary layers containing motile cilia in lungs[END_REF], the cardiovascular system [START_REF] Quarteroni | The Cardiovascular System: Mathematica Modeling, Numerical Algorithms, Clinical Applications[END_REF][START_REF] Allouche | Discrete multiphysics: a mesh-free approach to model biological valves including the formation of solid aggregates at the membrane surface and in the flow[END_REF] or the gastrointestinal system [START_REF] Sinnott | Investigating the relationships between peristaltic contraction and fluid transport in the human colon using Smoothed Particle Hydrodynamics Computers in[END_REF][START_REF] Alexiadis | Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system Computers in[END_REF].

There is a fundamental difference, however, between modelling engineering systems and biological systems, especially in the case of human physiology. Normally, engineering systems are fully accessible to us; they follow the well-known laws of physics and chemistry, and can be simulated simply on the basis of these laws. Human physiology also follows these laws, but has an additional layer of difficulty due to the activity of the autonomic nervous system (ANS).

The ANS acts as active feedback controller that regulates our bodily activities ensuring their correct functioning and, in general, coordinates the feedback loop between the perception of the environment and the consequent response of the body. For example, to remove microbes and particles out of the airways, pulmonary cilia move in a synchronized fashion known as metachronal wave. The cilia can sense the environment and, accordingly, readjust their movement over time to maintain the metachronal motion. This 'readjustment' is regulated by the ANS. Another example is peristalsis that occurs in the digestive tract: muscle tissue contracts in sequence to propel a mass of food down the tract. Also peristalsis requires the ability of the ANS to sense the presence of the food and act accordingly by contracting or relaxing specific parts of the tract.

The main difficulty in modelling ANS-regulated systems is that we usually do not know the 'biological algorithm' that connects the perception of the environment with the response of the system.

In the literature, this issue is generally tackled either by ad hoc solutions or by ignoring the feedback altogether. For example, in [START_REF] Kassinos | Discrete multi-physics simulations of diffusive and convective mass transfer in boundary layers containing motile cilia in lungs[END_REF] we used Discrete Multiphysics (DMP) to model mass transfer in the respiratory ciliated layer. The synchrony of the metachronal wave was maintained over time by means of an ad hoc solution that takes advantage of the discrete nature of DMP. The model accounts for a 'ghost parabola' that only interacts with the cilia (Figure 1) and, by moving along the domain, ensures the cilia never lose their coordination. This approach, however, is a sort of numerical trick that cannot be extended to other situations. Another example concerns peristalsis in the intestine. Contraction of intestinal walls follows a complex pattern that depends on the amount of food in the intestine (i.e. pressure on the wall) and its chemical composition (e.g. bitter substances increase intestinal motility). However, the actual feedback mechanism that links these factors with the shape of the peristaltic wave is still unknown. To avoid this issue, [START_REF] Sinnott | Investigating the relationships between peristaltic contraction and fluid transport in the human colon using Smoothed Particle Hydrodynamics Computers in[END_REF] model transport in the small intestine only considering a completely full tract and a predetermined peristaltic wave without feedback. A DMP approach, in this case, would not help. In Alexiadis et al. [START_REF] Alexiadis | Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system Computers in[END_REF], we proposed a DMP model of the colon capable of dealing with partially filled tracts. However, to bypass the unknown feedback mechanism, we validated the model with in-vitro data obtained from predetermined peristaltic waves [START_REF] Stamatopoulos | Dissolution profile of theophylline modified release tablets, using a biorelevant Dynamic Colon Model (DCM)[END_REF]. These examples demonstrate that in-silico modelling of human physiology could greatly benefit from the ability to reverse-engineer biological feedbacks. To achieve this goal, this study proposes a methodology that combines Multiphysics and Machine Learning. The Multiphysics component of our method is based on Discrete Multiphysics (DMP), the Machine Learning component on Reinforcement Learning (RL). As benchmark/validation case, we use peristalsis in the oesophagus, which is one of the few feedback loops in human physiology that is well understood and can be modelled also without Machine Learning. To assess its validity, the model obtained by the Machine Learning algorithm is compared with a model devised without the use of Machine Learning.

Both the first principles model (discrete multiphysics) and the Artificial Intelligence algorithm (reinforcement learning) used in the benchmark are relatively well known and well tested.

The real novelty of this study is, as discussed in the conclusions, the in parallel coupling of the two methods. The significance of this approach for medical research relates specificity to the contemporary development of in-silico medicine. Currently, the main limitation of computer models of human organs lies in the difficulty of accounting for the action of the autonomic nervous system. The proposed methodology can potentially open a new chapter in in-silico medicine by allowing the computer model to learn by itself the biological feedback of the autonomic nervous system and replicate its effect in the in-silico model.

Discrete Multiphysics (DMP)

A brief overview of Discrete Multiphysics

Multiphysics simulations are nowadays widespread in both industry and academia and allow tackling problems involving multiple physical models or simultaneous physical phenomena.

Several commercial and open source codes (e.g. COMSOL, Elmer, Ansys Multiphysics) are available for solving multiphysics problems which, typically, involve solving coupled systems of partial differential equations on a computational mesh.

Differently from traditional multiphysics, Discrete Multiphysics is a mesh-free Multiphysics technique based on 'computational particles' rather than on computational meshes [START_REF] Alexiadis | A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique for modelling elastic particles and breakable capsules under various flow conditions[END_REF].

DMP is a hybrid approach that combines different particle methods such as Smoothed Particle Hydrodynamics (SPH), Lattice-Spring Model (MSM) and the Discrete Element Method (DEM). These techniques, in fact, follow the same computational paradigm and are particularly effective when coupled together in multiphysics applications. Typical problems where DMP has been used, involve solid-liquid flows [START_REF] Alexiadis | The Discrete Multi-Hybrid System for the simulation of solid-liquid flows[END_REF] and fluid-structure interactions applications [START_REF] Wen | Modelling and simulation of flow and agglomeration in deep veins valves using Discrete Multi Physics Computers in[END_REF].

Discrete Multiphysics, however, is more than an alternative to traditional Multiphysics, and there is a variety of situations where DMP can tackle problems that would be very difficult, if not impossible for traditional multiphysics. The reason for this lies in the discrete nature of DMP. In traditional multiphysics, sub domains are assigned during pre-processing: the user establishes before the simulation which part of the domain belongs to the solid domain and which part to the fluid domain; this choice cannot change during the simulation. In DMP, the distinction between solid and fluid depends on the type of force applied on the computational particle rather than its position on the mesh and, by changing the type of force, we can change the behavior of the particles from solid to liquid, or vice versa, during the simulation. This confers an advantage to Discrete Multiphysics over traditional multiphysics in cases such as modelling of cardiovascular valves including blood clotting [START_REF] Wen | Modelling and simulation of flow and agglomeration in deep veins valves using Discrete Multi Physics Computers in[END_REF][START_REF] Ariane | Using Discrete Multi-Physics for studying the dynamics of emboli in flexible venous valves[END_REF], phase transitions [START_REF] Alexiadis | Natural convection and solidification of phase-change materials in circular pipes: a SPH approach[END_REF], capsules breakup [START_REF] Alexiadis | A new framework for modelling the dynamics and the breakage of capsules, vesicles and cells in fluid flow[END_REF] and fuzzy boundaries [START_REF] Alexiadis | A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique for modelling elastic particles and breakable capsules under various flow conditions[END_REF].

In this paper, we show another advantage of DMP, which is its effective coupling with Machine Learning algorithms and, in particular, Reinforcement Learning.

The DMP oesophagus model

In this section, we describe the DMP oesophagus model that will be coupled with the Reinforcement Learning algorithm. The biological system comprises of a flexible tube (the oesophagus) and a central mass (the bolus). During peristalsis, the oesophagus senses the presence of the bolus and contract its smooth muscles (Figure 2). The biological feedback coordinates these two activities with the goal of propelling the bolus down the oesophagus. The DMP model employs the Lattice Spring Model (LSM) for the oesophagus and the discrete Element Model (DEM) for the interaction between the tube and the bolus. The wall (membrane) of the flexible tube is divided in 480 computational particles of mass m. Each of these computation particles is linked to an equilibrium point in space by a tethered spring (Figure 3a). The equilibrium positions of the tethered springs are arranged cylindrically to represent the elastic tube at zero-stress conditions (Figure 3b). The 480 particles of the tube are divided in 20 'slices' or 'rings' with 24 particles each. When a tube-particle is displaced from its equilibrium position, the spring reacts with a Hookean force

s F k x = - (1)
that opposes the displacement x and is proportional to the spring stiffness k s . If the flexible tube contains an object larger than its diameter, it deforms and reacts with a radial elastic force F (Figure 3c) pointing towards the axis of the tube. The oesophagus contractions are modelled by adding radial forces f c acting on the membrane particles. These forces are in the radial direction and point towards the axis of the tube. In Figure 1c, f c is applied to a single particle, but, in the 3D model, it is equally distributed to all particles belonging to the same 'slice' of the tube at a given axial position. In the simulations, the internal particle (bolus) is spherical with diameter D and mass M, the length of the tube is L, its radius R and the thickness of the membrane h (Figure 3d). The tube computational particles interact with the central particle by means of Hertzian contact forces consisting of a normal contact force f n defined as ()

n eff n eff n n f R k m v δ δ γ = - , (2)
where R eff = r i r j / (r i + r j), is the effective radius of the colliding particles i and j with radius r i and r j , k n is the stiffness of the contact, δ the overlap between particle i and j, γ n the viscoelastic damping coefficients and m eff = m i m j / (m i + m j) the effective mass of the colliding particles with mass m i and m j . The concepts of overlap δ is an abstract idea that allows the DEM to calculate the forces occurring during collision (Figure 4). The DEM model also assumes tangential forces, which we accounted for in other occasions [START_REF] Sommerfeld | Wall Collision And Drug-Carrier Detachment In Dry Powder Inhalers: Using DEM to devise a sub-scale model for CFD calculations[END_REF], but, for simplicity, are not considered here. There are three main features of the biological system that we want to capture in the DMP model: (i) sensory neurons located on the membrane that feel the pressure from the bolus, (ii) smooth muscles located on the membrane that can contract specific sections of the tract, and (iii) the feedback loop that coordinates the information from the sensory neurons to the muscle contractions. In the DMP model, (i) the pressure is measured by the force (or the displacement) acting on the tethered spring, and (ii) the muscle contraction is modelled by the additional forces f c (see Figure 1c). The feedback loop (iii), however, is lacking and will be added by means of the machine learning algorithm discussed in the next section.

Reinforcement Learning (RL)

A brief overview of Reinforcement Learning and Q-learning

Traditionally, Machine Learning is divided in three groups: Supervised Learning, Unsupervised Learning and Reinforcement Learning [START_REF] Raschka | Python Machine Learning 2nd edition[END_REF]. In Supervised Learning, we supply the machine with training data (x, y) and the model learns to map x to y. In Unsupervised Learning, we supply the machine with a set of data x, and the model looks for hidden patterns in the data. In Reinforcement Learning data are not necessary, the machine creates its own data by playing a sort of 'game', and the model is trained to improve its ability to play the game. This game consists of an environment, an agent, a set of states (s) that the agent can acquire, and a set of actions (a) that the agent can perform. Each action a changes the state s of the agent to a new state s'. Certain states are associated with a reward (r >0), other with a penalty (r <0): the goal of the agent is to find the optimal policy π(a, s) that maps states to actions in a way that maximizes the reward while playing the game.

where the policy is determined by the so-called quality Q of each action. From a given state, the agent chooses the action with the highest quality. In matrix notation, this is often represented with the so-called Q-matrix

0 0 0 1 1 0 1 1 , (,) (,) (,) (,) (,) (,)
i j i j Q s a Q s a Q s a Q s a Q s a Q s a Q     = = =       ⋯ ⋯ ⋮ ⋮ . (3
)
Each element Q ij indicates the quality of performing the action a j if the agent is in state s i .

The quality is defined by the recursive algorithm (Bellman equation) that links the current state s, the action a and the new state s' reached after the action is performed

(,) (,) max (,) (,) new old new old a Q s a Q s a r Q s a Q s a α γ ′   ′ ′ = + + -   . (4
)
The term max Q(s',a') returns the maximum Q value for the best possible action a' in the next state s'. In this way, the agent is looking forward to determine the best possible future rewards before deciding the current action a. The γ < 1 value is the so-called discounting factor; it decreases the impact of future rewards on deciding the action taken at state s. The α < 1 value is the so-called learning rate and control the update of Q(s,a) new at each iteration.

If the Q-matrix is known, the policy that establishes the best course of action from a given state s can be easily determined from the action with maximum Q-value, e.g.

(,) max (,)

a s a Q s a π ′ ′ = (5)
Initially, however, the Q-matrix is unknown and the goal of the RL algorithm is to recursively approximate the Q-matrix to a degree that allows deriving an acceptable (if not optimal) policy π. Usually, we start with an empty Q-matrix and, at first, the algorithm plays the game based on completely random choices of action. At the end of each game, it measures the reward and, by solving the Bellman equation (eq. 4), it gradually begins to populate the Q-matrix. If the computer would always play the game based on random actions, it would eventually explore the whole Q-matrix, but at the expenses of very long computational times. Therefore, the RL algorithm combines 'explorative' steps, based on random choices, with 'greedy' steps where the best course of action, based on the current approximation of the Q-matrix, is followed. At the beginning, with a scarcely populated Q-matrix, the RL algorithms favours exploration; as the Q-matrix gets populated, it gradually switches to a greedier approach.

Coupling the DMP model with the RL algorithm

In this section, we go from the previous, abstract, description of Q-Learning , to its concrete application within the oesophagus model. The 'game' is represented by the DMP model and the 'agent' by the bolus. The available states, the possible actions, and the consequent rewards are discussed hereafter.

The state is the position of the bolus in the tube. Apparently, we could simply assign the state as the centre of the bolus. This would be acceptable to the RL algorithm, but it would not be consistent with the biological model. In the biological model, the tube feels the presence of the bolus by perceiving the pressure against the membrane. Sensory neurons are distributed along the membrane; when the local pressure goes above a certain threshold, the neuron located at that location fires-up. The integration of the DMP with the RL algorithm should mimic this mechanism as close as possible. To achieve this, we take advantage of the discrete nature of DMP and associate a (computational) sensory neuron to each (computational) particle. In this way, each membrane's discrete element i is, at the same time, a neuron * and a DMP particle, which has a 'state' property s i besides the usual DMP properties (mass m i , velocity v i , position r i etc.). In Figure 5, each neuron is associated to a particle, but, since the actual model is 3D, it represents a full 'slice' of the tube (i.e. an axisymmetric ring of particles as shown in Figure 3b). During the calculation, the displacement ∆x i (proportional to the elastic force F i acting on the i th particle) is measured at every time step. If ∆x i > ∆x MAX (a threshold value) the i th neuron fires-up and its state is s i = 1; if ∆x i < ∆x MAX , the state is s i = 0. In the RL algorithm, all the states s i are collected in a boolean vector s. To reduce the number of states, we choose ∆x MAX so that only one neuron (the one with maximum pressure) fires up at a time. Therefore, if only the i neuron is active, s i = 1, and all the remaining elements of s are 0. This means that if the membrane is divided in N rings, the total number of different states vectors s is also N (1000 …, 0100 …, 0010 …, 0001 …, etc.). Also for the action, we can take advantage of the discrete nature of DMP and associate an actions a i with the i th membrane's computational particles. In the DMP model, we model a muscle contraction at the position z i with an additional force fc i applied to the i th computational particle (Figure 2d). In the RL algorithm, we represent the action as a boolean vector a. Each element a i of the vector a corresponds to a membrane particle (Figure 6): if a i = 1 the i th particle contracts and the force fc i is added to the particle; if a i = 0 the particle does not contract and no force is added. Differently from s, where only one element at the time can be equal to 1, more than one muscle can contract at the same time and, therefore, more than one element of a can be equal to 1 at the same time. If the membrane is divided in N rings, and since each element a i has only two possible values (1 or 0), the number of all possible actions is 2 N . For instance, if N = 3, the possible values of a would be (000), (100), (010), (110), (001), (101), (011), (111). Normally, N is larger than 3 (in our simulations, N = 20) and this is going to affect the size of the Q-matrix. We can reduce the possible values of a by noticing that only the contractions close to the bolus (i.e. where s i = 1) can reasonably affect the movement of the bolus. Therefore, we can only consider a moving window of M particles around the particle with s i = 1 (Figure 6). By considering only M particles, the size of a (i.e. the number of all possible actions) reduces to 2 M . In our calculations, M = 5. Now that the state, the action and the reward have been defined, we can explain, with the help of Figure 7, how the DMP model and the RL algorithm interact with each other during the simulation. At time t, the bolus is at a certain position z. The membrane's computational particles act as sensory neurons and feel the pressure due to the presence of the bolus.

From the pressure, the state vector s at time t can be determined as explained above. At this point, the RL algorithm chooses the action to implement. The vector a can be determined either by the exploration or the greedy mode according to the stage of the learning process (see Section 3.1). Once the RL algorithm has chosen an action, it is implemented in the DMP model as a muscle contraction and the system evolves to the next time step. As a result of the action (i.e. muscle contraction), the bolus changes its position within the tube. The reward is calculated from the position change of the bolus ∆z. One simulation runs for N t time steps, which is not enough to achieve a good approximation of the Q-matrix. Therefore, the algorithm of Figure 7 must be repeated many times until a good policy is obtained. Each repetition involves a new DMP simulation that runs for N t time steps: in RL literature, a repetition is called an 'episode'.

Results and Discussion

In the simulations, we use (dimensionless) reduced parameters, gathered in Table 1, that refer to the case of a flexible, rubber-like, tube and a soft, gel-like, central particle. Each simulation (one episode) runs for N t = 400 time steps (∆t * = 0.025) and periodic boundary conditions are enforced in the axial direction. Gravity is not accounted for. Table 1: Reduced variables used in the simulations

Learning phase

Training of the DMP + RL model is performed with the method discussed in Section 3.2. The goal is to move the bolus towards the positive direction of the z axis (Figure 5), i.e. from left to the right. Figure 8 shows the learning progress of the model with α = 0.8 and γ = 0.9 (see eq. 4).

Man versus machine

For validation purposes, we choose peristalsis in the oesophagus because is well understood and, in this case, we can also devise a 'human' (i.e. not derived by Machine Learning) policy that links states with actions. For the sake of brevity, we call hereafter the policy obtained by the Machine Learning algorithm 'machine policy' or 'machine solution', and the policy obtained without Machine Learning 'human policy' or 'human solution'

The 'human policy' is obtained by contracting, in the DMP model, only the muscles behind the bolus. In this way, we 'squeeze' the bolus forwards and prevent it from moving backwards. The size of the moving window (Figure 6) in our calculations is M = 5; this means that, once the particle with s i = 1 has been identified, we only contract particles i-1 and i-2.

In other words, in the 'human policy', the a vector remains constant and its value is a = [11000]. The contraction of the i th particle (i.e. the central particle located just below the bolus) would give the highest push to the bolus. However, due to small misalignments between the bolus and the central particle, the push could move the bolus in either directions. The model does not know the exact position of the bolus z, but only its approximation z i (the position of the neuron with s i = 1). If z < z i , the contraction would push the bolus on the left; if z > z i , the contraction would push the bolus on the right. Since z is not known, we cannot anticipate the effect of contracting the central particle beforehand and, for this reason, the 'human policy' does not account for the contraction of the central particle.

All these considerations are not known to the machine before the learning process; and the idea of the benchmark is to verify that the machine rediscovers the correct strategy by itself and without human intervention. After comparing the policy derived by the Machine Learning algorithm with the 'human policy' (e.g. derived without Machine Learning as described above), we observed not only that the machine learns by itself how to effectively propagate the bolus, but also that the 'machine solution' is slightly better than the 'human solution', and, at the end of the simulation, the bolus advanced around 5% further with the 'machine policy' than with the 'human policy'.

How the 'machine solution' can be more efficient that the 'human solution'? Machine

Learning models are black-box models and usually it is not easy to understand the actual physics behind their functioning. In our DMP + RL model, however, computational particles and neurons are highly integrated, and this allows a deeper look inside the physical effects of the machine strategy.

At the beginning, when the bolus is at rest, both the 'machine' and the 'human' policies are the same (e.g. a = [11000]). When the bolus reaches a certain velocity, however, the 'machine solution' (contrary to the 'human solution') also contracts the central particle (e.g.

a = [11100]

). The machine 'understands' that, at the beginning, when the bolus is at rest, contracting the central particle can be counterproductive. However, it improves the 'human solution' by noticing that, if the bolus is already moving in the desired direction and its velocity is above a certain value, contracting the central particle becomes beneficial. In fact, there is a delay between when the contraction begins and when the bolus fells the squeeze.

Even if z < z i at the beginning of the contraction, the bolus moves forward and, at the moment of the squeeze, its location is z > z i . In this way, the contraction pushes the bolus forward even if initially z < z i .

Conclusions

a model capable of solving complex problems that could not be tackled with first-principles modelling or machine learning separately.

The benefits of in parallel coupling can be observed from two different perspectives. On the one hand, Machine Learning can help first-principle models designing better in-silico models of human physiology by providing a way of replicating the biological feedback loops regulated by the autonomous nervous system. On the other hand, first-principle models can help machine learning to achieve more 'transparent' models. Machine Learning models, in fact, are black-box models; they do work, but, since there is not physics or chemistry behind, we usually do not have a clear understanding on why they works. The particle/neuron duality, however, provides an unprecedented access to the physical effects of the computational neurons and, as exemplified in Section 4.2, this allows to understand why and how the strategy proposed by the machine learning algorithm actually works. Moreover, here we focuses on a benchmark case (peristalsis in the oesophagus), but future work will extend to more complex systems. In these cases, Reinforcement Learning will probably be replaced by Deep Reinforcement Learning and the duality computational-particle/computational-neuron will become even more significant.

Figure 1 .

 1 Figure 1. The 'ghost parabola' approach used in Ariane at al. 2018a

Figure 2 .

 2 Figure 2. Oesophagus peristalsis used as benchmark case.

Figure 3 .

 3 Figure 3. Illustration of a tethered spring (a), equilibrium positions of the tethered for the flexible tube (b), deformation of the tube due to the presence of a large internal object (c), two-dimensional section of the geometry used in the simulations (d).

Figure 4 .

 4 Figure 4. Real contact with particle deformation versus DEM contact with overlap.

Figure 5 .

 5 Figure 5. Example of state vector s.

Figure 6 .

 6 Figure 6. Example of the (same) action vector a shifted according to the bolus position The reward is simply the shift in position ∆z of the bolus after the action is executed. If the bolus advances (∆z > 0), the reward is positive; if it moves backwards (∆z < 0), the reward is negative.

Figure 7 .

 7 Figure 7. How the DMP model and the RL algorithm interact during the simulation.

Figure 8 .

 8 Figure 8. Learning progress of the DMP + RL model Initially, the average reward per episode is negative, which indicates a backward motion of the bolus. This occurs during the initial stage of the training, when the RL algorithm randomly explores the Q-matrix. Gradually, the algorithm learns how to propel the bolus forward and improves its performance over time. Video 1 shows how random contractions, without learning, are not coordinated and, consequently, the bolus does not move during the simulation. Video 2 shows the model at the end of the training phase, when it learnt by itself how to coordinate its contractions and propel the bolus down the oesophagus.Figure9 shows two screenshots of Video 2.

Figure 9 .

 9 Figure 9. DMP model after RL training: at t * = 0 (top) and t * = 2.5 (bottom); part of the wall is removed from the pictures on the left to show the position of the bolus.

* The reader should not confuse computational neurons in Figure5with computational neurons typically used in Artificial Neural Networks. In this study, the term 'computational neuron' refers to the computational version of an actual neuron located on the surface of the membrane.

This study proposes a methodology for designing in-silico models of human physiology with the ability of learning by themselves how to reproduce biological feedbacks. The proposed methodology combines Discrete Multiphysics and Reinforcement Learning and, to the best of our knowledge, it is the first time multyphisics and machine learning are coupled in parallel rather than in series (Figure 10). Previous works (e.g. [START_REF] Yi | Integrating neural network models with computational fluid dynamics (CFD) for site-specific wind condition[END_REF][START_REF] Gholami | Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks[END_REF][START_REF] Zhang | Machine Learning Methods for Data-Driven Turbulence Modeling[END_REF][START_REF] Mason | Will it flood? Classifying entrainment outcomes via machine learning[END_REF][START_REF] Villasana | Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy[END_REF][START_REF] Tonutti | A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery[END_REF]) combine first-principles models (e.g. CFD or traditional multiphysics) with Machine Learning algorithms (e.g. Artificial Neural Networks) in series.

The fist-principle model provides data that are used, instead of experimental or real-world data, for training the Artificial Neural Networks (ANN). Once the ANN is trained, it can replace the first-principle model and, ideally, provide a model that is computationally faster than the first-principle one. Although we could not find any example in the literature (all the articles above are based on supervised learning), an alternative in series approach could be based on unsupervised learning. The data coming from the first-principle model could be used for reducing the dimensionality of a physical problem (e.g. turbulence in a specified system) and, in this way, reduce the number of actual variables required to define the problem.

In both these scenarios, the two models remain conceptually separated. The data of the first-principle model are transferred to the machine learning model after one or more simulations have been completed and, for this reason, the coupling is in series.

In this study, the coupling between the two models occurs at a deeper level. The computational particles used in Discrete Multiphysics to model the biological system represent, at the same time, computational neurons. This circumstance allows Reinforcement Learning to train the neurons as the simulation progresses (see Figure 7) and, for this reason, the coupling is defined in parallel. In other words, while in series coupling produces two models of the same system (a first-principles and a machine learning model) with the goal of providing a faster computational tool (or alternatively for control/optimization purposes), in parallel coupling produces a single hybrid model with two components (a first-principles and a machine learning component) with the goal of providing