
HAL Id: hal-01873948
https://hal.science/hal-01873948

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Monolith to Microservices: Lessons Learned on an
Industrial Migration to a Web Oriented Architecture

Jean-Philippe Gouigoux, Dalila Tamzalit

To cite this version:
Jean-Philippe Gouigoux, Dalila Tamzalit. From Monolith to Microservices: Lessons Learned on an
Industrial Migration to a Web Oriented Architecture. 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), Apr 2017, Gothenburg, France. �10.1109/ICSAW.2017.35�. �hal-
01873948�

https://hal.science/hal-01873948
https://hal.archives-ouvertes.fr

From monolith to microservices
Lessons learned on an industrial migration to a Web Oriented Architecture

Jean-Philippe GOUIGOUX

Chief Technical Officer

R&D department

MGDIS SA

Vannes, France

gouigoux-jp@mgdis.fr

Dalila TAMZALIT

LS2N – CNRS UMR 6004

Université de Nantes

Nantes, France

Dalila.Tamzalit@univ-nantes.fr

Abstract—MGDIS SA is a software editing company that
underwent a major strategic and technical change during the
past three years, investing 17 300 man.days rewriting its core
business software from monolithic architecture to a Web
Oriented Architecture using microservices. The paper presents
technical lessons learned during and from this migration by
addressing three crucial questions for a successful context-
adapted migration towards a Web Oriented Architecture: how
to determine (i) the most suitable granularity of micro-services,
(ii) the most appropriate deployment and (iii) the most efficient
orchestration?

Keywords—microservices; migration; Web Oriented
Architecture

I. CONTEXT OF THE STUDY

MGDIS SA1 is a French software vendor editing
applications that target public collectivities, helping them in
managing lifecycle and payments of financial subsidies and
scholar grants. In this business sector, a complete Information
System is typically installed on premise mainly, composed
with almost two hundred different applications and used in
total by around one thousand agents. The main characteristics
of this market are a large importance of systems
interoperability and a complete product lifecycle generally
around ten years.

Due to the upcoming obsolescence of the existing
applications, MGDIS board of directors decided in 2013 a
complete rewrite from scratch using a modern web-based
architecture [3]. The initial objectives were (i) to provide a
highly-ergonomic web frontend, (ii) to ensure long term
evolution and (iii) to ease low cost interoperability with many
other software products. The main strategy used to fulfill these
goals was based on Information System Alignment2 from the
beginning [4, 5, 6, 7]. Namely, obtained components need to
be as autonomous and decoupled as possible, so as to ease
development and avoid eventual clutter from technical debt.

The first obtained version of the new application has been
tested by one pilot customer, namely a regional council with
a few hundreds of agents and a few tens of thousands of
external users of the associated web site. This customer
operated the new version of the software and served as a beta-
tester for some of the features during one year, in 2015. In
2016, the application was stable enough to be deployed to
other customers, some of them on premise and some of them
using the same software operated directly by MGDIS as a

1 http://www.mgdis.fr

Software as a Service [8]. These three years of development
as well as eighteen months in operation provided some
feedback on this software rewrite, among which the most
important findings are presented in the following.

Having explained the context in the current section, the
paper will present the followed approach to achieve this
migration in terms of lessons learned by extracting and
presenting from the return on experience important findings.
Section II presents targeted technical problems, Section III
explores the determination of granularity of services, namely
microservices, Section IV details services deployment,
Section V explains integration and orchestration concerns,
while Section VI provides a first evaluation of Return On
Investment, before concluding with Section VII.

II. TARGETED PROBLEMS

Like any other software company deciding to turn a
monolithic application into a group of autonomous services
interacting with each other, MGDIS had to address several
well-known issues.

First, how to split the former monolith into granular APIs?
Knowing the technical bits does not help in any way in
knowing where to cut. A lot of literature explains the
microservices approach, but this is most often cited in the
context of extremely high-volume web application, which is
not the case for MGDIS.

Second, when the services are defined, how can their
deployment be realized, since the methods traditionally used
for monolithic applications do not fit anymore?

Third, once the services are defined and installed, how to
make them work together? When starting with the rewriting,
nobody in MGDIS had any prior experience on neither
Enterprise Application Integration [9, 10] nor Enterprise
Service Bus [11, 12], not even working knowledge of service
orchestration in general.

III. GRANULARITY OF SERVICES

The first return of experience that we propose is that the
choice of granularity should be driven by the balance
between the costs of Quality Assurance and the cost of
deployment, as illustrated in Fig. 1.

The cost of QA can be calculated on a given release by
adding up the time spent by testers validating not only the new
features but also the non-regression on existing ones with the
time spent on release management. The cost of deployment is

2 In France, the term “urbanization” is also widely used.

the time spent by operational teams to deploy this new release,
also in man.days. It decreases a lot as teams automate this
operation.

Deployment time generally does not depend on the
number of additional features in the release. As for QA,
automation of non-regression tests help maintaining a low
cost for existing features, but new ones come with costly
manual test or writing of automated test scenarios. Thus,
comparison of both costs must be related to the business added
value of the new features, typically estimated with agile
methods in man.days or feature points if one wants to be
independent from the team’s velocity.

Fig. 1. Cost-based determination of granularity of services.

Defining the right granularity was a difficult try and error
process, during which our Business Capability Map went up
and down in terms of number of services. Technical and
functional feedback led us to join some services and split
some others, thus changing the granularity. For example,
joining the GUI and backend responsibilities of services made
the number of services in the Business Capability Map
decrease from 73 to 52.

The main difficulty in searching for the right granularity
was that, to our knowledge, there is no state of the art on this
subject of services granularity. First, there is currently no
commonly-accepted definition of the desired size of a
microservice [13, 14, 15]. The measurement unit knows no
consensus and the size of the service can be measured in lines
of code, in number of features, in terms of the consumption of
server resources under standard operational conditions, and so
on.

In addition, the trend towards microservices accelerates,
and newly-coming architectures tend to diminish the size of
the services, with so-called “nanoservices” (as cited in
Microsoft Azure Functions and lambda [16] / serverless [17]
architectures (one key proponent being Amazon with its
product called AWS Lambda).

It was thus clear from the beginning for MGDIS that we
would have to find a way to determine the granularity of the
services by ourselves. Fig. 1 is our way of formalizing this
experience on granularity of service, and an attempt to make
it generic.

On the right-hand side of Fig. 1 lies the finest-grained
architecture, namely lambda architecture. On the left-hand
side of Fig. 1 lies the coarsest possible service, namely
monolithic architecture where one software process embeds

all exposed functions. In monolithic software architecture, the
coupling between the components is massive. This results in
a huge cost of Quality Assurance, as one modification may
have an impact on any feature of the application. The cost of
running such an application is limited, though, since there is
only one process to install, monitor and keep in healthy
condition.

As one progresses towards the right-hand side of Fig. 1,
the granularity becomes finer, which has two consequences.
First, the cost of quality assurance (blue line) decreases, as it
becomes possible to test and validate services one by one,
since they are truly independent (at least from the point of
view of unit tests and functional tests). Second, the cost of
running the whole increases with the number of services (red
and green lines).

If the deployment is not automated by any means, the cost
increases linearly with the number of services (red line). The
point of crossing of blue and red line indicates that the optimal
architecture in this case is to extend the existing monolith with
additional features based on independent services. This gives
the advantages of keeping a battle-proofed, stable application
while allowing the addition of features using the new, more
evolutive, architecture. This approach has been used for many
existing customers of MGDIS, who still use the old version
while using alongside new REST-based services for specific
features (e.g. European Funds and PKI-based financial
evaluation).

If the deployment is automated (see section IV below), the
cost of deployment becomes asymptotical (green line). The
optimal granularity is logically higher and the resulting best
architecture for MGDIS was a new application completely
based on fine-grained services, which is the one operated on
new customers and that we describe in this paper.

This attempt of modeling the granularity of services
has been backed in practice by the fact that it
corresponded well to other criteria of granularity, for
example aligning the service onto consortium-based
norms and standards of the related business, or using the
notion of Bounded Context in the sense defined by Evans
in Domain-Driven Design [18].

IV. DEPLOYMENT OF SERVICES

After cutting the business functions into services comes
the second phase, namely deploying the services.

MGDIS’s main finding in this area was that there is a
strong link between services-based architectures and
containers technology. Deployment of the old monolithic
application with all its dependencies and prerequisites could
be a matter of hours, which meant deploying an application
composed with 40 services would have theoretically last a
week or so, which of course was completely out of question.

Container-based technologies, and in particular its most-
known implementation Docker, made deployment of our new
application possible through several characteristics:

� A Docker image contains all its dependencies, which
means a given service can be treated as a black box, only
exposing its API in exchange for resources.

� The containers are by default sealed from one to another,
which results in guaranteed low coupling, without the

high cost associated with virtual machines.

� Docker Compose made it possible to easily deploy any
number of services, by composing in a text file an
application made of several services.

� Docker Swarm mode allows for complete decoupling of
the containers and the machines supporting them. In its
recent version 3, Docker Compose allows for
Distributed Application Bundles, which define
applications made of several services without any
dependence other than the presence of a Docker host IP
address and access credentials.

V. INTEGRATING SERVICES

Once the services have been correctly designed and
deployed, the question of orchestrating them needs to be
addressed. MGDIS has progressed through several tries and
errors, which hopefully will provide some experience for
similar development teams. Before addressing this feedback,
it should be recalled that the software integration landscape
has greatly evolved between 2013 and 2016, which made
necessary a change of approach during the rewriting of the
considered application. As SOA gets slowly replaced by Web
Oriented Architecture, Enterprise Service Buses fade out and
leave room to smaller footprint integration techniques, such
as RSS-based asynchronous communication [23, 24] or
webhooks-based events [25, 26] and data exchanges between
services. The following findings must be read while keeping
this background in mind.

One of the first reality we hit was that an Enterprise
Service Bus is overkill for anything else than very large
organizations. MGDIS knew from the start that an ESB
would be too big an integration method for her smaller
customers (departmental councils, with a few hundred users)
and targeted her first ESB experiences to larger ones (regional
councils, with many hundred users). It turned out that only
ministries and large regional councils (with an equivalent
number of users, but many more IT resources) were a good fit
for an ESB. In particular, since SOA is a centerpiece between
functional, managerial and technical deciders, applying it with
a centralized solution like an ESB is only possible if
everybody in the organization is aligned on its benefits, which
proved rare.

While still using an ESB, the second lesson we learnt
was that only some particularly important API streams
should be considered to flow through the ESB. The cost of
associated connectors is indeed extremely high, particularly
when using techniques like Enterprise Integration Patterns
[19] and its Apache Camel implementation, where
experimented developers are extremely scarce, at least in
France.

A possible alternative to an ESB is to use a Business
Process Management engine but we also experienced that it is
not adapted to our context. Business Process Modeling
Notation remains a great tool for business analysis and
modeling, particularly since version 2.0 is now largely
accepted and feature-complete, but its use to automate
orchestration routes is too complex for mid-sized
applications. If the customer IT teams are trained, successful
uses for interoperating coarser-grained applications have been
observed, though not released in production at the moment.
But managing routes between fine-grained APIs is simply too

expensive to run on a BPMN engine.

Another difficulty with BPMN engines is the risk of re-
introducing coupling in a loose service-based application by
using the same application for process design and
documentation (which is functional) and business execution
(which is a software application).

After several years trying these different approaches,
MGDIS found its sweet spot for microservices integration in
the use of webhooks, which are a light, unobtrusive, HTTP-
based way of communicating between APIs. ESBs are left to
the large customers’ initiative when they want to take charge
of connecting the webhook events to APIs in a different, more
sophisticated manner than just plugging the output of the
event to the API without any mediation. Thus, the default
behavior is passive choreography, and the customer is able to
insert a middleware in order to switch to active orchestration.

Together with Docker Compose, webhooks-based
integration proved to have the best low coupling to
complexity ratio, and the advent of Swarm mode in Docker
1.13 will improve this ratio even more.

VI. FIRST RETURNS ON INVESTMENT

Experience shows that SOA projects have often been
disappointing, in contrary to what has been claimed, because
of low actual reuse of services. Most of real service-oriented
applications did not obtain the promised benefits of SOA [3,
5, 6]. By migrating towards web-oriented architecture and by
leaning on appropriate microservices, we extracted three main
returns.

 Increase of reuse. Though most services have only been
production-ready for less than a year, a significant amount
of reuse has been observed. Without taking into account
common services like authentication, Business Activity
Monitoring, etc. which are almost always shared, about a third
of the Business Capability Map has already more than one
use, and ten out of seventy services are used in more than two
different contexts, some of them in many context and in
particular in contexts not known by MGDIS, as external
integrators have acquired them and use business-oriented
microservices for their own purpose.

Another way to evaluate reuse is to observe the time
needed to create an application similar to another one, once
the microservices they are based on have been created. It
turned out MGDIS had this kind of experience, since three
applications that are extremely close have been released in the
past three years. The first one, which took in charge most of
the business microservices development, used 160 days of
development. The second, which added some features to
existing services, took 50 days of development. The third one
actually was completely designed by integration and
configuration of existing services and thus cost only 10 days
of production, none of which were assigned to actual
programming of services.

Finally, a strong financial gain happens when the
microservices produced by a given company for its own
software are reused by other software editors or integrators for
a completely different domain. This has happened to MGDIS
for a few low-level services that have been purchased by
partners and external companies for their own integration in

software. Interestingly, this was not an initially thought-of
business case.

Replacement facilitated. Reuse is definitely the most
sought-after characteristic of a service, because it brings an
automatic reduction of cost, but ease of replacement is an
additional positive side effect of well-built services. In
particular, MGDIS has observed in production that
microservices based on norms or pivotal formats were quicker
to validate from a quality assurance perspective, but also
produced much fewer bugs when replacing another version.
The former monolithic application was typically verified by
QA in a few weeks, while a single service is currently
validated in a day or so. Of course, the total amount of time
for QA is roughly the same, but the microservices architecture
has made it possible to spread it at will along time, bringing a
better Time To Market. As a bonus, customers are much more
willing to replace a service on a well-known and restricted
domain by its newer version than they were to qualify and put
in production a complete monolithic application with all
associated potential impacts to be solved at once.

Performance increases. After reuse and replacement,
performance is the third main advantage that has been
observed in production by MGDIS on its new architecture.
Health diagrams are currently exploited by support and
hotline at MGDIS where an error is brought up when a given
service exposed online has an average response time of more
than 1 000 milliseconds. In 99% of the case, the actual
response time is between 70 and 300 ms (metrics for
December 2016). To give a comparison, the announced
objectives of maximum response time for a SOAP call in the
old application were to be lower than 3 000 ms, and this could
only be achieved in 95% of the cases. In a particularly coarse
and complex web method, the average observed time was
11 000 ms (this value was recorded after a performance-
optimization campaign, and could not be reduced further in
the old architecture, despite many efforts).

Finally, much lower levels of support have already
been empirically observed on the new application, but the
metrics are currently mixed with bugs from the older version
of the software, and cannot be correctly interpreted at the
moment. The only statement that can be said for now on this
subject is that, while customers have transferred to the new
application and a burst in defects were expected, MGDIS
actually removed one person from the support team while the
stock of defects went on diminishing. This is considered as a
financial improvement roughly equivalent to 70 000 € per
year. The average bugs stock decreased during these three
years from 320 to 90 only. For reasons of confidentiality, we
cannot give more detailed numbers about support.

Being able to add Business Activity Monitoring by pure
integration (acting only on the messages) and without
releasing any new version of the related microservices is
foreseen as a source of benefits for the near future, but this
feature has not been exploited yet and thus cannot be stated
for sure. Yet, it has been asked eagerly by several customers.

VII. CONCLUSION

The numerous advantages obtained through the change of
architectures are currently compensating the huge investment
granted by MGDIS, and the financial return over investment

is expected in less than five years’ sales (the estimated
lifecycle of the product being ten years). Thus, while not being
a proven success yet, our experience might still prove useful
for others in similar context, and expectations are high in the
success of the products, with an encouraging rate of sales.

An important return of experience of the few years
recently passed aligning the functional and technical
capabilities is that this is not a technical issue only. To achieve
our goal necessitated to jointly tackle the problem from the
technical, methodological and management points of view. It
was a deliberate choice in this article not to develop the
adaptation to agile methods, the management approach and
the attempt of using Conway’s law to choose the right team
for the right service implementation, but there is a lot to be
said on these subjects. This may be treated in further articles.

REFERENCES

[1] [Henderson &al. 93] Henderson, J. C., & Venkatraman, H. (1993).
Strategic alignment: Leveraging information technology for

transforming organizations. IBM systems journal, 32(1), 472-484.

[2] http://fr.slideshare.net/ewolff/nanoservices-and-microservices-with-
java [last accessed on January 12th, 2017]

[3] https://www.w3.org/TR/2004/NOTE-ws-arch-20040211

[4] Hirschheim, R., & Sabherwal, R. (2001). Detours in the path toward
strategic information systems alignment. California management

review, 44(1), 87-108.

[5] Chan, Y. E., Huff, S. L., Barclay, D. W., & Copeland, D. G. (1997).
Business strategic orientation, IS strategic orientation, and strategic

alignment. Information systems research, 8(2), 125-150.

[6] Galliers, R. D., & Leidner, D. E. (2014). Strategic information
management: challenges and strategies in managing information

systems. Routledge.

[7] Cassidy, A. (2016). A practical guide to information systems strategic
planning. CRC press.

[8] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski,

A., & Zaharia, M. (2010). A view of cloud computing. Communications
of the ACM, 53(4), 50-58.

[9] Linthicum, D. S. (2000). Enterprise application integration. Addison-

Wesley Professional.
[10] Keller, W. (2002). Enterprise Application Integration. Erfahrungen aus

der Praxis. dpunkt.

[11] Chappell, D. (2004). Enterprise service bus. " O'Reilly Media, Inc.".
[12] Schmidt, M. T., Hutchison, B., Lambros, P., & Phippen, R. (2005). The

enterprise service bus: making service-oriented architecture real. IBM

Systems Journal, 44(4), 781-797.
[13] Newman, S. (2015). Building microservices. " O'Reilly Media, Inc.".

[14] Fowler, M., & Lewis, J. (2014). Microservices. ThoughtWorks.

http://martinfowler. com/articles/microservices. html [last accessed on
February 17, 2015].

[15] Namiot, D., & Sneps-Sneppe, M. (2014). On micro-services

architecture. International Journal of Open Information Technologies.
[16] Marz, N., & Warren, J. (2015). Big Data: Principles and best practices

of scalable realtime data systems. Manning Publications Co.

[17] Diot, C., & Gautier, L. (1999). A distributed architecture for multiplayer
interactive applications on the Internet. IEEE network, 13(4), 6-15.

[18] Eric Evans (2003). Domain Driven Design, Tackling Complexity in the
Heart of Software.

[19] Gregory Hohpe & Bobby Woolf (2004). Entreprise Integration Patterns.

[20] http://download.microsoft.com/documents/australia/soa/gartner.pdf
[21] O'Brien, L., Brebner, P., & Gray, J. (2008, May). Business

transformation to SOA: aspects of the migration and performance and

QoS issues. In Proceedings of the 2nd international workshop on
Systems development in SOA environments (pp. 35-40). ACM.

[22] Rosen, M., Lublinsky, B., Smith, K. T., & Balcer, M. J. (2012). Applied

SOA: service-oriented architecture and design strategies. Wiley & Sons.
[23] http://ieeexplore.ieee.org/document/5476743/

[24] N. Bieberstein, R. Laird, K. Jones, T. Mitra (May 5, 2008). Executing

SOA: A Practical Guide for the Service-Oriented Architect. IBM Press.
[25] http://apiux.com/2013/09/12/webhooks/

[26] https://sendgrid.com/blog/whats-webhook/

