
HAL Id: hal-01873945
https://hal.science/hal-01873945v1

Submitted on 27 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Semi-Automated Approach for the Co-Refinement of
Requirements and Architecture Models

Matthias Barkowski, Melanie Schneider, Holger Giese, Johannes Dyck, Dalila
Tamzalit, Dominique Blouin, Etienne Borde, Joost Noppen

To cite this version:
Matthias Barkowski, Melanie Schneider, Holger Giese, Johannes Dyck, Dalila Tamzalit, et al.. A
Semi-Automated Approach for the Co-Refinement of Requirements and Architecture Models. 2017
IEEE 25th International Requirements Engineering Conference Workshops (REW), Sep 2017, Lisbon,
France. �10.1109/REW.2017.52�. �hal-01873945�

https://hal.science/hal-01873945v1
https://hal.archives-ouvertes.fr

A Semi-Automated Approach for the Co-refinement
of Requirements and Architecture Models

Matthias Barkowski1, Melanie Schneider1,
Holger Giese2 and Johannes Dyck2

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

1{forename.surname}@student.hpi.de
2{forename.surname}@hpi.de

Dalila Tamzalit
LS2N Lab, CNRS UMR 6004

Université de Nantes
Nantes, France

dalila.tamzalit@univ-nantes.fr

Dominique Blouin and Etienne Borde
LTCI Lab, Telecom ParisTech

Université Paris-Saclay
Paris, France

{forename.surname}@telecom-paristech.fr

Joost Noppen
School of Computing Sciences

University of East Anglia
Norwich, United Kingdom

J.Noppen@uea.ac.uk

Abstract— Requirements and architecture specifications are

strongly related as the second provides a solution to a problem
stated by the first. This coupling is typically realized by traceabil-
ity links and maintaining such links becomes extremely difficult
as both requirements and architecture specifications frequently
evolve, and in particular when the architecture is refined provid-
ing an increasing level of details. In such case, not only the trace-
ability must evolve but the requirements must be refined as well.
We present a novel semi-automated approach to evolve non-
functional requirements and their traceability links following
system’s architecture refinement in the context of design space
exploration and automated code generation. The approach has
been prototyped for AADL models refined with the RAMSES
tool and for model transformations implemented as Story Dia-
grams.

Index Terms—Requirements Engineering, Requirements
Evolution, Non-Functional Requirements, Architecture
Refinement, RAMSES, AADL, RDAL

I. INTRODUCTION

Requirements and architectures are strongly related as the
second provides a solution for the problem stated by the first.
In Model-Driven Development, both requirements and
architectures are often expressed as models and must be
related to each other via links to support verification of
requirements by the architecture. Establishing and maintaining
such links is still largely performed manually nowadays and
quickly becomes not manageable given the complexity and
sizes of the systems we face today [1]. This is even more
important in the context of safety-critical embedded systems,
whose development must follow strict certification processes
relying extensively on traceability. Furthermore, Non-
Functional Properties (NFP) such as power consumption,
memory usage, reliability, etc. are particularly important for
embedded systems, which often must operate in environments
with limited resources. Such NFPs are typically constrained by
NF requirements, and Design Space Exploration (DSE) must
be performed to produce a design that meets the NF
requirements while optimizing NFPs.

During DSE before automated code generation, the
architecture models may undergo several refinement steps in
order to incorporate design patterns into the architecture or to
add details specific to an operating system platform for which
code shall be generated. In such cases, requirements assigned
to the architecture may no longer be consistent with the new
architecture as model elements may have been removed or
added, often as a result of component split or merge.
Following such architecture evolution, not only traceability
links between requirements and architecture must evolve, but
also the impacted requirements themselves. We call this the
co-refinement of requirements.

Given today’s large systems, automated or at least partially
automated approaches are required to achieve the required
scalability when co-refining requirements and architecture. It
is therefore the purpose of this work to provide a semi-
automatic approach for the co-evolution of requirements
following automated architecture refinement. Our approach
mainly consists of a scheme that for a given architecture
refinement rule allows to orchestrate the application of
corresponding predefined requirements refinement rules in
order to preserve consistency.

The architecture refinements considered for this work are
intended to preserve the functionality of the system and should
only impact NFPs. Therefore, this first work focuses on NF
requirements as it is crucial that the original NF requirements
are also satisfied by the refined architecture. However, how
requirements should be refined after architecture refinement
cannot always be automatically determined and knowledge of
the designer may be required. Therefore, the co-refinement
scheme proposed in this work also provides guidance to the
designer on what elements of the requirements should be
checked to complete the refinement, thus limiting the required
manual effort.

In the remainder of this paper, we first introduce our
approach in section II with a simple running example. Next in
section III we present the concrete implementation of the
approach and its evaluation for a more complex architecture

refinement rule. In section IV, we discuss the generalization of
the refinement of requirements in order to favor reuse of
refinement rules. Then related work is presented in section V
and finally the paper is concluded in section VI.

II. APPROACH

This section presents our co-refinement approach by first
introducing a simplified architecture refinement rule used as
running example. The focus is on the conceptual level without
consideration of any specific languages used to model
requirements and architectures and model transformations to
implement the refinements. This is to ensure our approach
remains applicable for the many languages that exist for
requirements and architectures modeling (e.g. SysML [2],
KAOS [3], AADL [6] etc.).

A. Running Example

Our running example consists of an architecture refinement
rule that merges two periodic tasks into a single one
functionally equivalent (Fig. 1). Before refinement, task a
processes some data received at its input port and sends the
computation results to its output port. The data is then
received at the input port of task b through the port connection
between the tasks. Task b then further processes the data and
sends the result to its output port.

Fig. 1: Architecture refinement for the running example

After refinement, the two tasks are aggregated into a single
one that performs the same function. The purpose of such
refinement is to provide a single functionally equivalent
component from which it will be simpler to generate
implementation code.

We suppose that a requirement is assigned to each of the
tasks to constrain their period (right side of Fig. 1). Each
requirement contains an expression text of a given constraint
language (e.g. OCL) that can be evaluated against the assigned
task to check that its period property is less than a maximum
allowed value. After refinement, the traceability links between
the requirements and the initial tasks are broken since the tasks
do not exist anymore (Fig. 1). The problem is then to refine
the original requirements and to fix the assignment links and
requirement’s expression text. This should be performed so
that the purpose of the original requirements is preserved. In
this particular case, assume that the purpose of a requirement
was to ensure that the input data is sampled at a sufficiently
high enough rate so that every message can be received and
processed. Therefore, after refinement, there should be only
one requirement left, which constrains the period of the

merged task to be the smallest bound of the two initial
requirements (Fig. 2).

Fig. 2: Refined architecture and requirement for the running example

B. Overview of the Approach

In order to perform refinements of both the architecture and
the requirements, our approach adapts an existing architecture
refinement rule and extends it with a set of rules taking into
account the refinement of impacted NF requirements. An
overview of the approach is depicted in Fig. 3. An architecture
model A0 must be refined into a model Arefined by application of
an architecture refinement rule AR. A requirements model R0
is linked to A0 via assignment links between requirements and
architecture model elements. After refinement, Arefined has no
allocated requirements and R0 needs to be refined and
correctly linked to Arefined.

Fig. 3: Overview of the architecture and requirements co-refinement approach

For that purpose, a Co-Refiner Component (CRC) takes as
input R0, A0 and AR and creates Arefined, Rrefined and the
assignment links. The CRC has access to a catalogue of
requirements refinement rules that can be executed along with
a given architecture refinement rule to refine requirements.

However there are many cases where requirements can only
be updated partially and may therefore be inconsistent with the
refined architecture model or have broken traceability links
after refinement. Such requirements will need to be processed
manually in a second step. For this, the CRC produces

intermediate models of the requirements Ri and architecture Ai
that are marked by a marking model Mi identifying the
incompletely refined requirements and also suggesting various
actions to be performed in order to complete the refinement.
Such intermediate models can then be iteratively processed by
the designer creating other intermediate models Mk, Rk and Ak
until all partially refined requirements have been correctly
refined leading to a set of refined requirements satisfying the
purposes of the original requirements. The marking models
can be kept to serve as a record for the refinement that
occurred including traceability information between the
original and refined models.

C. Co-refinement Scheme

The CRC internally applies a scheme that defines a strategy
and a sequence of operations or steps for refining both
requirements and architecture models given an architecture
refinement rule. The order of the operations specified by the
scheme ensures that all the required information from the
models to be processed is available at each step. For example
the deletion of model elements is postponed at the end of the
scheme so that information contained in these elements is
available at all steps.

The co-refinement scheme consists of 6 steps executed
sequentially. In the following, we describe these steps using
the running example introduced in section II.A.

Step 1: Library model elements required during later stages
of the scheme are loaded.

Step 2: A match for the application condition of the given
architecture refinement rule is searched within the given
architecture model to be refined. If such match is found,
architecture elements are marked by creating markers to store
all information about the match that will be required by later
steps of the scheme.

For the running example, this means finding the tasks to be
aggregated, their port connection, as well as their containing
process after checking that the tasks are periodic as required
by the application condition of the architecture refinement
rule. The found tasks and connection are then marked as being
elements that will be deleted during refinement. This is
depicted in Fig. 4 as a red square tag marked with an ‘X’. The
container of the tasks is also marked but as being modified
during refinement as identified by an orange tag marked with
the ‘~’ symbol.

Fig. 4: Architecture markers for the running example created during step 2

Step 3: Requirements that will be impacted by applying the
architecture refinement rule are searched for. This step must
be performed before the architecture refinement so that the
complete original architecture model is available for finding
the impacted requirements. All requirements that are assigned
to any element of the architecture that was marked as to be
modified or deleted during step 2 are considered as impacted.

Markers are then created for marking the impacted
requirements. Such markers are also characterized by a
category attribute determined from the type of the NFP
constrained by the requirement and obtained by parsing the
requirement’s expression.

For the running example, this means finding the two
requirements assigned to the two tasks and marking them as
impacted as illustrated in Fig. 5 by a circular tag marked with
a ‘~’ symbol. The marker category is also determined as a
‘Period’ category after identification of the period NFP
constrained by the requirements.

Fig. 5: Requirements markers for the running example created during step 3

Step 4: The modifying part of the architecture refinement
rule is executed. However, any deletion of elements is
postponed to the end of the scheme so that the elements to be
deleted and that may be relevant for determining the
refinement of requirements remain available. Additional
architecture markers are also created during this step to mark
the created architecture elements and link them to the original
elements that they refine. In the end, these markers are saved
and serve as a record for the refinement that occurred.

For our running example, this means creating a marker for
the new aggregated task as illustrated in Fig. 6 (green tag
marked with a ‘+’ symbol) to indicate the newly created
element. The marker also refers to the architecture marker for
the original tasks and connection created during step 2.

Fig. 6: Architecture refinement applied to the running example during step 4

Step 5: The impacted requirements identified during step 3
are tentatively refined using a set of requirements refinement
rules provided for the given architecture refinement rule. For
each impacted requirement, the requirements refinement rules
are iteratively called passing to the rule the requirement and
the set of architecture and requirement markers as input. Each
requirement refinement rule must meet the following
conditions:

• Refine the requirement and any other related
requirement.

• Indicate if it was able to refine the requirement or not,
so that the iteration can stop whenever a rule was able
to refine the requirement.

• Mark as created any newly created requirement. Such
markers must be linked to the marker of the original
requirement for implementing refinement traceability.

• Flag the markers of the requirements that were refined
as deleted. This ensures that a refined requirement will
not be processed more than once by another rule when
iterating over the impacted requirements.

• In case the rule could not refine the requirement
completely, the marker of the newly created
requirement(s) must be set with a REVIEW or TODO
status to indicate that it must be further processed
manually. In addition, the marker may indicate which
specific part(s) of the requirement(s) must be checked.

In the end, each requirement that could not be refined by
any rule during the iteration will have its marker set with a
TODO status to indicate that it must be processed manually.
All requirements whose marker has been marked as deleted by
the refinement rules will not be deleted so that their
information is preserved for recording purposes. However
their assignment will be changed to the container of the
previously assigned architecture elements. This provides
context information on the former assignment of the
requirements.

For the specific requirements of the running example, a
specific rule is provided to refine the two original
requirements automatically. Such rule has an application
condition consisting of the following:

• The passed requirement is assigned to one and only one
task of those identified by the architecture markers.

• There is another requirement that is assigned to another
task that is connected via a port connection to the task
of the first requirement.

• Each of such found requirements has a ‘Period’
category identified from its marker.

• The expression of each requirement is such that it
constrains the period property of the assigned task to a
maximum value.

When all such conditions are met, the rule creates a new
requirement assigned to the merged task and having the most
restrictive constraint selected among those of the 2 original
requirements. For the running example of Fig. 7, this consists
of the merged task having a period < 7 ms. A marker for this
new requirement is created (green circle marked with the ‘+’
symbol) with a status attribute set to DONE indicating that it
does not need to be reviewed. The marker also has a link to the
marker of the original requirements for refinement traceability
purposes.

Alternatively, if the requirements refinement rule had not
been able to determine the new requirement’s expression
automatically, a link from the marker to the expression would
have been added to indicate that the requirement’s expression
needs to be inspected as indicated in Fig. 7.

Finally, the two requirements for the original tasks that are
marked as deleted are updated to change their assignment to
the container of the tasks. The deleted markers of such
requirements also indicate that the requirements are obsolete
and no longer need to be verified by the architecture.

Step 6: The deleting part of the scheme is executed
removing all elements from the architecture model that were
marked to be deleted by the architecture markers. The markers

themselves are kept but their references to the deleted
elements are transformed into attributes storing the identifier
of the deleted elements, thus providing further record for the
architecture refinement.

Fig. 7: Requirements refinement for the running example applied during step
5

For the running example, this consists of deleting the two
original task subcomponents and their port connection (Fig. 8).
The shorten arrows of the architecture marker of the deleted
elements represent the attributes for the identifier of the
elements.

Fig. 8: Deletion of obsolete architecture elements for the running example
applied during step 6

Step 7: Finally, the produced requirements, architecture,
traceability and marking models are saved so that the designer
can perform the required manual processing if any.

For the running example and the case where the constraint
expression would not have been determined automatically, this
consists of reviewing the requirement’s expression and
deleting the link from the requirement’s marker to the
expression (Fig. 9).

Fig. 9: Models after manual refinement

III. EVALUATION

We have presented our approach for a simple refinement
rule in an abstract way, without mentioning any specific
requirements and architecture modeling languages, and
without considering any implementation of the described
refinement transformations. In this section, we present the
prototype that served to evaluate the feasibility of our
approach.

A. Prototype

We used the Architecture Analysis and Design Language
(AADL) [6] for modeling the system architecture and the
Requirements Definition and Analysis Language (RDAL) [7]
for modeling requirements. Some architecture refinement rules
implemented in the RAMSES tool [4][5] have been used as
case studies. The Story Diagram (SD) in-place model
transformation language [8] and its tool SDM [9] were used to
implement the co-refinement scheme. We briefly introduce
these elements in the following.

1) Architecture Analysis and Design Language (AADL)
AADL is a rich component-based Architecture Description

Language for modeling real-time embedded systems.
Components are specified with type and implementation
classifiers. The former describes component interaction points
such as ports and bus / data accesses while the latter defines
components composition as subcomponents and their
interaction as connections. AADL components are divided
into categories for software, execution-platform (hardware)
and composite components. Software categories are thread,
thread group, data, process and subprogram and hardware
categories are processor, virtual processor, memory, device,
bus and virtual bus. Composite categories are system and
abstract.

The core AADL architecture language can be extended by
annex sublanguages to annotate components. For instance,
components behavior can be specified with the Behavior
Annex (BA) [6], from which code can be generated.

2) Requirements Definition and Analysis Language (RDAL)
RDAL was designed as a requirements specification

language to be used in conjunction with other languages for
modeling concerns such as system architecture and use cases
[10]. It also supports many well recognized RE best practices
for embedded systems such as those of the FAA requirement
engineering management handbook [11].

The concepts of RDAL are centered on a contractual
element that serves as a binder of six dimensions that must be
considered for the success of a project. It ensures that the
typical why, what, who, when and how concerns are precisely
stated. A contractual element can take several forms
depending on how the contract is expressed. One well known
form is a textual contractual element, to which a constraint
written in natural or formal textual language can be associated.
Such element can be assigned to model elements of the
architecture upon which the constraint expression will be
evaluated for contract verification.

Variants of textual contractual elements are requirements
and assumptions, which are distinguished from whether they
constrain the system to be developed or its environment. The
expression of a requirement (or assumption) when evaluated
against the assigned architecture element(s) must return a
Boolean value determining if the requirement (or assumption)
is verified or not.

RDAL requirements can be decomposed into sub
requirements similar to goals of the KAOS language [3]. Two
types of decomposition are allowed, where in the first case all
child requirements of a parent requirement must be verified

for the parent to be verified (AND), and for the second case
several distinct refinements can represent design alternatives
for which only one of the alternative needs to be verified for
the parent requirement to be verified (OR). For our prototype,
we only considered AND requirements decomposition with
requirements expressed in the OCL constraint language.

3) Refinement of AADL Models for Synthesis of Embedded
Systems (RAMSES)

RAMSES is a model transformation and code generation
tool that produces C code from AADL models for ARINC653
and OSEK-compliant operating systems. RAMSES proceeds
by refinements steps producing a refined version of an AADL
model as an intermediate step towards code generation. The
refined models include behavior annex sub-clauses that
express specific components behavior resulting from the
refinement. RAMSES refinement rules are currently
implemented as ATL model transformations for the EMFTVM
virtual machine [12]. For this work, the considered RAMSES
refinement rules have been rewritten as Story Diagrams, an in-
place model transformation language introduced below.

4) Story Diagrams / Story-Driven Modeling (SDM)
Story Diagrams (SD) provides a graphical syntax to describe

rules for graph transformations and an interpreter for their
execution. A SD consists of activities with control flow and
action nodes in a similar fashion to UML activity diagrams,
with the difference however that action nodes describe graph
transformations. Such action nodes describe graph patterns to
be matched over a model (e.g. top node of Fig. 14). Once
matched, the model elements of the matched pattern can be
modified or deleted and new model elements can be created
(e.g. green elements in the second node of Fig. 14). SDs
therefore allow for expressing complex model operations in a
declarative way, leaving the complexity of matching and
updating model elements to the SD interpreter. A SD can also
call other SDs for reuse (Fig. 13) as well as any external Java
class for further custom model processing.

B. Prototyped Rules

We prototyped our co-refinement scheme for two specific
RAMSES refinement rules that were selected because they
respectively consider the two different cases of splitting and
merging model elements. The splitting case typically involves
the addition of new elements as the number of elements after
the transformation is increased while conversely, the merging
case involves the deletion of model elements since the number
of elements after the transformation has been reduced. Note
that we do not claim that any architecture refinement can be
viewed in terms of merging and splitting model elements.
Covering these two cases is not sufficient to ensure our
scheme can be applied to any architecture refinement.
However these two very different refinement cases form a
relevant starting point for evaluation.

Besides, other architecture refinement rules were also
considered at a conceptual level only for further validation of
our scheme, but this work is not presented here due to the lack
of space. In any case, the co-refinement scheme proposed by
this work is agnostic of the specificities of a refinement as its
purpose is only to relate an architecture refinement rule to the

required requirements refinement rule(s) that must be applied
to preserve the initial architecture and requirements
consistency.

The running example of section II.A for the merging case
actually consists of a simplification of a RAMSES refinement
rule named Dataflow Tasks Aggregation that was successfully
prototyped with our approach for evaluation. The splitting
case consists of a RAMSES refinement rule named Local
Communications. We detail our implementation of this rule to
illustrate the splitting case. We first introduce the AADL
architecture refinement rule and the refinements of some
RDAL requirements for different NFPs and different
decompositions into sub-requirements. We then describe the
implementation of our co-refinement scheme in terms of a set
of orchestrated SDs for the different steps of our co-
refinement scheme introduced in section II.C.

1) Architecture Refinement
The Local Communications rule refines a message queue

communication mechanism (event data port connection in
AADL) into a shared data access mechanism prior to code
generation for ARINC653 compliant operating systems.
Example source and target models are shown in the left part of
Fig. 10, where the port connection between two threads
executed by the same processor (and therefore communicating
locally) is replaced by a data subcomponent shared by the
sender and receiver threads via two data access connections.
Therefore, the original port connection is split into 3 elements.
Additionally, subprogram calls are also added to each thread
to implement the refined communication mechanism (not
shown on the figure).

Fig. 10: Initial and refined AADL models for the Local Communications rule
and assigned memory consumption requirements

C. Considered Requirements

Two types of requirements for the memory consumption
and latency NFPs were considered for this architecture refine-
ment rule.

a) Memory Consumption Requirements
For memory consumption, two different requirements

structures are considered. In the first case (Fig. 10), a parent
requirement is assigned to the process containing the two
threads. The requirement is decomposed into 2 sub-
requirements for the memory consumption of each thread.
Since a data subcomponent (buffer) is added to the process

during refinement, the total memory consumption of the
containing process is increased.

In this case, one possible refinement pattern consists of
creating an additional requirement for the buffer. However
such refinement cannot be completely automated because the
maximum memory allowed for the refined threads, that now
have different behaviors through the added subprogram calls
and for the added data subcomponent cannot be determined
automatically.

For the second case (Fig. 11), we consider a single
requirement assigned to both threads. The particularity of this
case is that a single requirement is assigned to several
architecture elements. One conservative way of refining such
requirements consists of simply adding an assignment link to
the created buffer data subcomponent and to review its bound
value to make sure the original intent of the requirement is
preserved. In this case, the bound on memory consumption of
each process subcomponent is reduced to 5 KB to ensure the
sum of memory consumption does not exceed the initial sum
for the two threads.

Fig. 11: Memory consumption requirements refinement where the structure of
the assignment is updated

a) Latency Requirements

For the latency NFP, an example requirement is assigned to
the connection between the threads as shown in the upper part
of Fig. 12. A first refinement that can be fully automated
consists of reallocating the original requirement to the newly
produced buffer subcomponent (lower part of Fig. 12). The
OCL constraint expression is also automatically changed to a
predefined complex expression that finds the two access
connections to the buffer, then computes the sum of their
latencies and finally compares the result with the maximum
allowed value retrieved from the parsed original OCL
expression.

Another refinement pattern could consist of reassigning the
requirement to both data access connections and divide the
maximum allowed latency value from the original requirement
by two.

2) Co-Refinement Scheme Implementation
The implementation of our co-refinement scheme consists

of a set of SDs called in the appropriate sequence by a root SD
as displayed in Fig. 13. Each node of the SD represents a call
to an external SD stored in its own file that implements the
corresponding step of the scheme.

Fig. 12: Example initial and refined latency requirement

The first SD takes care of loading the required AADL
library classifiers and property definitions such as the
subprogram classifiers implementing the refined
communication behavior for the Local Communications rule.
The required library elements are identified from their names.

Fig. 13: Overall story diagram implementing the co-refinement scheme

An excerpt of the SD for step 2 of the scheme for finding a
match for the architecture refinement rule and for creating the
associated markers is illustrated in Fig. 14. The first action
node (match_application_condition) attempts to match the two
communicating threads. An OCL constraint is evaluated on
the matched pattern to verify that the matched connection is
local, meaning that the connected threads are executed by the
same processor.

Once the match is found, the next action node creates the
architecture marker model by marking all elements that will be
modified during refinement and that will be used to find the
potentially impacted requirements during step 3. Such
elements are the two communicating threads, the port
connection between them and the containing process.

An excerpt of the used architecture marking metamodel is
depicted in Fig. 15. It consists of a core metamodel agnostic of
any architecture refinement rule and extended by another
metamodel specific to the rule. The core metamodel defines an
abstract architecture marking class that is a root container of
architecture markers. An architecture marker contains a set of
modified, deleted, created and matched architecture element
references that each refers to a set of architecture elements
before refinement (source) and a set of elements produced
after refinement (refined). Such marker therefore implements
the refinement traceability specified by the co-refinement
scheme.

Fig. 14: Simplified version of the story diagram implementing step 2 of the
co-refinement scheme for the Local Communications refinement rule

For each architecture refinement rule, a concrete
architecture marker class is provided extending the core
architecture marker class and specific to the architecture
refinement rule. Marker classes and references specific to the
pattern defining the application condition of the architecture
refinement rule are provided as depicted in Fig. 16.

Fig. 15: Excerpt of the architecture marking metamodel for the Local
Communications refinement rule

Fig. 16: Marking model for the Local Communications refinement rule

Step 3 of the scheme for the detection of impacted
requirements is implemented by another SD making use of the
information captured by the architecture markers. An excerpt
of the requirements marking metamodel is depicted in Fig. 17.
Requirements markers are instantiated and identify the
impacted requirements for the two communicating threads as
well as the latency requirement of Fig. 12. The requirement
marker also has a reference to the elements that should be
reviewed within the impacted requirement. Various attributes
of the requirements marker class are used to store information
required by this step of the co-refinement scheme. The
architecture elements that will be modified and that are
impacting the requirement are also referenced from the
requirement marker.

Note that the requirements marking metamodel only makes
use of the generic core architecture metamodel and can
therefore be reused for any architecture refinement rule.

Fig. 17: Excerpt of the requirements marking metamodel

After creating the requirement markers, the architecture
refinement rule is executed except for its deleting parts as
described in step 4 of the co-refinement scheme. The
architecture marking model created during step 2 is used as
input. New AADL component type and implementation
classifiers are created as copies of the process type and

implementation. The required data subcomponent for the
buffer is created and added to the new process implementation
containing the threads. Its type is set to a library data type
previously looked up during step 1. The data access
connections are also created and the architecture marker is
updated to mark the newly created data subcomponent data
access connections and process type and implementation
classifiers.

To refine the requirements thus implementing step 5 of the
co-refinement scheme, another story diagram is called as
shown in Fig. 18. For each requirement marker, the activity
calls external story diagrams sequentially until one diagram
was found to be able to refine the requirement. Due to the lack
of space, we do not show the specific rules implemented for
refining the memory consumption and latency requirements.

Fig. 18: Excerpt of the SD for refining memory consumption requirements

Lastly, step 6 is applied and the obsolete port connection
between the threads is deleted. The delete architecture markers
are also updated to replace the references to the deleted
elements by their ids.

IV. GENERALIZING REQUIREMENTS REFINEMENT

We have shown in the previous section that our approach
can be implemented with SDs and save considerable efforts to
the designer by automating partially or not requirements
refinements. However, one disadvantage is that for a given
architecture refinement rule, many requirements co-refinement
rules must be developed specific to the architecture refinement
and to the type and structure of the requirements. In this
section, we suggest some preliminary ideas for generalizing
requirements refinements in order to favor reuse of
requirements refinement rules across several architecture
refinement rules.

Given the different architecture and requirements
refinements that were considered for this work, we foresee two
different axis of classification according to the type of
architecture refinement (merge vs split of model elements) and
to the type of requirements as identified from the constrained
NFP. On the type of architecture refinement axis, we noticed
that the merge of architecture model elements often leads to
merge of requirements and conversely for the splitting case.
Such type of applied architecture refinement could therefore

inspire the restructuration of corresponding requirements. On
the requirement type axis, NFPs sharing similar characteristics
could be identified. Consider for example the period
requirement over the merged threads for the merging
architecture refinement rule (Fig. 9). When refining the
requirements, a single requirement is created for the merged
thread with the constraint on the period taken as that of the
most restrictive of the source requirements (see section II.A).
It is a pattern that could be applied to several types of resource
consumption requirements as illustrated in Fig. 19.

Fig. 19: Pattern for refining requirements following a merge of model
elements

Similarly, for the Local Communications architecture
refinement rule and the considered latency requirement (see
section III.C.a)), the initial requirement over the original port
connection needs to be split into two new requirements over
the two created data access connections, with the sum of the
latencies of each connection not exceeding the original value
divided by 2. Again this is a pattern applicable for several
types of NFPs as illustrated in Fig. 20.

Fig. 20: Pattern for refining requirements following a split of model elements

As another example, consider the reliability of the
connection expressed as a number between 0.0 and 1.0,
indicating respectively the certainty and impossibility of
failure. In such case, splitting the original reliability value
would require taking its square root assuming equal reliability
for the new connections.

Recalling the refinement of the memory consumption
requirement for the Local Communications refinement rule
(see section III.C.a), if the memory consumption of the added
buffer would be known in advance, the maximum memory
consumption for the threads after refinement could be
computed by subtracting the required memory for the buffer
from the initial allowed consumption and divide the result by
two for the allowed maximum memory of the refined threads.

V. RELATED WORK

This work relates to the co-evolution of requirements and
architectures with a focus on the specific case of refining NF
requirements following architecture refinements. We are not
aware of any work that addresses this very specific problem.
However, there are several works studying the specific nature
of the relationship between requirements and architectures
[13] and the more general problem of model co-evolution. In
the following, we first present the works specific to the co-
evolution of requirements and architectures followed by those
addressing the general problem of co-evolution of any type of
models.

A. Co-evolution of Requirements and Architecture

In [14], an interesting traceability meta-model taking into
account the characterization of requirements and architecture
elements in terms of problem and solution spaces and
capturing design outcomes and decisions is proposed. An
ontology supporting the designer in co-evolution is provided.
However, only traceability is managed automatically and
requirements and architecture must be coevolved manually. In
[15], patterns of co-evolution between requirements and
source code are proposed. Such patterns provide building
blocks for automating traceability maintenance but again, co-
evolution of requirements and architecture is not addressed. In
[16], a co-evolution of use cases models and feature model
configurations is proposed and implemented with a
bidirectional transformation language. However this does not
address our specific problem and it is not clear how much of
the problem is solved by the approach and what level of
automation is achieved.

B. Co-evolution for Generic Models

Co-evolution of models is also called model synchronization
and a number of approaches have been developed for it.
Among those, Triple Graph Grammars (TGG) [17] provides a
means to specify declarative rules for transforming one model
into another one in both directions. Such rules can be used for
co-evolution as they allow relating a change in one model
under some conditions to another change in the associated
model as required for preserving consistency. TGGs have been
used in several co-evolution scenarios such as SysML and
AUTOSAR [18]. However TGGs are not expressive enough
when the models are of very different domains.

Another approach is EMF DiffMerge / Co-evolution [19].
Similar to TGGs, the approach assumes that the relation
between the models can be formalized as an explicit mapping,
and synchronization consists of updating the target model
according to a source model and the mapping between them.
However at the time of writing, no scientific publication could
be found for this work that seems to be in a preliminary
development stage.

Other approaches to model synchronization are based on
defining constraints between models that when evaluated
indicate model inconsistencies [20][21][22]. Inconsistency
resolution is then performed by requesting the user to provide
a repair action to restore consistency or a solver is used to
automatically generate such action. However such approaches

are not likely to scale for large models due to the size of the
solution space to be explored.

There are also approaches covering only the maintenance of
traceability links without considering evolutions of the traced
models. In [23], scalable traceability maintenance using Story
Diagrams is presented. Tarski [24] goes in a similar direction
by enabling the user to specify the semantics of traceability
elements using first-order logic.

However, as we have seen in this work, it is rarely the case
that repairing traceability is sufficient and requirements must
be refined as well, even for the simple cases of architecture
refinements we considered. To summarize, no approach
propose comprehensive co-evolution of requirements,
architecture and their traceability links supporting designers in
case complete automation is not possible, including a record of
the changes that were applied to the models.

VI. CONCLUSION AND FUTURE WORKS

We have developed a first approach for co-refining NF
requirements following architecture refinements and to
support manual refinement by the creation of a marking model
when complete automation is not possible. It has been
evaluated in the frame of the RAMSES tool with AADL and
RDAL models. The approach has been prototyped for several
refinement rules indicating its applicability. Furthermore, the
approach is highly customizable and is likely to support a
large diversity of refinement kinds. It is expected to greatly
reduce the manual efforts required for maintaining
requirements consistent with the architecture, which is
essential for today’s large models. It also provides a record of
the changes that occurred on both the requirements and
architecture sides through the generated marking models.

Our future work consists of improving the approach by
increasing its genericity according to the ideas proposed in
section IV. For this a thorough study of several architecture
refinement rules and requirements is required. The case of
functional requirements is also an interesting future work.
Such requirements are typically expressed using behavioral
constraints languages such as Linear Temporal Logic or
Computational Tree Logic, as opposed to structural constraint
languages such as OCL for NF requirements. Their refinement
could also make use of the proposed co-refinement scheme.

REFERENCES

[1] A. Kannenberg, H. Saiedian, “Why Software Requirements
Traceability Remains a Challenge”, CrossTalk: The Journal of
Defense Software Engineering, July / August 2009.

[2] Systems Modeling Language (SysML), Object Management
Group (OMG), http://www.omgsysml.org/.

[3] A. van Lamsweerde, “Requirements Engineering: From System
Goals to UML Models to Software Specifications”, Wiley, 2009

[4] E. Borde, S. Rahmoun, F. Cadoret, L. Pautet, F. Singhoff, P.
Dissaux, “Architecture models refinement for fine grain timing
analysis of embedded systems”, Int. Symposium on Rapid
System Prototyping (RSP), 2014.

[5] The RAMSES Project Website: https://mem4csd.telecom-
paristech.fr/blog/index.php/ramses/,

[6] AS5506b: Architecture Analysis and Design Language (AADL),
SAE International, http://standards.sae.org/as5506b/, 2012.

[7] D. Blouin, S. Turki, E. Senn, “Defining an annex language to the
Architecture Analysis and Design Language for requirements
engineering activities support”, Model-Driven Requirements
Engineering Workshop (MoDRE), 2011.

[8] T. Fischer, J. Niere, L. Torunski, A. Zündorf, “Story Diagrams
A New Graph Rewrite Language Based on the Unified
Modeling Language and Java”. In Theory and Application of
Graph Transformations, 2000.

[9] The Story Driven Modeling Tool (SDM) Project Website,
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-
projects/story-diagram-tools/.

[10] D. Blouin, H. Giese, “Combining Requirements, Use Case
Maps and AADL Models for Safety-Critical Systems Design”,
SEAA 2016.

[11] D. Lempia, S. Miller, “Requirements Engineering Management
Handbook”, Federal Aviation Administration, Tech. Rep., 2009.

[12] The ATL EMFTVM Project Website,
https://wiki.eclipse.org/ATL/EMFTVM.

[13] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago. “Relating Software
Requirements and Architectures”, Springer-Verlag, 2011.

[14] A. Tang, P. Liang, V. Clerc, H. van Vliet, “Traceability in the
Co-evolution of Architectural Requirements and Design”, in
Relating Software Requirements and Architectures, Springer-
Verlag, 2011.

[15] M. Rahimi, J. Cleland-Huang, “Patterns of co-evolution between
requirements and source code”, Procs of the 5th Int. Workshop
on Requirements Patterns (RePa), 2015.

[16] W. Zhao, H. Zhao, Z. Hu, “A Framework for Synchronization
between Feature Configurations and Use Cases Based on
Bidirectional Programming”, Procs of the 24th Int. Requirements
Engineering Conference Workshops (REW), 2016.

[17] A. Schürr, “Specification of graph translators with triple graph
grammars”, Proc. of the 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science, 1994.

[18] H. Giese, S. Neumann, S. Hildebrandt, “Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent”,
In Graph Trans. and Model Driven Engineering, Springer, 2010.

[19] The EMF DiffMerge / Co-evolution Project Website,
http://wiki.eclipse.org/EMF_DiffMerge/Co-Evolution.

[20] A. Boronat, J. Meseguer, “Automated Model Synchronization:
A Case Study on UML with Maude”. In Proc. of ECEASST,
2011.

[21] A. Reder, A. Egyed, “Computing repair trees for resolving
inconsistencies in design models”. In Proc. of the 27th Int.
Conference on Automated Software Engineering, 2012.

[22] A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio, “JTL: A
Bidirectional and Change Propagating Transformation
Language”, In Proc. of the 3rd conference on Software Language
Engineering. (SLE), 2010.

[23] A. Seibel, R. Hebig, H. Giese, “Traceability in Model-Driven
Engineering: Efficient and Scalable Traceability Maintenance”,
In Software and Systems Traceability, Springer, 2012.

[24] F. Erata, M. Challenger, B. Tekinerdogan, A. Monceaux, E.
Tüzün, G. Kardas, “Tarski: A Platform for Automated Analysis
of Dynamically Configurable Traceability Semantics”, In Proc.
of the 32nd Symposium on Applied Computing (SAC), 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

