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Introduction

In this paper we focus the classical Schwarz reflection principle across a geodesic line in the boundary of a minimal surface in R 3 and more generally in three dimensional homogeneous spaces E(κ, τ ) for κ < 0 and τ 0.

The Schwarz reflection principle was shown in some special cases. One kind of examples arise for the solutions of the classical Plateau problem in R 3 containing a segment of a straight line in the boundary, see Lawson [8, Chapter II, Section 4, Proposition 10]. Another kind occur for vertical graphs in R 3 and H 2 × R containing an arc of a horizontal geodesic, see [START_REF] Sa Earp | Minimal graphs in H n × R and R n+1[END_REF]Lemma 3.6].

On the other hand, there is no proof of the reflection principle for general minimal surfaces in R 3 containing a straight line in its boundary.

The goal of this paper is to provide a proof of the reflection principle about vertical geodesic lines for Jenkins-Serrin type minimal surfaces in R 3 and other three dimensional homogeneous manifolds such as, for example, H 2 × R, PSL 2 (R, τ ) and S 2 × R, see Theorem 4.1. The proof also holds for horizontal geodesic lines.

We observe that this classical Schwarz reflection principle was used by many authors, including the present authors, in R 3 and H 2 × R.

We recall that the authors proved another reflection principle for minimal surfaces in general three dimensional Riemannian manifold with quite different statement and techniques, see [START_REF] Sa Earp | A reflection principle for minimal surfaces in smooth three manifolds[END_REF].

We are grateful to the referee of our paper whose remarks greatly improved this work.

A brief description of the three dimensional

homogeneous manifolds E(κ, τ )

For any r > 0 we denote by D(r) ⊂ R 2 the open disc of R 2 with center at the origin and with radius r (for the Euclidean metric).

For any κ 0 and τ 0 we consider the model of E(κ, τ ) given by

D( 2 √ -κ
) × R equipped with the metric (1) ν 2 κ (dx 2 + dy 2 ) + (τ ν κ (ydxxdy) + dt) 2 .

where ν κ = 1

1 + κ x 2 +y 2 4
. We observe that E(-1, τ ) = PSL 2 (R, τ ). By abuse of notations we set D( 1 0 ) = D(+∞) = R 2 . Thus E(0, τ ) = Nil 3 (τ ). Also, R 3 equipped with the Euclidean metric is a model of E(0, 0).

We denote by M(κ) the complete, connected and simply connected Riemannian surface with constant curvature κ. Notice that for κ < 0 a model of M(κ) is given by the disc D( 2 √ -κ

) equipped with the metric ν 2 κ (dx 2 + dy 2 ). We recall that E(κ, τ ) is a fibration over M(κ), and the projection Π : E(κ, τ ) -→ M(κ) is a Riemannian submersion, see for example [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF]. Moreover the unit vertical field ∂ ∂t is a Killing field generating a one-parameter group of isometries given by the vertical translations.

We have seen in [START_REF] Sa Earp | A reflection principle for minimal surfaces in smooth three manifolds[END_REF]] that the horizontal geodesics and the vertical geodesics of E(κ, τ ) admit a reflection. That is, for any such a geodesic L, there exists a non trivial isometry

I L of E(κ, τ ) satisfying • I L is orientation preserving, • I L (p) = p for any p ∈ L, • I L • I L = Id.
Let Ω be any domain of M(κ) and let u : Ω -→ R be a C 2 -function.

We say that the set Σ :

= {(p, u(p)), p ∈ Ω} ⊂ D( 2 √ -κ ) × R is a vertical graph.
Note that the Killing field ∂ ∂t is transverse to Σ. Thus, by the well-known criterium of stability, if Σ is a minimal surface then Σ is stable. Consider some arbitrary local coordinates (x 1 , x 2 , x 3 ) of E(κ, τ ). Let u be a C 2 function defined on a domain Ω contained in the x 1 , x 2 plane of coordinates. Let S ⊂ E(κ, τ ) be the graph of u. Then S is a minimal surface if u satisfies an elliptic PDE (called minimal surface equation)

F (x, u, u 1 , u 2 , u 11 , u 12 , u 22 ) = 0,
see [START_REF] Sa Earp | A reflection principle for minimal surfaces in smooth three manifolds[END_REF]Equation (13)]. Furthermore, if u has bounded gradient then the PDE is uniformly elliptic.

Jenkins-Serrin type minimal surfaces

The original Jenkins-Serrin's theorem was conceived in R [START_REF] Nguyen | Surfaces minimales dans des variétés homogènes de dimension 3[END_REF]Section 3.6]. As a matter of fact the same proof also works in the homogeneous spaces E(κ, τ ) for any κ < 0 and τ 0.

We state briefly below the Jenkin-Serrin type theorem in the homogeneous spaces E(κ, τ ) for κ < 0 and τ 0 (same statement holds in R 3 and in M 2 × R).

Let Ω be a bounded convex domain in M 2 (κ), thus for any point p ∈ Γ := ∂Ω there is a complete geodesic line

Γ p ⊂ M 2 (κ) such that Ω remains in one open component of M 2 (κ) \ Γ p .
We assume that the C 0 Jordan curve Γ ⊂ M 2 (κ) is constituted of two families of open geodesic arcs A 1 , . . . , A a , B 1 , . . . , B b and a family of open arcs C 1 , . . . , C c with their endpoints. We assume also that no two A i and no two B j have a common endpoint.

On each open arc C k we assign a continuous boundary data g k . Let P ⊂ Ω be any polygon whose vertices are chosen among the endpoints of the open geodesic arcs A i , B j , we call P an admissible polygon. We set

α(P ) = A i ⊂P A i , β(P ) = B j ⊂P B j , γ(P ) = perimeter of P.
With the above notations the Jenkins-Serrin's theorem asserts the following:

If the family {C k } is not empty then there exists a function u : Ω -→ R whose graph is a minimal surface in E(κ, τ ) and such that u

|A i = +∞, u |B j = -∞, u |C k = g k if and only if (2)
2α(P ) < γ(P ), 2β(P ) < γ(P )

for any admissible polygon P . In this case the function u is unique.

If the family {C k } is empty such a function u exists if and only if α(Γ) = β(Γ) and condition (2) holds for any admissible polygon P = Γ. In this case the function u is unique up to an additive constant.

We denote by Σ ⊂ E(κ, τ ) the graph of u over Ω and we call such a surface a Jenkins-Serrin type minimal surface.

Remark 3.1. We observe that when the family {C k } is empty, the boundary of Σ is the union of vertical geodesic line {q} × R for any common endpoint q between geodesic arcs A i and B j .

Suppose that the family {C k } is not empty and let x 0 be a common vertex between A i and C k , if any. If g k has a finite limit at x 0 , say α, then the half vertical line {x 0 } × [α, +∞[ lies in the boundary of Σ. Now if x 0 is a common vertex between B j and C k and if g k has a finite limit at x 0 , say β, then the half vertical line {x 0 }× ] -∞, β] lies in the boundary of Σ. At last, if x 0 is a common vertex between C i and C k and if g i and g k have different finite limits at x 0 , say α < β, then the vertical segment {x 0 } × [α, β] lies in the boundary of Σ.

Main theorem

For any vertical geodesic line L of E(κ, τ ), we denote by I L the reflection about the line L. Then, we can extend minimally Σ by reflection about L. More precisely, S := Σ ∪ γ ∪ I L (Σ) is a smooth minimal surface invariant by the reflection about Γ, containing int(γ) in its interior.

Furthermore the same statement and proof hold for

Σ ⊂ R 3 or Σ ⊂ S 2 × R.
Observe that the possible cases for γ are the following: the whole line L, a half line of L or a closed geodesic arc of L.

Observe also that, since we are under the assumptions of Remark 3.1, if x 0 is an endpoint of some arc C i , then g i has a finite limit at x 0 . Remark 4.2. We use the same notations as in Theorem 4.1. Suppose that the boundary of Σ contains an open arc δ (graph over an arc C k ) of a horizontal geodesic line Υ of PSL 2 (R, τ ).

We denote by I Υ the reflection in PSL 2 (R, τ ) about Υ.

We can prove as in [START_REF] Sa Earp | Minimal graphs in H n × R and R n+1[END_REF]Lemma 3.6] (in H 2 × R) that we can extend Σ by reflection about Υ: Σ ∪ δ ∪ I Υ (Σ) is a connected smooth minimal surface containing δ in its interior. The same observation holds also in Heisenberg space and S 2 × R.

On the other hand, we can verify that the proof of Theorem 4.1 also works for reflection about horizontal geodesic lines.

Proof. For the sake of clarity and simplicity of notations, we provide the proof in PSL 2 (R, τ ) = E(-1, τ ). Nevertheless, all arguments and constructions hold in E(κ, τ ) for any κ < 0 and τ 0, in R 3 , that is for κ = τ = 0 and in S 2 × R, that is for κ = 1 and τ = 0.

We assume that the family C k is not empty. The other situation can be handled in a similar way.

Recall that, by assumption, if x 0 is an endpoint of some arc C i (if any), then g i has a finite limit at x 0 .

We suppose that all functions g k admit also a finite limit at the endpoints of C k different of x 0 (if any). It is possible to carry out a proof without this assumption but the details are cumbersome, as we can see in the following.

Suppose for instance that x 1 ( = x 0 ) is an endpoint of some arc C k , that g k has no limit at x 1 and that g k is bounded near

x 1 . Setting α = 1 2 (lim inf x→x 1 g k (x) + lim sup x→x 1 g k (x)), we can find a sequence (p n ) on C k such that p n → x 1 and g k (p n ) = α for any n.
Then we consider the new function g k,n on C k setting g k,n (x) = α on the segment [x 1 , p n ] of C k and g k,n = g k outside this segment. Now the continuous function g k,n has a limit at x 1 . Observe that for any x ∈ C k we have g k,n (x) = g k (x) for any n large enough.

If g k is not bounded near x 1 , we first truncate, for any n > 0, the function g k above by n and below by -n. We obtain a new continuous and bounded function h k,n on C k . Then we proceed as above.

For any integer n we consider the Jordan curve Γ n obtained by the union of the geodesic arcs A i at height n, the geodesic arcs B j at height -n, the graphs of functions g k over the open arcs C k (or g k,n if g k has no finite limit at some endpoint of C k ), and the vertical segments necessary to form a Jordan curve. Thus Γ is the projection of Γ n on H 2 . Let Σ n ⊂ PSL 2 (R, τ ) be the embedded area minimizing disc with boundary Γ n given by Proposition 6.1 in the Appendix. We have

• Σ n ⊂ Ω × R, • Σn := Σ n \ Γ n = Σ n ∩ (Ω × R) is a vertical graph over Ω.
We set γ n := Σ n ∩ L, where L := {x 0 } × R, thus γ n ⊂ γ for any n. Due to the fact that Σ n is area minimizing we can apply the reflection principle about the vertical line L, this is proven in detail in [START_REF] Sa Earp | A reflection principle for minimal surfaces in smooth three manifolds[END_REF]Proposition 3.4]. Thus, S n := Σ n ∪ I L (Σ n ) is an embedded minimal surface containing int(γ n ) in its interior. By construction S n is invariant under the reflection I L and is orientable.

Let u n : Ω -→ R be the function whose the graph is Σn . Thus u n extends continuously by n on the edges int(A i ), by -n on the edges int(B j ) and by g k (or g k,n ) over the open arcs C k . Using the lemmas derived in [START_REF] Younes | Minimal surfaces in PSL 2 (R)[END_REF], following the original proof of [7, Theorem 2], it can be proved that, up to considering a subsequence, the sequence of functions (u n ) converges to a function u : Ω -→ R in the C 2 -topology, uniformly over any compact subset of Ω.

Let d n be the intrinsic distance on S n . For any p ∈ S n and any r > 0 we denote by B n (p, r) ⊂ S n the open geodesic disc of S n centered at p with radius r. By construction, for any p ∈ int(γ) there exist n p ∈ N and a real number c p > 0 such that for any integer n n p we have

p ∈ int(γ n ) ⊂ int(S n ) and d n (p, ∂S n ) > 2c p .
We assert that the Gaussian curvature K n of the surfaces S n is uniformly bounded in the neighborhood of each point of int(γ), independently of n. Proposition 4.3. For any p ∈ int(γ) there exist R p , K p > 0, and there exists n p ∈ N satisfying p ∈ int(γ np ) ⊂ S np and d np (p, ∂S np ) > 2R p , such that for any integer n n p we have p ∈ int(γ n ) ⊂ S n and

|K n (x)| K p , for any x ∈ B n (p, R p ).
We postpone the proof of Proposition 4.3 until Section 5. Assuming Proposition 4.3 we will prove that for any p ∈ int(γ) there exists an embedded minimal disc D(p), containing p in its interior, such that D(p) ⊂ Σ ∪ γ ∪ I L (Σ). This will prove that Σ ∪ γ ∪ I L (Σ) is a minimal surface, that is smooth along int(γ).

Let p ∈ int(γ), we deduce from Proposition 4.3 that there exist real numbers R p , K p > 0 and n p ∈ N such that for any integer n n p and for any point

x ∈ B n (p, R p ) we have |K n (x)| K p . By construction, B n (p, R p ) is an embedded minimal disc.
Therefore it can be proved as in [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF], using [18, Proposition 2.3, Lemma 2.4] and the discussion that follows, that up to taking a subsequence, the geodesic discs B n (p, R p ) converge for the C 2 -topology to a minimal disc D(p) ⊂ R 3 containing p in its interior. We recall that each geodesic disc B n (p, R p ) is embedded, contains an open subarc γ(p) of γ (which does not depend on n) passing through p, and B n (p, R p ) is invariant under the reflection I L . Thereby the minimal disc D(p) also is embedded, contains the subarc γ(p) and inherits the same symmetry.

We set

S := Σ ∪ γ ∪ I L (Σ). By construction the surfaces int(S n ) \ L converge to Σ ∪ I L (Σ). We observe that B n (p, R p ) \ L ⊂ S n \ L and then D(p) \ L ⊂ Σ ∪ I L (Σ).
Then we have D(p) ⊂ S. We conclude henceforth that S is a smooth minimal surface invariant under the reflection I L , this accomplishes the proof of the theorem. Remark 4.4. Theorem 4.1 holds also in case where x 0 is and endpoint of some arc C i and g i has an infinite limit at x 0 .

Indeed, assume that lim x→x 0 g i (x) = +∞. We denote by g i,n the new function on C i obtained by truncating the function g i above by n. Then, in the proof of Theorem 4.1, we consider the embedded area minimizing disc Σ n constructed with the function g i,n on C i (instead of g i ). Then we can proceed the proof in the same way.

Remark 4.5. We don't know if the Jenkins-Serrin type theorem was established in the Heisenberg spaces Nil 3 (τ ) = E(0, τ ) for τ > 0. Assuming the Jenkins-Serrin type theorem, the proof of Theorem 4.1 works to establish the same reflection principle for vertical geodesic lines in Nil 3 (τ ).

Proof of Proposition 4.3

We argue by absurd. Suppose by contradiction that there exists p ∈ int(γ) such that for any k ∈ N * there exist an integer n k > k and

x k ∈ B n k (p, 1 k ) such that |K n k (x k )|> k 2 .
There exist c > 0 and k 0 ∈ N * such that for any integer k k 0 we have p ∈ int(γ n k ) and

d n k (p, ∂S n k ) > 2c. Thus B n k (p, c) ⊂ int(S n k ).
Moreover there exists an integer k 1 > k 0 such that for any integer k k 1 we have

d n k (x k , ∂B n k (p, c)) > c/2.
From now on, we are going to use classical blow-up techniques. Define the continuous function

f k : B n k (p, c) -→ [0, +∞[ for any k k 1 , setting: f k (x) = |K n k (x)| d n k (x, ∂B n k (p, c)).
Clearly f k ≡ 0 on ∂B n k (p, c) and

f k (x k ) = |K n k (x k )| d n k (x k , ∂B n k (p, c)) k c 2 .
We fix a point p k ∈ B n k (p, c) where the function f k attains its maximum value, hence

f k (p k ) k c 2 . (3) 
We deduce therefore (4) Notice that D k is embedded.

λ k := |K n k (p k )| kc 2d n k (p k , ∂B n k (p, c)) kc 2c = k 2 . Notation 5.1. We set ρ k = d n k (p k , ∂B n k (p, c 
For further purpose we emphasize that D k is an orientable minimal surface of PSL 2 (R, τ ).

Let us consider the model of PSL 2 (R, τ ) = E(-1, τ ) given by ( 1) for κ = -1, that is the product set D(2) × R equipped with the metric ( 5)

ds 2 := µ 2 (dx 2 + dy 2 ) + τ µ(ydx -xdy) + dt 2 where µ = µ(x, y) = 1 1 -x 2 +y 2 4 .
For any integer k k 1 we set

µ k = µ k (u, v) = 1 1 -u 2 +v 2 4λ 2 k
. We consider, as in the Nguyen's thesis [13, Section 2.2.3], the product set D(2λ k ) × R equipped with the metric (6)

ds 2 k := µ 2 k (du 2 + dv 2 ) + τ λ k µ k (vdu -udv) + dw 2 . Thus (D(2λ k ) × R, ds 2 k ) is a model of E( -1 λ 2 k , τ λ k ).
Remark 5.2. Since PSL 2 (R, τ ) is a homogeneous space, for any integer k k 1 , up to considering an isometry of PSL 2 (R, τ ) which sends p k to the origin 0 3 := (0, 0, 0), we can assume that p k = 0 3 . See for example [START_REF] Peñafiel | Surfaces of Constant Mean Curvature in Homogeneous Three Manifolds with Emphasis in PSL 2 (R, τ )[END_REF]Chapter 5] or [13, Proposition 1.1.7].

Let us consider the homothety

H k : D(2) × R -→ D(2λ k ) × R (x, y, t) -→ (u, v, w) = λ k (x, y, t).
We have H * k (ds 2 k ) = λ 2 k ds 2 , see ( 5) and ( 6). Then, it follows that

D k := H k (D k ) is an embedded minimal surface of (D(2λ k ) × R, ds 2 k ). By construction, D k is a geodesic disc with center the origine 0 3 of D(2λ k ) × R : 0 3 ∈ D k ⊂ D(2λ k ) × R. Moreover the radius of D k is ρ k = λ k •(radius of D k ), that is ρ k = λ k ρ k /2.
Using the estimate (3) we get [START_REF] Jenkins | Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation[END_REF] 

ρ k = λ k ρ k /2 = |K n k (p k )| d n k (p k , ∂B n k (p, c))/2 = f k (p k ) 2 kc 4 , thus ρ k → ∞ if k → ∞.
Let g euc = du 2 +dv 2 +dw 2 be the Euclidean metric of R 3 . We observe that (D(2λ k ) × R, ds 2 k ) converges to (R 2 × R, g euc ) for the C 2 -topology, uniformly on any compact subset of R 3 .

We denote by K

n k the Gaussian curvature of D k . For any x ∈ D k ⊂ D(2) × R, setting X = H k (x) ∈ D k ⊂ D(2λ k ) × R, we get K n k (X) = Kn k (x) λ 2 k . Hence for any X ∈ D k we obtain | K n k (X)| = |K n k (x)| λ k f k (p k ) λ k d n k (x, ∂B n k (p, c)) = d n k (p k , ∂B n k (p, c)) d n k (x, ∂B n k (p, c)) < 2, (8) since d n k (x, ∂B n k (p, c)) > ρ k 2 . Furthermore, for any integer k k 1 we have (9) | K n k (0 3 )| = |K n k (p k )| λ k = 1.
We summarize some facts derived before:

Lemma 5.3.

• each D k is an embedded and orientable minimal surface of (D(2λ k ) × R,

ds 2 k ) = E(-1 λ 2 k , τ λ k ), • there is a uniform estimate of Gaussian curvature, see (8), • the radius ρ k of the geodesic disc D k go to +∞ if k → ∞, see (7) 
, • the metrics ds 2 k converge to g euc for the C 2 -topology, uniformly on any compact subset of R 3 , see [START_REF] Hoffman | The strong halfspace theorem for minimal surfaces[END_REF].

Therefore it can be proved as in [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF] (using [18, Proposition 2.3, Lemma 2.4] and the discussion that follows), that up to considering a subsequence, the D k converge for the C 2 -topology to a complete, connected and orientable minimal surface S of R 3 .

Remark 5.4. From the construction described in [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF], the surface S has the following properties.

There exist r, r 0 > 0 such that for any q ∈ S, a piece G(q) of S, containing the geodesic disc with center q and radius r 0 , is a graph over the open disc D(q, r) of T q S with center q and radius r (for the Euclidean metric of R 3 ). Furthermore:

• for k large enough, a piece G k (q) of D k ⊂ D(2λ k ) × R is also
a graph over D(q, r) and the surfaces G k (q) converge for the C 2 -topology to G(q), • for any y ∈ G(q) there exists k y ∈ N such that for any k k y we can choose the piece

G k (y) of D k such that G k (q) ∪ G k (y) is connected.
By construction we have 0 3 ∈ S and, denoting by K the Gaussian curvature of S in (R 3 , g euc ), we deduce from (9) [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF] | K(0 3 )|= 1.

For any integer k k 1 we set L k := H k (L). Thus, L k is a vertical straight line of R 3 . Definition 5.5. Let δ k be the distance in D(2λ k ) × R induced by the metric ds 2 k . We say that the sequence of vertical lines ( L k ) in R 3 disappears to infinity if δ k (0 3 , L k ) → +∞ when k → +∞ There are two possibilities: the sequence ( L k ) disappears or not to infinity. We are going to show that either case cannot occur, we will find therefore a contradiction. First case: ( L k ) disappears to infinity.

Observe that, by construction, the geodesic discs B n k (p, c) are invariant under the reflection I L and f k (q) = f k (I L (q)) for any q ∈ B n k (p, c). Since p k = 0 3 by assumption, we can assume that 0

3 ∈ Σ n k ⊂ S n k for any k k 1 .
Let q ∈ S, and consider a minimizing geodesic arc δ ⊂ S joining 0 3 to q. It follows from Remark 5.4 that there exist a finite number of points q 1 = 0 3 , . . . , q n = q belonging to δ, and there exists k q ∈ N such that:

• for any integer k k q the subset ∪ j G k (q j ) ⊂ D k is connected and converges for the C 2 -topology to the subset ∪ j G(q j ) ⊂ S, • for any integer k k q we have ∪ j G k (q j ) ∩ L k = ∅.

Thus for any integer k k q we obtain that

H -1 k (∪ j G k (q j )) ∩ L = ∅, that is H -1 k (∪ j G k (q j )) ⊂ D k ∩ Σ n k . Setting D k := H k (D k ∩ Σ n k ) we deduce that the sequence ( D k ) con- verges to S for the C 2 -topology too. Observe that D k ∩ L k ⊂ ∂ D k . Therefore any minimal surface D k \ L k is a Killing graph and thus D k is a stable minimal surface of E( -1 λ 2 k , τ λ k )
. Therefore it can be proved as in the discussion following Lemma 2.4 in [START_REF] Rosenberg | General curvature estimates for stable H-surfaces in 3-manifolds and applications[END_REF] that S is a connected, complete, orientable and stable minimal surface of R 3 . Thanks to results of do Carmo and Peng [START_REF] Carmo | Stable complete minimal surfaces in R 3 are planes[END_REF], Fischer-Colbrie and Schoen [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature[END_REF] and Pogorelov [START_REF] Pogorelov | On the stability of minimal surfaces[END_REF], S is a plane. But this gives a contradiction with the curvature relation [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF].

Second case: ( L k ) does not disappear to infinity.

We will prove that the Gauss map of S omits infinitely many points, hence S would be a plane (see [START_REF] Fujimoto | On the number of exceptional values of the Gauss maps of minimal surfaces[END_REF]Corollary 1.3] or [START_REF] Xavier | The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere[END_REF]), contradicting the curvature relation [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF].

Let α ∈ (0, π] be the interior angle of Γ at vertex x 0 , (α exists since Γ is the boundary of a convex domain). Observe that the case where α = π is under consideration.

Since Ω is convex, there exists a geodesic line C x 0 ⊂ H 2 at x 0 such that C x 0 ∩ Ω = ∅. Let Π be the product C x 0 × R in (D(2) × R, ds 2 ) = E(-1, τ ). When τ = 0 notice that Π, is a vertical totally geodesic plane in H 2 × R. We recall that there are no totally geodesic surfaces in E(-1, τ ) if τ = 0, see [START_REF] Souam | Totally umbilic surfaces in homogeneous 3manifolds[END_REF]Theorem 1].

Under our assumption, up to considering a subsequence, we can assume that the sequence ( L k ) converges to a vertical straight line L ⊂ R 3 and that H k (Π) converges to a vertical plane Π ⊂ R 3 containing L. Let us denote by Π + and Π -the two open halfspaces of R 3 bounded by Π. Lemma 5.6. We have

( S ∩ Π) \ L = ∅.
Proof. Otherwise assume there exists a point q ∈ S ∩ Π such that q ∈ L. From the structure of the intersection of two minimal surfaces tangent at a point, see [START_REF] Colding | A course in minimal surfaces[END_REF]Theorem 7.3] or [START_REF] Serrin | A priori estimates for solutions of the minimal surface equation[END_REF]Lemma,p. 380], we may suppose that Π is transverse to S at q. Thus there is an open piece F (q) of S containing q which is transverse to the plane Π. Hence, for any integer k large enough, a piece

F k (q) of D k ⊂ D(2λ k ) × R is so close to F (q) that it is transverse to Π too. Consequently we would have int( D k ) ∩ H k (Π) \ L k = ∅, that is int(D k ) ∩ (Π \ L) = ∅.
For any integer k k 1 we denote by N k a smooth unit normal vector field on D k with respect to the metric ds 2 k , see [START_REF] Hoffman | The strong halfspace theorem for minimal surfaces[END_REF]. Let N k 3 be the vertical component of N k , this means that N k -N k 3 ∂ ∂t and ∂ ∂t are orthogonal vector fields along D k .

Since ( D k ) converges to S for the C 2 -topology, we can define a unit normal field N on S as the limit of the fields N k . Lemma 5.9. We have N 3 = 0 on S + ∪ S -. Furthermore S + and S - are vertical graphs.

Proof. Indeed, we know that D + k is a vertical graph. So we can assume that N k 3 > 0 along D + k for any k k 1 . By considering the limit of the fields N k we get that N 3 0 on S + .

Let q ∈ S + be a point such that N 3 (q) = 0, if any. Recall that the Gauss map of a non planar minimal surface of R 3 is an open map. Therefore, in any neighborhood of q in S + it would exist points y ∈ S + such that N 3 (y) < 0, which leads to a contradiction.

Thus we have N 3 = 0 on S + . We prove in the same way that N 3 = 0 on S -too.

Assume by contradiction that S + is not a vertical graph. Then there exist two points q, q ∈ S + lying to same vertical straight line. As the tangent planes of S + at q and q are not vertical, there exists a real number δ > 0 such that a neighborhood V q ⊂ S + of q and a neighborhood V q ⊂ S + of q are vertical graphs over an Euclidean disc of radius δ in the (u, v)-plane.

But, by construction, for k large enough a piece

U q of D + k is C 2 -close of V q and a piece U q of D + k is C 2 -close of V q .
Clearly this would imply that the vertical projections of U q and U q on the (u, v)-plane have non empty intersection. But this is not possible since D + k is a vertical graph. We conclude therefore that S + is a vertical graph.

We can prove in the same way that S -is a vertical graph.

End of the proof of the proposition

Let P ⊂ R 3 be any vertical plane verifying L ⊂ P and P = Π. We deduce from Lemmas 5.7 and 5.9 that ( S ∩ P ) \ L is a vertical graph. Therefore, the structure of the intersection of two minimal surfaces tangent at a point, see [START_REF] Colding | A course in minimal surfaces[END_REF]Theorem 7.3] or [START_REF] Serrin | A priori estimates for solutions of the minimal surface equation[END_REF]Lemma,p. 380], shows that there cannot be two distinct points of L where the tangent plane of S is P .

Let ν and -ν be the two unit vectors orthogonal to P . Since N 3 = 0 on S \ L we deduce that ν and -ν are not both assumed by the Gauss map of S. By varying the vertical planes P , we obtain that the Gauss map of S omits infinitely many points (belonging to the equator of the 2-sphere). Then S must be a plane, see [START_REF] Xavier | The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere[END_REF]Theorem] or [START_REF] Fujimoto | On the number of exceptional values of the Gauss maps of minimal surfaces[END_REF]Theorem I]. On account of [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF] we arrive to a contradiction. This accomplishes the proof of the proposition.

Observe that, actually, the proof of Proposition 4.3 demonstrates the following result. Outline of the proof. We first choose points p i ∈ C i , i = 1, 2, and we denote by C i the open arc of C i with endpoints p i and x 0 , i = 1, 2. Then we choose an open arc C 3 ⊂ Ω with endpoints p 1 and p 2 such that the bounded domain Ω ⊂ Ω with boundary

C 1 ∪ C 2 ∪ C 3 ∪ {x 0 , p 1 , p 2 }, is convex.
Let Γ n ⊂ E(κ, τ ) be the Jordan curve constituted with the graph of u n over C i , i = 1, 2, 3, the points (p j , u n (p j )), j = 1, 2, and a vertical closed segment γ n above x 0 . Thus γ ⊂ γ n for any n.

Since Ω is convex we deduce from Proposition 6.1 in the Appendix, that Σ n := Σ n ∩ Ω × R is an area minimizing disc, solution of the Plateau problem for the Jordan curve Γ n . Thus we can apply the Thus Σ is an embedded area minimizing disc bounded by Γ and is a vertical graph over Ω. Clearly, Σ is the unique minimal graph bounded by Γ. The same affirmation holds in S 2 × R.

Assume now that f has a finite number of discontinuity points, let x 0 ∈ Γ be such a point. Giving an orientation to Γ, we have therefore lim

x→x 0 x<x 0 f (x) = lim x→x 0 x>x 0 f (x).
Let (p n ) be a sequence on Γ such that • p n → x 0 and p n > x 0 , • for any n, the function f is continuous on the arc (x 0 , p n ] of Γ. Now we modify f on the closed arc [x 0 , p n ] in such a way that the new function f n is strictly monotonous on [x 0 , p n ] and satisfies

f n (x 0 ) = lim x→x 0 x<x 0 f (x), f n (p n ) = f (p n ) and f n (x) = f (x)
for any x ∈ (x 0 , p n ).

We assume that we have modified in the same way f in a neighborhood of each point of discontinuity and we continue denoting f n the new function. Clearly, we have

• for each point x ∈ Γ where f is continuous: f n (x) → f (x), • the function f n is continuous on Γ.
We denote by Γ n the graph of f n .

We know from the beginning of the proof, that for any n there exists an (unique) embedded area minimizing disc Σ n bounded by the Jordan curve Γ n , which is a vertical graph over Ω. Let u n : Ω -→ R be the function whose the graph is Σ n .

Since the sequence (f n ) is uniformly bounded on Γ, we deduce from the maximum principle that the sequence (u n ) is uniformly bounded on Ω too. In [12, Section 4.1] it is stated a compactness principle in the case where the ambient space is Heisenberg space, but it can be stated and proved in the same way in E(κ, τ ), κ 0, τ 0, and also in S 2 × R.

Therefore, up to considering a subsequence, we can assume that the sequence of restricted maps (u n|Ω ) converges on Ω, for the topology C 2 and uniformly on any compact subset of Ω, to a function u : Ω -→ R satisfying the minimal surface equation. Thus the graph of u is a minimal surface Σ which has a one-to-one projection on Ω. Now we recall a result in E(κ, τ ) for κ < 0 and τ > 0 proved in [START_REF] Younes | Minimal surfaces in PSL 2 (R)[END_REF]Lemma 5.3], but which holds more generally for κ 0 and τ 0, and also in S 2 × R.

Let T ⊂ M(κ) be an isosceles geodesic triangle and let U ⊂ M(κ) be the bounded convex domain with boundary T . We denote by A, B, C the open sides of T and by a, b, c the vertices of T . Assume that A and B have same length and that c is the common endpoint of A and B.

Then, for any real number α there exists a continuous function v : Using those surfaces as barrier at each point x ∈ Γ where f is continuous, as in the proof of [START_REF] Sa Earp | Existence and uniqueness of minimal graphs in hyperbolic space[END_REF]Theorem 3.4], we infer that u extends continuously up to x setting u(x) = f (x). We deduce that the topological boundary of Σ is the Jordan curve Γ.

U ∪ (T \ {a, b}) -→ [0, α] ⊂ R such that (1) v is C 2 on U
Setting Σ := Σ ∪ Γ, we have

• Σ is an embedded minimal disc in Ω × R, • ∂Σ = Γ, • int(Σ) = Σ ⊂ Ω × R
, and int(Σ) is a vertical graph over Ω. Now we want to prove that Σ is an area minimizing disc. Observe first that (Area(Σ n )) is a bounded sequence. Thus, up to considering a subsequence, we can assume that (Area(Σ n )) is a convergent sequence. Recall that the sequence (u n ) converges for the C 2 topology to u, uniformly on any compact subset of Ω. Therefore for any compact subset K ⊂ Ω we have Area(graph(u |K )) = lim Area(graph(u n|K )) lim(Area(Σ n )).

Thus we get

Area(Σ) lim(Area(Σ n )). Suppose by contradiction that Σ is not a minimizing area disc. Thus, considering a solution of the Plateau problem for Γ, there exists a minimal immersed disc S ⊂ E(κ, τ ) (or in S 2 × R), with

• ∂S = Γ,
• Area(S) < Area(Σ). Using the maximum principle we get

• S ⊂ Ω × R,

• S \ Γ ⊂ Ω × R. Let again x 0 ∈ Γ be a point where f is not continuous, we use the same notations as in the beginning of the proof. For any n we denote by s n the bounded subset of the cylinder Γ × R bounded by the following curves:

• the graph of f n over the arc [x 0 , p n ] of Γ,

• the graph of f over the arc (x 0 , p n ],

• the vertical closed segment above x 0 , with endpoints (x 0 , limx→x0 x<x 0 f (x)) and (x 0 , limx→x0

x>x 0 f (x)).
Clearly we have Area(s n ) → 0. Furthermore, by the foregoing discussion there exists ε > 0 such that Area(S) < Area(Σ n )ε for any n large enough.

Let {x i } ⊂ Γ be the finite set of points where f is not continuous. For any point x i we denote by s n (x i ) the piece of Γ × R constructed as above, corresponding to x i .

Observe now that S n := S ∪ (∪ i s n (x i )) is a disk with boundary the Jordan curve Γ n . By construction we have Area(S n ) < Area(Σ n ) for any n large enough, contradicting the fact that Σ n is a minimizing area disc with boundary Γ n .

Thus Σ is an embedded minimizing area disc with boundary Γ such that Σ \ Γ is a vertical graph over Ω.

It remains to prove that if Σ 0 ⊂ E(κ, τ ) (or in S 2 × R), is a minimal surface bounded by Γ such that Σ 0 \ Γ is a vertical graph over Ω, then Σ 0 = Σ.

Let u 0 : Ω -→ R be the function whose the graph is Σ 0 \ Γ. In [15, Theorem 1.3] A.L. Pinheiro proves a general maximum principle in a Riemannian product M × R, where M is Riemannian surface. The proof can be adapted to E(κ, τ ), κ 0, τ 0, thus u 0 = u, that is Σ 0 = Σ.

Observe also that in PSL(2, R), R. Younes proved directly that u 0 = u, see [START_REF] Younes | Minimal surfaces in PSL 2 (R)[END_REF]Theorem 1.1]. The proof can be adapted in E(κ, τ ), κ 0, τ 0, and also in S 2 × R.

Thus Σ 0 = Σ, which concludes the proof. Proof. We denote by x, y, z the coordinates on R 3 . Up to an isometry of R 3 we can assume that D is the x-axis: D = {(x, 0, 0), x ∈ R}.

By assumption there exist real numbers a < b such that (x, 0, 0) ∈ M for any x ∈ [a, b].

Theorem 4 . 1 .

 41 Using the notations of section 3 and under the assumptions of Remark 3.1, let γ ⊂ {x 0 }×R := L ⊂ E(κ, τ ) be a vertical component of the boundary of the open minimal vertical graph Σ ⊂ E(κ, τ ), where κ < 0 and τ 0.

  )) and we denote by D k ⊂ B n k (p, c) ⊂ S n k the open geodesic disc with center p k and radius ρ k /2.
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 510 Let Ω ⊂ M 2 (κ), κ 0, be a convex domain. Let C 1 , C 2 ⊂ ∂Ω be two open arcs admitting a common endpoint x 0 ∈ ∂Ω.Let (Σ n ) ⊂ E(κ, τ ), τ 0, be a sequence of minimal surfaces satisfying for any n:• Σ n is a minimal surface with boundary, whose interior is the graph of a function u n defined on Ω,•the function u n extends continuously up to the open arcs C 1 and C 2 , • the restrictions of the map u n to C 1 and C 2 have both a finite limit at x 0 , • there exists a fixed open vertical segment γ := x 0 × (a, b) ⊂ E(κ, τ ) such that γ ⊂ ∂Σ n and γ is independant of n. Then the Gaussian curvature K n of the surfaces S n is uniformly bounded in the neighborhood of each point of γ. Namely, for any p ∈ γ there exist R p , K p > 0, satisfying for any n d n (p, ∂Σ n \ γ) > 2R p ; and |K n (x)| K p for any x ∈ Σ n such that d n (p, x) < R p , where d n denotes the intrinsic distance on Σ n .

  and satisfies the minimal surface equation, (2) v = 0 on A ∪ B ∪ {c}, and v = α on C.
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 63 Let M ⊂ R 3 be a complete minimal surface containing a segment of a straight line D. Then the whole line D belongs to M: D ⊂ M.

  3 , see[7, Theorems 1, 2 and 3]. It was extended in H 2 × R by B. Nelli and H. Rosenberg [11, Theorem 3] and in M 2 × R by A.L. Pinheiro [15, Theorem 1.1] where M 2 is a complete Riemannian surface. Later on it was established in PSL 2 (R) by R. Younes [25, Theorem 1.1] and in Sol 3 by M. H. Nguyen

The first and second authors were partially supported by CNPq of Brasil.

But by construction we have int(S n k ) ∩ (Π \ L) = ∅, which leads to a contradiction since D k ⊂ S n k . Lemma 5.7. We have S ∩ Π = L.

Proof. Assume first that S ∩ Π = ∅. Hence S stay in an open halfspace, say Π + , of R 3 bounded by Π. Observe that the halfspace Π + is the limit of open subspaces H k (Π + ) of D(2λ k ) × R where Π + is one of the two open halfspaces of D(2) × R bounded by Π. Consequently S is the limit of the graphs D k ∩ H k (Π + ). Therefore, as in the first case, we obtain that S is stable and thus is a plane, giving a contradiction with [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF]. We obtain therefore S ∩ Π = ∅.

Let q ∈ S ∩ Π. We deduce from Lemma 5.6 that q ∈ L. If Π were the tangent plane of S at q, then the intersection S ∩ Π would consist in a even number 4 of arcs issued from q, see [1, Theorem 7.3] or [START_REF] Serrin | A priori estimates for solutions of the minimal surface equation[END_REF]Lemma,p. 380]. Then we infer that S ∩ ( Π \ L) = ∅ which is not possible due to Lemma 5.6.

Thus Π is transverse to S at q. Since S ∩ Π ⊂ L, we deduce from Lemma 5.6 that S ∩ Π contains an open arc of L containing q. This proves that S ∩ Π contains a segment of L. It is well known that if a complete minimal surface of R 3 contains a segment of a straight line then it contains the whole straight line, see Proposition 6.3 in the Appendix. We conclude that S ∩ Π = L as desired.

Remark 5.8. To prove that S ∩ Π = ∅ we can alternatively argue as follows. Assume that S ∩ Π = ∅. By construction S is a complete and connected minimal surface in R 3 without self-intersection. Furthermore we deduce from the estimates (8) that S has bounded curvature. It follows from [START_REF] Rosenberg | Intersection of minimal surfaces of bounded curvature[END_REF]Remark] that S is properly embedded. Since S lies in a halfspace, we deduce from the halfspace theorem [6, Theorem 1] that S is a plane, which gives a contradiction with [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF]. Thus S ∩ Π = ∅.

We deduce from Lemma 5.7 that S \ Π = S \ L has two connected components, say S -⊂ Π -and S + ⊂ Π + . In the same way we denote by Π + and Π -the two open halfspaces of D(2) × R bounded by Π. We have that Π + (resp. Π -) is the limit of

We set

). We observe that D + k and D - k are vertical graphs and that S + (resp. S -) is the limit of (

reflection principle around γ to Σ n , see [START_REF] Sa Earp | A reflection principle for minimal surfaces in smooth three manifolds[END_REF]Proposition 3.4]. Then we proceed as in the proof of Proposition 4.3.

Observe that the same result holds also for S 2 × R.

Appendix

Let Ω ⊂ M(κ), κ 0, be a bounded convex domain bounded by a C 0 Jordan curve Γ := ∂Ω, and let f : Γ -→ R be a piecewise continuous function, allowing a finite number of discontinuities.

We denote by Γ ⊂ E(κ, τ ), τ 0, the graph of f . Namely, if f is continuous then Γ is a Jordan curve with a one-to-one projection on Γ. If f has discontinuity points then Γ is constituted of a finite number of simple arcs admitting a one-to-one vertical projection on some subarc of Γ, and a vertical segment over each point of Γ where f is not continuous.

We consider also a C 0 bounded convex domain Ω in S 2 . In this case Γ ⊂ S 2 × R. Proof. We perform the proof in E(κ, τ ), the proof in S 2 ×R is analougous. Assume first that f has no discontinuity points. Since E(κ, τ ) is homogeneous, we deduce from a result of Morrey [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF] that there exists a minimizing area disc Σ bounded by Γ. Since Ω is a convex domain, we deduce from the maximum principle that int(Σ) ⊂ Ω × R (we use also the fact that if γ ⊂ M(κ) is a geodesic line, then γ ×R is a minimal surface of E(κ, τ )).

Proposition 6.1. There exists an embedded area minimizing disc

Furthermore as Γ has a one-to-one vertical projection on Γ, we infer that int(Σ) is a vertical graph over Ω, as in Rado's theorem [START_REF] Lawson | Lectures on minimal submanifolds[END_REF]Theorem 16].

We set B := sup{t > a, (x, 0, 0) ∈ M for any x ∈ [a, t]}, A := inf{t < b, (x, 0, 0) ∈ M for any x ∈ [t, b]}.

We are going to prove that A = -∞ and B = +∞ to conclude that D ⊂ M.

We have B b. Assume by contradiction that B = +∞. Since M is a complete surface we have (B, 0, 0) ∈ M. Let P ⊂ R 3 be the plane containing D and the orthogonal direction of M at (B, 0, 0).

Since the surfaces M and P are transverse at (B, 0, 0), their intersection in a neighborhood of (B, 0, 0) is an analytic arc γ. Furthermore, up to choosing a smaller arc, we can assume that γ is the graph, in P , of an analytic function f over the interval [Bε, B + ε] for ε > 0 small enough. Since f is an analytic function satisfying f (x) = 0 for any x ∈ [Bε, B], we deduce that f (x) = 0 for any x ∈ [Bε, B + ε]. Therefore we have (x, 0, 0) ∈ M for any x ∈ [a, B + ε], contradicting the definition of B.

Thus we have B = +∞. We prove in the same way that A = -∞, concluding the proof.