
HAL Id: hal-01873806
https://hal.science/hal-01873806

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TLS Connection Validation by Web Browsers: Why do
Web Browsers still not agree?

Ahmad Samer Wazan, Romain Laborde, David W. Chadwick, François
Barrère, Abdelmalek Benzekri

To cite this version:
Ahmad Samer Wazan, Romain Laborde, David W. Chadwick, François Barrère, Abdelmalek Benzekri.
TLS Connection Validation by Web Browsers: Why do Web Browsers still not agree?. 41st IEEE
Annual Computer Software and Applications Conference (COMPSAC 2017), Jul 2017, Turin, Italy.
pp. 665-674. �hal-01873806�

https://hal.science/hal-01873806
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 19046

The contribution was presented at COMPSAC 2017 :
https://www.computer.org/web/compsac2017

To link to this article URL :
http://doi.org/10.1109/COMPSAC.2017.240

To cite this version : Wazan, Ahmad Samer and Laborde, Romain and
Chadwick, David W. and Barrère, François and Benzekri, Abdelmalek TLS
Connection Validation by Web Browsers: Why do Web Browsers still not agree?
(2017) In: 41st IEEE Annual Computer Software and Applications Conference
(COMPSAC 2017), 4 July 2017 - 8 July 2017 (Turin, Italy).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

TLS Connection Validation by Web Browsers: Why

do Web Browsers still not agree?

A.S. Wazan1, R. Laborde1, D.W. Chadwick2, F. Barrere1, And A. Benzekri1
1 IRIT Laboratory, Paul Sabatier University

{ahmad-samer.wazan, laborde, barrere, benzekri}@irit.fr
2University of Kent

d.w.chadwick@kent.ac.uk

Abstract—The TLS protocol is the primary technology

used for securing web transactions. It is based on X.509

certificates that are used for binding the identity of web

servers’ owners to their public keys. Web browsers perform

the validation of X.509 certificates on behalf of web users.

Our previous research in 2009 showed that the validation

process of web browsers is inconsistent and flawed. We

showed how this situation might have a negative impact on

web users. From 2009 until now, many new X.509 related

standards have been created or updated. In this paper, we

performed an increased set of experiments over our 2009

study in order to highlight the improvements and/or

regressions in web browsers’ behaviours.

Keywords—X.509 Certificate; Certificate Validation; Web

browsers

I. INTRODUCTION

Transport Layer Security (TLS) is the primary
technology used to secure web communications. Before
setting up a TLS connection, web browsers have to validate
the TLS certificate of the web server in order to ensure that
users are accessing the expected web site. When the web
browser displays a small padlock, the user can continue
his/her navigation of the distant web site with the
knowledge that the web site is who it says it is (if the user
pays attention to this [1,19]). However, if the web browser
detects a problem with the certificate, a warning message
informs the user about this, and the necessity to stop the
transaction immediately. In this way, the web browser
protects its users from potentially harmful web sites.

Theoretically then, things are relatively simple. But in
practice, things are much more complicated than this. For
example, on 15 December 2016, around 8am, one of the
authors connected to the website of COMPSAC 2017 in
order to submit this paper. However, the connection was not
possible because the web browser (Firefox) detected an
error when validating the website’s certificate. Figure 1 is
the screenshot of the error message (in English this is “An
error happened when connecting to compsac.info. The
Online Certificate Status Protocol (OCSP) response
contains out-dated information”). It was not possible to
submit the paper since Firefox blocked the access without
any obvious way to bypass its protection system.
Immediately, the author tried to connect to the same
submission website using Safari. This time, no error
message appeared (Figure 2) and the paper was successfully
submitted. A second test with Firefox was then performed
but the Figure 1 error message was still displayed. Was the
paper securely submitted to the correct website or not?

In 2009, we highlighted the different behaviours of
several web browsers (Internet Explorer (IE), Opera and
Firefox) when validating certificates [2]. We explained the
reasons for these differences were either due to violation of
the standards by the browsers, or ambiguity in the standards
themselves.

Fig. 1. Screenshot when opening the COMPSAC 2017 submission web

site using Firefox

Fig. 2. Screenshot when opening the COMPSAC 2017 submission

website using Safari

In this paper, we have performed an increased set of
tests from [2] and this time we have covered a greater
number of web browsers (IE, Edge, Opera, Firefox, Safari
and Chrome), as well as covering the newest standards. Our
work describes the quality of X.509 certificate validation
implemented by these web browsers, as well as showing
their evolution since 2009. Also, we have produced new
tests for analysing how web browsers implement the OCSP
protocol.

The rest of this paper is structured as follows. Section 2
overviews the base set of standards related to X.509
certificates. Section 3 exposes and analyses the results of
tests executed on six web browsers and describes why their
behaviours are inconsistent. Finally, in section 4 we
conclude.

II. STANDARDS RELATED TO X.509 CERTIFICATES

The contents and processing of X.509 public key
certificates (PKCs) are regulated through numerous
standards documents. They were first officially described in
the X.509 standard developed jointly by the ISO and ITU-T
[3]. X.509 provides the general framework for public key
infrastructures. This document defines the syntax of PKCs
and revocation lists, as well as how they can be extended
(by literally anyone). Each standard certificate field has its
own syntax and semantics as well as constraints on its
possible values. In many cases a field can have different
syntax choices. These fields provide information about the
certificate version number, the subject of the certificate, the
public key, the way the key can be used, and the certificate
life cycle management process (Figure 3).

Fig. 3. Certificate contents (inspired by [20])

Three kinds of field exist: mandatory fields, optional
fields and extensions (which are all optional). When a field
is mandatory, Certificate Authorities (CAs) must fill it and
Relying Parties (RPs) must check it when validating
certificates. Extensions can be marked as critical or not. If
present and marked critical, the RP must obey its contents
or reject the certificate. If marked not critical, the RP can
ignore the extension if it does not recognise it, but must
obey it otherwise i.e. it should not ignore a non-critical
extension that it supports.

The complexity of the X.509 standard, in terms of fields
that are mandatory, optional, choices, and extensions,
means that it is almost impossible for two different
implementers to produce interworking code. A PKC
produced by one implementer cannot always be fully
validated by another, and vice versa.

Consequently the IETF PKIX group developed an
X.509 standard profile (RFC 5280) to address the specific
needs for using PKIs on the Internet. Especially, the profile
eliminates most options, make choices where several are
available, and specifies which extensions should be used.
However, due to the large constituency of the IETF, many
different authors proposed many different extensions and
ways of using X.509 certificates, so that by now, over 50
PKIX specified RFCs exist. One can easily see why it is
still not a trivial task to implement a fully conformant web
browser.

Among all the certificate extensions defined in X.509
and RFC 5280, Internet applications (such as web browsers)
must at least be able to recognize: basic constraints,
certificate policies, policy constraints, subject alternative
name, key usage, name constraints, extended key usage and
inhibit any-policy extensions; but do not need to recognize:

authority and subject key identifiers, and policy mapping
extensions [4].

Other important standards related to X.509 PKCs are:

• RFC 6125: this explains the rules that must be

followed in representing and verifying the identity

of servers identified in the PKCs,

• RFC 6960: this specifies the OCSP protocol used

for checking a PKC’s status.

• RFC 5019: this addresses the scalability issues

related to the deployment of OCSP servers in high-

volume environments. It also specifies the rules to

follow for caching OCSP responses.
Other standards will be mentioned in the rest of the

paper at the appropriate point.

III. ANALYSIS OF WEB BROWSERS’ BEHAVIOR

In 2009, we tested three web browsers: IE 7, Firefox 3
and Opera 9.5. In the current research, we tested the latest
versions: IE 11, Firefox 50 (FF50) and Opera 42 (OP42).
This allows us to analyse the evolution of their PKC
validation processes. We also evaluated three new major
web browsers: Microsoft Edge 38 (ED38), Google Chrome
55 (GC55) and Safari 10 (SA10). These are preceded with
an asterisk (*) in the table of results to highlight that they
were not included in the 2009 study.

Since our goal is to understand the exact certificate
validation processes performed by web browsers when
initiating TLS secured communications, we tested their
responses when they were confronted with chosen test
values in specific certificate fields. The results were then
analysed and compared to the expected behaviour described
in the relative standards.

Because we want to examine the evolution of PKC
validation practices, we performed the same tests as in 2009
and added new test cases about the subject field and key
usage extension. These new tests are preceded with an
asterisk (*) in the table of results.

When handling TLS certificates, web browsers return
one of three possible responses, denoted as follows:

• A: accept the certificate without any intervention by
the user,

• W: inform the user about the existence of a problem
by showing a warning message and asking him/her
to take a decision,

• R: refuse the certificate and prohibit access to the
web server without any intervention by the user.

To easily identify the evolution of web browsers’
behaviour compared to the study of 2009, we use the
symbol whenever the evolution is considered a
regression and the symbol whenever the change is an
improvement. In addition, we highlight the results that are
not conformant to standards by colouring the cells in grey.

Our technical test environment is as follows: OP42,
GC55, FF50 and SA10 are deployed on Mac OSX Sierra;
IE11, ED38 are deployed on Windows 10; our Web server
is Apache/2.4.18 and is installed on an Ubuntu Server
16.04.1 LTS. We generated all the test certificates using
OpenSSL 1.0.2.

A. TLS Certificate Subject

The TLS certificate subject represents the identity of the
web server. This may be either a Fully Qualified Domain
Name (FQDN) or an IP address or both. FQDNs and IP
addresses are different types of name (called name forms in
the standards). A web server could hold many FQDNs that
all point to the same IP address, e.g. as in virtual hosting.
Conversely, one FQDN may point to different IP addresses
(e.g. for load balancing).

1) What do the standards state about the subject?

The X.509 standard [3] states that the subject field

identifies the entity associated with the public-key found in
the subject public key field. An entity could have one or
more alternative names, of different types (or forms), held
in the subjectAltName extension. According to the X.509
standard, an implementation that supports this extension is
not required to process all the name types. If the extension
is flagged critical, at least one of the name types that is
present must be recognized and processed, otherwise the
certificate must be considered invalid.

RFC 5280 [4] states that the subject name may be
carried in the subject field and/or the subjectAltName
extension. If the subject naming information is present only
in the subjectAltName extension, then the subject name
should be empty and the subjectAltName extension must be
marked critical. According to this statement a TLS
certificate can hold multiple names in a combination of the
Subject field (CN component) and the SubjectAltName
extension. These names must all refer to the same entity,
although a browser need not recognize all the different
name types.

2) Test and Results
We performed two types of experiments to test

certificates holding the FQDN and IP names separately, as
well as both types together.

In the first set of experiments, we tested how the web
browsers reacted when the certificate contains zero, one or
more FQDN names. We configured our web server to
respond to requests sent to either www.server1.com (S1) or
www.server2.com (S2). As the names could be mentioned
in either or both of the Subject Name-Common Name
(SCN) and SubjectAltName-DNS Name (SAN-DNS) fields,
we tested the following different combinations of names in
our web server certificate:

1. SCN=www.server1.com,
SAN-DNS=www.server2.com

2. SCN=null, SAN-DNS=www.server2.com

3. SCN=www.server1.com, no SAN-DNS field

4. SCN=null, no SAN-DNS field

5. SCN=null, SAN-DNS=www.server1.com and
www.server2.com.

For each combination, we recorded the reaction of each
web browser when accessing www.server1.com and
www.server2.com (Table I). We also state whether the
certificate is Valid (V) or Invalid (I) according to the X.509
standard, RFC 5280 [4] and RFC 6125 [5]. Because we
obtained the same results when the SubjectAltName
extension was marked critical or not, we haven’t indicated

this in Table I. The expected results would be that Valid
PKCs are Accepted, and Invalid PKCs are either Refused or
a Warning given. All browsers behaved as expected.

In the second set of experiments, we tested how the
browsers reacted when accessing either www.server1.com
or IP address 192.168.57.2 when: i) an IP address only, or
ii) iii) an IP address and a FQDN, or iv) a FDQN only, or v)
neither, are used in the PKC to identify the web server. In
all cases except ii) the SCN field was null. With regard to
the study of 2009, test ii) is a new test case in which the
SCN field is set to www.server1.com and its IP address is
set in the IP component of the subjectAltName. All
browsers behaved as expected, except for test ii) (see
below). We obtained the same results when the
subjectAltName was marked critical or not, so we have not

shown these results in Table II.

3) Analysis of the Results
The primary objective of an X.509 PKC is to bind an
identity to a public key. In the case of a web server, the
identity is either a FQDN name or an IP address. When the
identity of the server is null (Table I iv) Table II v)) the
browser cannot authenticate the server, so the TLS
certificate is invalid. Whether a browser should
immediately refuse an invalid certificate (R) or ask the user
what to do (W) is partly a usability issue and partly a
security issue. But it is not a standard’s issue. The standards
will only give guidance on whether a certificate is invalid or
not, but will not advise a RP what to do with it. From a
security perspective, if the browser (the RP) cannot
authenticate the web server, the certificate should be
rejected (R). From a usability perspective the user could be
given a choice (W), although in practice most users simply
click OK to all the pop up windows so invalid certificates
end up being accepted. RFC 5280 mandates that the IP
address if present must contain either four (for IPv4) or
sixteen (for IPv6) octets, and that the FQDN if present must
not be null. So the Table II v) certificate is clearly invalid.
But none of the browsers rejected it. Instead they ask the
user what to do. It should be noted that the way the web
browsers present the warning message is different. Some
warnings are more difficult to ignore than others. In the case
of Safari, ignoring a warning message requires one action
(click on “Continue”) whereas with GC55 it requires two
actions (click on “Advanced” then on “Proceed to …”).

If the standards are not clear about a certificate’s
validity, this can lead to web browser implementers holding
different interpretations of this. In the study of 2009, we
raised one ambiguity about the validity of a certificate that
holds two FQDNs: one in the SCN field and the other in the
SAN-DNS extension (Table I i)). The behaviour of the
tested web browsers was different. IE7 and FF3 treated the
certificate as invalid, whilst OP9 treated it as valid. To cope
with this issue, a new RFC (RFC 6125 [5]) was issued in
2011 to handle the ambiguity. The most important
recommendations are summarised as follows [5]:

• Move away from including and checking strings that
look like domain names in the subject’s Common
Name.

• Move toward including and checking DNS domain
names via the subjectAlternativeName extension
designed for that purpose: dNSName.

TABLE I. MULTIPLE FQDN WEB SERVER IDENTITIES

TABLE II. IP ADDRESS SERVER AND/OR FQDN IDENTITIES

However, this RFC doesn’t invalidate completely the
setting of DNS names in the SCN field as it states: “In
general, this specification recommends and prefers use of
subjectAltName entries (DNS-ID, SRV-ID, URI-ID, etc.)
over use of the subject field (CN-ID) where possible…..
However, specifications that reuse this one can legitimately
encourage continued support for the CN-ID [SCN]
identifier type if they have good reasons to do so, such as
backward compatibility with deployed infrastructure”

According to the same RFC, if the DNS name is set in
both the SCN field and the SAN-DNS, the certificate must
be treated as invalid if the user tries to access a web server
using the DNS name present in the SCN field: “A client
MUST NOT seek a match for a reference identifier of CN-
ID if the presented identifiers include a DNS-ID, SRV-ID,
URI-ID, or any application-specific identifier types
supported by the client”.

Thanks to this clarification of the standards, the
behaviour of web browsers has now become conformant.
All of them show a warning message to web users
whenever they try to access a web server using the DNS
name contained in the SCN field and in the presence of a
different DNS name in the SAN-DNS field.

[4] says that web browsers must “recognize” the SAN
extension, but only that “all parts of the subject alternative
name MUST be verified by the CA”. This does not place any
requirements on the web browser to do likewise. Similarly

[3] states “An implementation is not required to be able to
process all name forms”. So browsers do not have to
support SAN-IP.

In 2009, IE7 and OP9 didn’t support SAN-IP, so they
didn’t recognise the IP name of the server. FF3 on the other
hand did support the IP name form and so did recognise the
server’s name. Today, however, all the tested web browsers
support the SAN-IP. All of them accept a PKC with the
correct SAN-IP whenever the web user accesses the web
server by its IP address. However, we have found a new
ambiguity in the standards about the validity of a certificate
that holds a DNS name in the SCN field and a matching IP
address in the SAN-IP component, and is accessed via its
DNS name (Table II ii). X.509 implies that such a
certificate is valid, but RFCs 5280 and 6818 are silent about
the validity of such a certificate. For this reason, the
behaviour of web browsers is different: SA10, IE11 and
ED38 consider it Valid and accept it, whereas GC55, FF50
and OP42 consider it Invalid and issue a Warning message.
This test case was not tested in 2009.

It should be noted that the test case is legitimate. A web
server, which uses the SCN field to hold the DNS name,
may want to add its IP address to its PKC. The only suitable
place is the IP component of the SAN. Except for this issue,
our tests show a general improvement in the behaviour of
web browsers as they are accepting (A) valid certificates,
and refusing (W or R) invalid certificates.

B. Key usage, extended key usage

Key usage and extended key usage are used to
determine the purpose of the public key contained in the
PKC. A TLS server certificate could have a key usage
extension or not. The standards [4][3] don’t constrain the
authorities to issue TLS certificates with key usage
extensions.

1) What do the standards state about the Key Usage

and Extended Key Usage extensions?
The X.509 standard [3] states that if either the extended

key usage or key usage extensions are recognized by the
Relying Party then the PKC must be used just for the
purposes indicated in it. The key usage and the extended
key usage must be treated separately but they must have
consistent values. If there is no purpose consistent with both
fields, then the certificate shall not be used for any purpose
[3].

RFC 5280 states that the key usage extension, when it
appears, should be a critical extension. For a TLS
certificate, RFC 5280 recommends that the key usage, when
it is defined, should have the value of “digital signature, key
encipherment and/or key agreement” and the consistent
value of the extended key usage should be “Server
Authentication”.

2) Tests and Results
The value needed in the key usage extension depends on

the encryption algorithms used for generating the
certificate’s keys (RSA, DSA, DH, etc.) and on the cipher
suite applied in the TLS communication between the client
and the web server. A cipher suite consists of a key
exchange scheme, a signature algorithm, a block cipher
algorithm, and a hashing algorithm for computing the
authentication key. They’re usually identified in a string [6]:

[SSL/TLS]_[key exchange]_[signature algorithm]_
WITH_[block cipher]_[authentication hash]

For example, TLS_ECDHE_RSA_WITH_AES256-
GCM_SHA384 is a cipher suite that implements Elliptic-
curve Diffie-Hellman Ephermal key exchange algorithm
and uses the RSA algorithm as the signature algorithm with
AES256 Galois/Counter Mode as the block cipher and
SHA384 for the authentication hash.

We generated our test certificates using the RSA
algorithm. In this case, two types of cipher-suites are
possible:

• TLS_ECDHE_RSA*: in this case, the key
exchange algorithm is ECDHE. This means that the
RSA private key of the server’s certificate will be

used for signing the ECDHE public key and the
associated parameters [7, page 20]. The appropriate
value of the key usage extension is
digitalSignature.

• Or TLS_RSA_*: in this case the key exchange
algorithm is RSA. This means that the client will
use the RSA public key of the server’s certificate
for encrypting the random value chosen by the
client (pre-master secret). The appropriate value of
the key usage extension is keyEncipherment.

Since RSA keys can lead to different key usages, we
first check the cipher suites agreed between our web server
and the web browsers by looking at the Hello server
message in the TLS protocol. Table III shows all of them
chose ECDHE for exchanging the key. Thus, the
appropriate key usage value must be digitalSignature.

We tested how the web browsers reacted when they
validated a certificate, which conveyed an RSA public key
and had a key usage value different from
“digitalSignature”. It should be noted that the same results
were obtained when the key usage was critical or not, which
is correct. We chose wrong values “keyAgreement”,
“dataEncipherment”, “keyEncipherment” and the correct
value “digitalSignature” as test values for the key usage
extension. The final column of Table IV indicates whether
the certificate is valid or invalid according to the standards.

3) Analysis of Results
Here, the diversity of the web browsers’ behaviour is

due to their inability to detect violations of the standards
when the key usage extension contains wrong values. Most
invalid PKCs were accepted by all the tested web browsers.
However, in one positive case, FF50 rejected the server’s
certificate when it contained the dataEncipherment value.
This behaviour is an improvement over the behaviour of
FF3 in 2009. However, FF50 and OP42 still accept invalid
PKCs whose key usage extension is keyAgreement (KA) or
keyEncipherment (KE). FF3 and OP9 behaved correctly in
2009 and rejected these PKCs. Finally, as in 2009, IE11
accepts certificates when the key usage has wrong values of
dataEncryption (DE) or KA instead of Digital Signature
(DS). It is quite appealing to observe that Table IV shows
almost unanimous non-conformance against the standards.
We cannot determine completely whether the non-
conformance of the web browsers is due to some
compatibility issues or not.

When the extended key usage has the wrong value of
client authentication instead of server authentication, all
web

TABLE III. CHOSEN CIPHER SUITES

TABLE IV. KEY USAGE TEST

browsers reject the PKC. However, SA10 shows a warning
message to the user instead of blocking access to the
website. We are not convinced that SA10’s behaviour is
very helpful, since this will invariably result in an invalid
certificate being accepted by the user. The behaviour of
FF50 is considered an improvement because in 2009 FF3
accepted PKCs with this wrong value of the extended key
usage extension.

C. Revocation

The primary objective of revocation is to remove an
invalid certificate from circulation as quickly as possible.
This is usually done by asking the RP to check the
certificate’s status before accepting it.

CAs can revoke a PKC by either publishing its serial
number in a Certificate Revocation List (CRL) that can be
downloaded from a repository, or by running a specialized
server that can be accessed by the Online Certificate Status
Protocol (OCSP) [8]. CrlDistributionPoints (CDP) and
AuthorityInfoAccess (AIA) extensions are used to hold the
CRL and the OCSP indicators respectively in a certificate.

In general, most of the RP agreements state that RPs are
responsible for taking the risk of using revoked certificates.
As a result, RPs must be aware of the PKC’s status before
using it in a transaction.

In this study, we developed more advanced tests for the
OCSP protocol. For this reason, we start by giving a brief
description of it. The OCSP protocol is described in RFC
6960 [8]. As shown in figure 4, when a web browser gets
the server’s certificate, it retrieves the address of the OCSP
server (responder) from the AIA extension. The browser
formulates an OCSP request, which contains the ID of the
server’s certificate. The browser may send the request using
either the HTTP GET or POST methods. Upon receipt of
the OCSP request, the OCSP server sends a signed response
(in DER format) that contains the certificate ID and its
status: 'good', 'revoked', or 'unknown'. It also contains
thisUpdate and nextUpdate fields. The former is mandatory,
the latter is optional. thisUpdate is used to represent the
most recent time at which the responder knows the
indicated status to have been correct [8]. nextUpdate
represents the time at or before new information about the
PKC’s status will be available.

When the web browser receives an OCSP response, it
can store it in a local cache for a period that corresponds to
the time between the nextUpdate and thisUpdate fields [9].
Ideally, web browsers must verify the freshness of the
OCSP response in order to avoid relying on out-of-date or
replayed responses [9]. Two methods can be used to avoid
this: adding nonces to the OCSP requests and responses, or
verifying the time value in the thisUpdate field. In section
C.2, we will see how the different web browsers handle the
generation of OCSP requests, and the analysis of OCSP
responses and their caching.

Fig. 4. The OCSP protocol flow

1) What do the standards state about the CRL

Distribution Points and Authority Info Access Extensions?
The X.509 standard states that the CDP extension can

be, at the option of the certificate issuer, critical or not; but
it recommends it to be non-critical for interoperability
reasons. When it is a critical extension, a certificate-using
system shall not use the PKC without first retrieving and
checking the CRL [3]. However, when the extension is not
critical a certificate-using system can use the PKC only if
the revocation checking is not required by local policy or it
is accomplished by other means [3]. According to RFC
5280, the CDP and AIA extensions should be non-critical
extensions, but it recommends supporting these extensions
by CAs and applications [4].

2) Tests and Results
In the first experiment, we determined the approaches

to revocation supported by each web browser, and if it is
automatically configured or not (Table V i & ii).

In the second experiment (Table V iii & iv), we show
the reaction of web browsers when the OCSP server is
down or when the CRL is not retrievable.

In the third experiment (Table V v), we show the
reaction of web browsers when they get an OCSP response
indicating that the server’s certificate is revoked.

In the fourth experiment (Table V vi), we show the
HTTP methods supported by the web browsers.

In the fifth experiment (Table V vii), we show which
web browsers cache OCSP responses that indicate the PKC
is revoked. From this table, we can identify the browsers
that use local caches for storing all types of OCSP
responses (i.e. not only ‘revoked’ type responses).

TABLE V. REVOCATION TESTS

 IE11 FF50 OP42 *ED38 *GC55 *SA10

i)CRL checking Automatic,

configurable

Not

Supported

Not

Supported
Automatic Not Supported Automatic

ii)OCSP checking Automatic,

configurable

Automatic,

configurable

Not

Supported
Automatic Not Supported Automatic

Where: Automatic means that the browser checks the certificate status automatically. Automatic,

configurable means that the browser checks the certificate status automatically, but the user can

disable this option.

iii)OCSP server is

down

A/W

configurable

A/R

configurable
N/A A N/A A

iv)CRL is not

retrieved

A/W

configurable
N/A N/A A N/A A

Where : N/A means not applicable. A means Accept. A/W configurable: means that the browser

accepts the certificate whose revocation status is not verified, but the user can activate an option to get

warned when the certificate status is not verified. A/R configurable similar to A/W configurable but

instead of showing a warning, the certificate is refused and the access is blocked.

v)*Certificate is

revoked in the

OCSP response

R R R_U R R_U W

Where : R means that the browser rejects the certificate after receiving the OCSP response. R_U

means that the browser rejects the certificate by reading its status from the cache of the underlying OS

system. W means that the browser shows a warning message upon the reception of the OCSP

response; the user has the possibility to get into the website.

vi)*OCSP request

HTTP methods
GET, POST,

automatic

POST

automatic,

GET manual

N/A
GET,POST

automatic
N/A

GET

automatic

Where : GET, POST, automatic means that the browser uses by default the GET method to retrieve

the OCSP response, if the OCSP server doesn’t support the GET request, the browser will

automatically send a POST request. POST automatic, GET manual means that the browser uses the

POST method by default, the user can activate the use of the GET method. However, the browser will

not use the POST method if the GET request fails. GET automatic means that the browser supports

only the GET method, if it fails the browser will not send a POST request. N/A means not applicable.

vii)*Revocation

response caching
C DC N/A C N/A C

Where :C means that the browser stores the OCSP response that indicates the revocation of a

certificate in a cache. DC means don’t cache . N/A means not applicable.

viii)*cashing

response when

nextUpdate field is

absent

C DC N/A C N/A C

Where :C means that the browser stores the OCSP response in a cache. DC means don’t cache . N/A

means not applicable.

ix)*checking

freshness of OCSP

response

DCF DCF N/A DCF N/A DCF

Where :DCF means don’t check freshness. N/A means not applicable.

In the sixth experiment (Table V viii), we show which web
browsers will cache OCSP responses whose nextUpdate
field is absent.

Finally in the last experiment (Table V ix), we show
whether web browsers verify the freshness of OCSP
responses or not.

3) Analysis of the results

The inconsistency of the revocation processes comes
from the different implementation efforts by the web
browser manufacturers and not from that of the CAs
suppliers.

Maintaining a revocation service (either CRLs or
OCSP) is a requirement for CAs. The standards [3][4] also
recommend, but do not mandate, that RPs should ensure
that the PKCs are not revoked before they rely on them.
However, when the AIA and CDP extensions are present
and understood, the RPs are required to process them.
X.509 states about the CDP extension: “a certificate-using
system shall not use the certificate without first retrieving
and checking a CRL from one of the nominated distribution
points” Therefore browsers should not ignore these
extensions and they should fetch the revocation information
and check it before accepting a certificate.

There is some ambiguity over what should happen when
a CA claims it maintains an OCSP service but does not.
RFC 6960 [8] states “the OCSP client suspends acceptance
of the certificate in question until the responder provides a
response” and “In the event that the OCSP responder is
operational but unable to return a status for the requested
certificate, the "tryLater" response can be used to indicate
that the service exists but is temporarily unable to
respond.”. In the second experiment (Table V iii), the
OCSP server was down and didn’t send any “tryLater”
response. Thus, the reaction provided by the web browsers
is not fully conformant as none of them block the access.

Clearly, authorizing the access to a website whose
certificate status is not verified compromises the security of
web users. In 2009, there were three different browser
actions: IE7 authorized the access (soft-fail), whilst FF3
blocked the access (hard-fail). OP9 authorized the access
but removed the pad-lock icon and asked the user not to
send sensitive information (soft hard-fail). Our tests in this
paper show that today all the web browsers apply the
principle of soft-fail. According to Adam Langley from
Google [10], browsers went in this direction because they
considered that hard-failing raises a different security issue
by creating a single point of failure: if every web browser
would hard-fail the connection, then OCSP servers would
be the easiest target for DDOS attacks.

Because soft-fail is the preferred action, Google has
reached the conclusion that dynamic revocation checking is
useless [10]. As a result, Google decided in 2012 to stop
checking the status of non-ExtendedValidation (EV)
certificates. Instead, Google invented a new revocation
technology called CRLSets [11]. The basic idea of CRLSets
is that Google merges all the CRLs of the existing CAs and
reduces the obtained list by removing PKCs that it considers
unimportant. The result is a minimal CRL list that is
periodically pushed to Google Chrome. Opera seems to be
following Google’s approach. The other web browsers
(IE11, ED38, SA10 and FF50) still support OCSP and CRL
checking (Table V i & ii).

Curiously, when the Heartbleed bug was disclosed
publically in April 2014 [12], millions of TLS certificates
had to be revoked in a very short time. This event
confirmed the limit of the traditional CRL revocation
approach (in one case it was reported that a CRL file grew
from 22 KB to 4.7 MB [13]). However, OCSP responders
didn’t face any serious performance problems as a result of

Heartbleed [14]. To cope with this issue, many advanced
web users wanted to clean their revocation cache and to
activate the hard-fail OCSP option. Google Chrome users
were able to enable the revocation checking in their
advanced settings but today, in the latest version of Chrome,
this option has disappeared! So these users cannot hard-fail
their connections because of Google’s approach. This
shows the limits of CRLSets and highlights the need for a
complete revocation checking mechanism.

Whilst the OCSP validation process was not affected by
the Heartbleed bug, nevertheless it has a performance
overhead on TLS connections, since the PKC’s revocation
status is checked each time in parallel with establishing the
TLS connection. An OCSP exchange may take up to 350
ms per HTTPS connection [15]. To improve OCSP
performance web browser manufacturers have implemented
several caching approaches.

Fig. 5. Comparison of Edge and Chrome for a revoked certificate

Table V v) shows the reaction of web browsers when
they are notified that a PKC is revoked, and Table V vii)
their approach to caching. Under macOS Sierra, SA10
checks for the status of the PKC and stores the result in the
local cache (located at
~/Library/Keychains/*/ocspcache.sqlite3). On Windows 10,
there are two different caches. The first one is used by IE11
and the second by ED38. Finally, Table V vii) shows that
although GC55 and OP42 don’t directly check for the
certificate status, they do read the local cache of the
underlying OS system in order to inform the web user about
the revocation. On Windows 10, GC55 reads the local cache
of IE11, not that of ED38. Figure 5 shows how ED38
indicates that a PKC has been revoked while GC55 tells the
user that the connection is secure.

The rest of our tests show that the three web browsers
(IE11, ED38 and SA10) that support the OSCP mechanism
with caching, still don’t respect the standards in some
respects. For example, a web browser can cache the status
checking response for a period between the thisUpdate and
nextUpdate times. When an OCSP server sends an OCSP
response without the nextUpdate field, the web browser
should not cache the status response but must be reject it.
RFC 5019 states: “Clients MUST check for the existence of
the nextUpdate field and MUST ensure the current time,
expressed in GMT time as described in Section 2.2.4, falls
between the thisUpdate and nextUpdate times. If the
nextUpdate field is absent, the client MUST reject the
response”. However, RFC 6960 states that “If nextUpdate is
not set, the responder is indicating that newer revocation
information is available all the time.”. This means that web

browsers can accept the OCSP response but they must not
cache it. This inconsistency between the two standards
comes from the fact that RFC 5019 is a profile of RFC
6960. RFC 5019 appears more restrictive than RFC 6960
about the presence of the nextUpdate field in the OCSP
response. However, nothing prevents a web browser to
adopt the liberal approach of RFC 6960 rather than the
restrictive one of RFC 5019. It should be noted that in all
cases the web browsers must not cache this type of OCSP
response. Our test shows that IE11, ED38 and SA10 have
stored the OCSP responses for a period up to 24h (Table V
viii).

Similarly, Table V ix) shows that these web browsers, as
well as FF50, either don’t check the freshness of the OCSP
responses, or assume that less than 1 day is fresh, when the
nextUpdate field is absent. To prove this, we stored an
OCSP response that indicates the certificate status as
“Good” and later we revoked the certificate. Instead of
sending the real response that comes from the OCSP server,
we sent our stored OCSP response to the web browsers.
IE11, ED38, FF50 and SA10 accepted our stale response for
a period of up to 24h. It should be noted, that the hard-fail
option of FF50 was set to true. The fact that FF50 didn’t
show any error message means that it has accepted the
OCSP response that we sent. For the other web browsers,
the fact they cached our OCSP response means that they
accepted it.

RFC 6960 [8] requires web browsers to send OCSP
requests using either the GET or POST methods. All the
concerned web browsers respect this issue. However some
OCSP servers may support only one OCSP request method
(POST or GET), e.g. our OCSP test server only supported
the POST method. Our tests show (Table V vi) that only
IE11 and ED38 support the two methods. RFC 6960 [8]
should clarify this issue.

Recently, �all the web browsers have introduced an
additional approach for checking a PKC’s status, called
OCSP stapling [16-18]. In OCSP stapling, CAs issue
certificates with this new extension, which requires the web
server to send a cached OCSP response in the TLS
handshake. Web browsers should ensure this stapled OCSP
response is present otherwise they should hard-fail the TLS
connection. This approach offers three main advantages.
First, it reduces the costs for the CAs because the number of
OSCP request is significantly reduced, coming only from
web sites. Secondly, it improves the privacy of web users
because CAs can’t know the web sites users are visiting.
Thirdly, it improves the performance of web browsers, as a
second connection to an OCSP server does not need to be
established. However, this solution doesn’t resolve the
problem of a single point of failure and DDOS attacks
mentioned by Google. An attacker can still attack the OCSP
servers of a CA to prevent web servers from fetching new
OCSP responses. As a consequence, access to these web
sites would still be blocked if Must Staple is activated. This
is why Google is continuing to not implement OCSP or the
must-Staple option in Chrome. Netcraft state [14] that
removing OSCP checking from Chrome provides Google
with a performance advantage over the other web browsers
like FF50 that do support it, but it is at the cost of leaving
users in the dark about revoked non-EV certificates.

From the web user’s point view, the current revocation
practices are completely obscure. Many studies show that

most web users don’t understand either what a PKC is or
the role of a CA [1]. For those who do understand these
things, they still cannot easily explain what is happening in
some cases. For example, in order to understand the
differences in the behaviour of SA10 and FF50 concerning
the Compsac2017 revocation message, as described in the
introduction, we had to setup a complex test environment
and spend several hours understanding the finer details of
the OCSP standard in order to explain the origin of the
OCSP error message, which was OCSP_OLD_response.
Our analysis is the following: the OCSP_OLD_response
error message can be generated because of a problem with
the local clock of either the web user (possibility1) or of the
OCSP server (possibility2), or it can come from an attacker
who tries to send an out of date response (i.e. replay attack)
(possibility3). After some investigation, it turned out that
our machine was connected to a network time server of
Apple, and for some reason, the access to an Apple Time
server was blocked by our network administrator. The
reason why FF50 refused the connection and SA10
accepted it, is that FF50 had been configured to Refuse
whilst SA10 automatically Accepts bad OCSP responses
(see Table V iii)).

We believe that the revocation process of web browsers
should be improved by: (1) Helping users to clearly see and
have more control over the revocation process regardless of
the approach used (OCSP, CRL, etc). Specifically, users
should be able to change the process according to the
context of use. E.g. if a web user connects to his/her bank,
(s)he may need to activate the hard-fail option and obtain
the freshest verification; but if (s)he connects to a TV
server, (s)he might tolerate a soft-fail option and a stale
verification. Today, none of the web browsers consider such
a need. (2) Giving users the ability to easily flush their
OCSP/CRL caches. E.g, on 13 October 2016, GlobalSign
wrongly revoked an intermediate CA certificate [21]. Many
web users had this bad response in their caches and as a
result, access to different web sites was suddenly blocked.
Globalsign issued guidelines to help web users clean their
caches in order to obtain a fresh response, but this guide
was not complete - it didn’t include ED38.

IV. CONCLUSION

Our tests show that considerable changes in the
validation process of web browsers have been observed.
However, their behaviour is still inconsistent. Some
behaviour is dangerous for web users. For example, our test
cases show that SA10 always shows a warning message
regardless of the seriousness of the certificate validation
error. Even when a server’s certificate is revoked, the web
user has the possibility of proceeding to the web site.

Clearly, the inconsistency of web browsers regarding
PKC validation confuses web users. The reasons behind the
inconsistent behaviour are: (1) Standards are complex,
vague and allow different implementations for different

contexts of use. (2) There are a multitude of standards (∼50)
that handle validation issues. (3) There appears to be no real
coordination between the web browser suppliers regarding
the PKC validation process, specifically:

a. Web browsers have different styles of validation
warning messages.

b. Web browsers have different trust admission
policies for CAs.

c. Web browsers handle the ambiguity in the
standards differently.

d. Web browsers offer users different
preferences/settings related to the validation
process. For example, users of FF50 have the
choice to de/activate the OCSP hard fail, OCSP
stapling, and OCSP must stable options. The same
options are not present on SA10 and IE11.

We believe that web browser implementers still have
some way to go before their implementations consistently
implement the X.509 standards in a user friendly way.
Disambiguating standards or introducing another standard
won’t solve these issues. As mentioned before, the
standards give only guidance on whether a certificate is
invalid or not, but will not advise an RP what to do with it.
Having an advisory authority for the browser industry
would help to improve the consistency of PKC validation
by web browsers. We believe that the CAB-forum is the
right place to handle PKC validation issues. Today, the
main focus of the CAB-forum is the issuance of certificates
rather than their validation. Extending the scope of the
CAB-forum to consider validation issues would have a
positive impact on web users. Ideally consistency should
not only be applied to browser certificate validation, but
also to browser configuration, PKI error messages and
processes and procedures. Through the CAB-forum, web
browser suppliers could coordinate more effectively and
avoid taking individual initiatives. For instance, the decision
made by Google to abandon the verification of certificates’
status in Chrome without any coordination with the other
web browser suppliers has only served to increase
confusion in the Web TLS system. Paradoxically, Google
has launched a new PKI trust service [22] in which one of
the user’s/RPs’ obligations is: “(c) checking Certificate
status, and the validity of all Certificates in the applicable
Certificate’s chain, before you rely on a given Certificate”.
If only Google would apply this obligation to Chrome!

Finally, we believe that Web browsers must assume the
responsibility of their actions vis-à-vis RPs. Since the
creation of the SSL protocol, the exact role of a web
browser in the validation process has never been clearly
defined. The Web PKI industry has defined the obligations
of PKIs, certificate holders (i.e. web servers’ owners) and
RPs (meaning web users), but not of web browsers. Their
role in PKC validation is very important because they are
the entities that control the whole validation process on
behalf of the users. Specifically, they are the entities that
include the trusted CAs in the users’ platforms, they
validate the certificate fields on users’ behalf, but they are
the only entities that have nothing to lose if revoked
certificates are accepted. What will happen if a web user is
connected automatically by a web browser to a fraudulent
website whose certificate has been revoked? The web
browser vendor’s response will be to admit no liability. The
web user may lose his/her sensitive information, or
download malware, and at the same time, (s)he cannot seek
compensation from the relevant PKI nor the web domain

owner because the former has respected its obligations to
indicate the revocation of the certificate, and the latter
probably cannot be located. A possible solution to this
problem is to adopt the new 4-cronered-trust model that was
recently published in the X.509 (2016) standard [23].

REFERENCES

[1] S. E. Schechter, R. Dhamija, A. Ozment, et I. Fischer, « Emperor’s
new security indicators: An evaluation of website authentication and
the effect of role playing on usability studies », in In Proceedings of
the 2007 IEEE Symposium on Security and Privacy, 2007.

[2] A. S. Wazan, R. Laborde, D. W. Chadwick, F. Barrere, and A.
Benzekri, “Which Web Browsers Process SSL Certificates in a
Standardized Way?,” in Emerging Challenges for Security, Privacy
and Trust, 2009.

[3] ITU-T Recommendation X.509 | ISO/IEC 9594-8: “Information
Technology—Open Sys- �tems Interconnection-The Directory:
Public-Key and Attribute Certificate Frameworks”. �

[4] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W.
Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280, 2008.

[5] P. Saint-Andre and J. Hodges, “Representation and Verification of
Domain-Based Application Service Identity within Internet Public
Key Infrastructure Using X.509 (PKIX) Certificates in the Context
of Transport Layer Security (TLS),” RFC 6125, 2011.

[6] https://adambard.com/blog/the-new-ssl-basics/

[7] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS),” RFC 4492, 2006.

[8] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C.
Adams, “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP,” RFC 6960, 2013.

[9] A. Deacon and R. Hurst, “The Lightweight Online Certificate Status
Protocol (OCSP) Profile for High-Volume Environments,” RFC
5019, 2007.

[10] https://www.imperialviolet.org/2014/04/19/revchecking.html

[11] https://www.imperialviolet.org/2012/02/05/crlsets.html

[12] http://heartbleed.com

[13] http://www.zdnet.com/article/chrome-does-certificate-revocation-
better/

[14] https://news.netcraft.com/archives/2014/04/18/chrome-users-
oblivious-to-heartbleed-revocation-tsunami.html

[15] https://blog.mozilla.org/security/2015/11/23/improving-revocation-
ocsp-must-staple-and-short-lived-certificates/

[16] Y. Pettersen, “The Transport Layer Security (TLS) Multiple
Certificate Status Request Extension,” RFC 6961, 2013.

[17] D. E. 3rd, “Transport Layer Security (TLS) Extensions: Extension
Definitions,” RFC 6066, 2011.

[18] P. Hallam-Baker, “X.509v3 Transport Layer Security (TLS) Feature
Extension,” RFC 7633, 2015.

[19] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying Wolf: An Empirical Study of SSL Warning Effectiveness,”
in Proceedings of the 18th Conference on USENIX Security
Symposium, Berkeley, CA, USA, 2009.

[20] A. Jøsang, I. G. Pedersen, and D. Povey, “PKI Seeks a Trusting
Relationship,” in Information Security and Privacy, 2000, pp. 191–
205.

[21] https://downloads.globalsign.com/acton/attachment/2674/f-06d2/1/-
/-/-/-/globalsign-incident-report-13-oct-2016.pdf

[22] https://static.googleusercontent.com/media/pki.goog/en//GTS-
RP.pdf

[23] A.S. Wazan, R. Laborde, D. W. Chadwick, et al., “Trust
Management for Public Key Infrastructures: Implementing the
X.509 Trust Broker,” Security and Communication Networks, vol.
2017, 2017.

