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ABSTRACT

Sentence ordering (SO) is a key component of verbal ability. It is also

crucial for automatic text generation. While numerous researchers

developed various methods to automatically evaluate the informa-

tiveness of the produced contents, the evaluation of readability is

usually performed manually. In contrast to that, we present a self-

su"cient metric for SO assessment based on text topic-comment

structure. We show that this metric has high accuracy.
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1 INTRODUCTION

Sentence order (SO) has a strong in#uence on text perception and

understanding [1]. Let consider the following example:

Example 1.1. $e Nibelung is the dwarf Alberich, and the ring

in question is the one he fashions from the Rhine Gold. Wagner’s

opera title Der Ring des Nibelungen is most literally rendered in

English as!e Ring of the Nibelung.

$e text is hardly comprehensible. When we are reading the

Nibelung or the ring in question, we are asking ourselves what’s

it all about? which Nibelung? what question? even if in the next

sentence it becomes clearer. Let us now reverse the two sentences:

Example 1.2. Wagner’s opera title Der Ring des Nibelungen is

most literally rendered in English as !e Ring of the Nibelung. $e

Nibelung is the dwarf Alberich, and the ring in question is the one

he fashions from the Rhine Gold.

Now, it is clear that the Nibelung and the ring in question ex-

plain the opera title !e Ring of the Nibelung. $ese examples

illustrate that appropriate SO is crucial for readability. Automatic

text generation, particularly multi-document extractive summa-

rization, systems also face SO problem [3, 4]. We distinguish two
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of sentences and (2) to measure the order quality, i.e. determining

how well a given list of sentences is ordered. In this paper, we focus

on the la%er task. In order to measure the quality of SO, if a gold

standard is available, then correlation between the ground truth SO

and the system order (e.g. Kendall or Spearman rank correlation

coe"cients) can be used [19]. $e requirement of a gold standard

containing the correct SO limits the usage of such methods. Indeed,

gold standard is o&en not available or not obvious to build manually.

In contrast, in this paper we propose a self-su"cient metric for text

coherence assessment that does not require additional data. We

evaluate the quality of the metric using the framework proposed in

[12]. To evaluate the text coherence, we use a linguistic approach

based on the topic-comment structure of the text and inter-sentence

similarity.

A clause-level topic is the phrase in a clause that the rest of the

clause is understood to be about, and the comment is what is being

said about the topic.

According to [24], the topic does not provide new information

but connects the sentence to the context. $us, the topic and the

comment are opposed in terms of the given/new information. $e

contraposition of the given/new information is called information

structure or topic-comment structure. Going back to Example

1.1, the Nibelung and the ring in question from the !rst sentence

are expected to be already known by the reader, i.e. they represent

topics. However, only the next sentence provides the necessary

information. In contrast, in Example 1.2 the !rst mention of the

ring and the Nibelung was given at the end of the !rst sentence (!e

Ring of the Nibelung) and then is detailed in the second sentence.

In the !rst sentence,Wagner’s opera title Der Ring des Nibelungen

incarnates the topic and is most literally rendered in English as !e

Ring of the Nibelung corresponds to the comment. In the second

sentence,!eNibelung and the ring in question refers to topic, while

the comment parts are presented by is the dwarf Alberich and is

the one he fashions from the Rhine Gold.

Although, in literature topic-comment structure has been ex-

ploited for document re-ranking [13], classi!cation [5], and text

summarization [11], to our knowledge, it has never been applied

for SO. $e contribution of this paper is a completely automatic

approach for SO evaluation based on topic-comment structure of a

text that requires only shallow parsing and has linear complexity.

Our metric considers the pairwise term similarities of the topics

and the comments of the adjacent sentences in a text since word

repetition is one of the formal signs of text coherence [1].



2 STATE OF THE ART

Current methods to evaluate readability are based on the famil-

iarity of terms and syntax complexity [8]. Word complexity may

be estimated by humans [7, 14, 29] or according to its length [30].

Researches also propose to use language models [8, 27]. Usually

assessors assign a score to the readability of a text in some range [1].

Syntactical errors, unresolved anaphora, redundant information

and coherence in#uence readability and therefore the score may de-

pend on the number of these mistakes [26]. BLEU and edit distance

may be applied for relevance judgment as well as for readability

evaluation. $ese metrics are semi-automatic because they require

a gold standard. Another set of methods is based on syntax analysis

which may be combined with statistics (e.g. sentence length, depth

of a parse tree, omission of personal verbs, rate of prepositional

phrases, noun and verb groups) [6, 25, 32, 33], but they remain

suitable only for the readability evaluation of a particular sentence

and, therefore, cannot be used for assessing extracts. Lapata applies

the greedy algorithm maximizing the total probability on a text

corpus as well as using a speci!c ordering to verb tenses [18]. Louis

and Nenkova use a hidden Markov model in which the coherence

between adjacent sentences is viewed as transition rules between

di*erent topics [23]. Barzilay and Lapata introduce an entity grid

model where sentences are mapped into discourse entities with

their grammatical roles [2]. Entity features are used to compute

the probability of transitions between adjacent sentences. $en

machine learning classi!ers are applied. Elsner and Charniak add

co-reference features [10]. Lin et al. ameliorate the model by dis-

course relations [21]. $e entity grid model and its extensions

require syntactical parsing. $e disadvantages of these models are

data sparsity, domain dependence and computational complexity.

$e closest work to ours is [12] that proposes an automatic ap-

proach for SO assessment where the similarity between adjacent

sentences is used as a measure of text coherence. However, it as-

signs equal scores to initial and inverse SO due to the symmetric

similarity measure. In contrast, our topic-comment based method

assigns higher score to the text in Example 1.2 than 1.1.

3 TOPIC-COMMENT STRUCTURE FOR SO

Although it is not the core element of our method, in order to be%er

understand the topic-comment structure of texts of di*erent genres,

we manually examined 10 documents randomly chosen from three

datasets (30 texts in total): (1) Wikipedia; (2) TREC Robust1; (3)

TREC WT10G (for collection details see Section 4). We looked at

topic-topic (TT), comment-topic (CT), topic-comment (TC) and

comment-comment (CC) inter-sentence relations in the texts, i.e.

how frequently a topic (or a comment) of a clause became a topic (or

a comment) in posterior clauses. We found that for all collections,

the most frequent relation is TT, then follows CT. TT+CT compose

more than 65% of the relationships that we found, whatever the

collection is; it is more than 80% for Wikipedia. CC is more rare

and TC is the most uncommon relation, especially in Wikipedia.

$is preliminary analysis convinced us that using the topic-

comment structure could be useful to evaluate readability and that

weighting these relations could be a good cue. However, for a

scalable method the text structure has to be extracted or annotated

1trec.nist.gov

automatically. Several parsers have been developed to extract text

structure such as HILDA [17] that implements topic changes or

SPADE [28] which extracts rhetorical relations and has been used

in [22] for example to re-rank documents. $ese parsers are based

on deep analysis of linguistic features and are hardly usable when

large volumes of texts are involved. Moreover, they view the topic-

comment relation as a remark on the statement while we consider

a topic as the phrase that the rest of the clause is understood to be

about as in [13].

$e information structure is opposed to formal structure of a

clause with grammatical elements as constituents. In contrast to a

grammatical subject that is a merely grammatical category, a topic

refers to the information or pragmatic structure of a clause and how

it is related to other clauses. However, in a simple English clause, a

topic usually coincides with a subject. One of the exceptions are

expletives (e.g. it is raining) that have only a comment part [15].

Since the unmarked word order in English is Subject - Verb - Object

(SVO), we can assume that a topic is usually placed before a verb.

As in [13], we also assume that if a subordinate clause provides

details on an object, it is rather related to a comment part. $us,

in our method we split a sentence into two parts by a personal

verb (not in!nitive nor participle) where the !rst part is considered

to be a topic while the rest is viewed as a comment. As opposed

to other methods from the literature, this method requires only

part-of-speech tagging and its computational complexity is linear

over the number of words as well as the number of sentences in a

text.

$e key idea of our method is that in a coherent text there

are relations between topic (or comment) parts of the adjacent

sentences and these relations are manifested by word repetition.

We represent topic and comment parts of a sentence by bag-of-

words. In order to capture the topic-comment relation, we calculate

the similarity between them. We propose to use term and noun

based similarities. Since the frequencies of TT, TC, CT and CC

di*er, it seems reasonable to weight the inter-sentence relationship

between topic and comment. $us, we compute the score between

two adjacent sentences si−1 and si as the weighted cosine similarity

between them:

sc(si−1, si ) =
1

| |si−1 | | | |si | |
[wt t (Ti−1 ·Ti )

+wct (Ci−1 ·Ti ) +wtc (Ti−1 ·Ci ) +wcc (Ci−1 ·Ci )] (1)

where | |•| | is the length of the corresponding vector,Ti andCi refer

to the bag-of-words representations of topic or comment part of

the i-th sentence respectively, the scalar product is marked by ·,

wt t ,wct ,wtc , andwcc ∈ [0, 1] indicate the weights of the TT, TC,

CT and CC relations within the text. We estimate text coherence as

an average score between adjacent sentences in a text S = (si )
|S |
i=1:

Coh(S) =
1

|S |−1

|S |∑

i=2

sc(si−1, si ) (2)

4 EVALUATION

We conducted two series of experiments. For the !rst evaluation,

we used three datasets: (1) Wikipedia dump, (2) TREC Robust,

and (3) WT10G. $e !rst dataset is a cleaned English Wikipedia



XML dump of 2012 without notes, history and bibliographic refer-

ences [3]. We selected 32,211 articles retrieved by the search engine

Terrier2 for the queries from INEX/CLEF Tweet Contextualization

Track 2012-2013 [3]. TREC (Text Retrieval Conference) Robust

dataset is an unspammed collection of news articles from $e Fi-

nancial Times 1991-1994, Federal Register 1994, Foreign Broadcast

Information Service, and$e LA Times [31]. We used 193,022 docu-

ments retrieved for 249 topics from the Robust dataset. In contrast,

WT10G is a snapshot of 1997 of Internet Archive with documents

in HTML format, some of which are spam [16]. We retrieved 88,879

documents for 98 topics from TREC Web track 2000-2001. Doc-

uments from Robust and WT10G may contain spelling or other

errors.

As the !rst baseline we used a probabilistic graphic model pro-

posed in [18] hereina&er referred to as Lapata. Because of page

number constraints, we are not detailing this method in this paper.

$e probabilities were learned from the Wikipedia dataset. For

evaluation we calculated text score as the average score between

the adjacent sentences. $e second baseline TSP is a special case of

our approach with equal weights for all relations. We also examined

a variant of this method where the similarity is based on noun only

(TSPNoun). We estimated the text coherence as the average cosine

similarity between the neighboring sentences.

As in [2, 9, 20, 21, 23], we compare scores assigned to initial

documents and the same documents but with randomly permuted

sentences. $is pairwise evaluation approach was justi!ed in [21].

As in previous approaches, we assumed that the best SO is pro-

duced by a human and a goodmetric should re#ect that by assigning

higher score to initial SO. Besides, we hypothesized that a good

metric has small degradation of results provoked by small permu-

tation in SO and greater rate of shu>ing provokes larger e*ect

since the obtained order is remoter from the human-made one.

$erefore, as in [12], we consider the following types of datasets:

(1) Source collection (O), (2) Rn-collection (Rn), (3) R-collection

(R). R-collection is derived from the source collection by shu>ing

all sentences within each document. Rn-collection is generated

from the source collection by a random shi& of n sentences within

each document. We used R1 and R2 collections. $e introduction

of transitional Rn-collections di*ers from the approaches used in

[2, 9, 20, 21, 23].

We calculated system accuracy which shows the number of

times a system prefers the original order over its permutation di-

vided by the total number of test pairs.

$is approach for metric evaluation is completely automatic and

requires only a text corpus.

We conducted the second set of experiments on two corpora that

are widely used for SO assessment: (1) airplane Accidents from

the National Transportation Safety Board and (2) articles about

Earthquakes from the North American News Corpus [9, 21, 23].

Each of these corpora has 100 original texts and for each doc-

ument 20 permutations (2000 in total). We compared our accu-

racy results with those reported in the literature, namely entity

grid models (Content + Egrid, Content + HMM-prodn, Con-

tent +HMM-d-seq, Egrid +HMM-prodn, Egrid +HMM-d-seq,

2terrier.org is a search engine platform developed by the University of Glasgow

Egrid + Content + HMM-prodn, Egrid + Content + HMM-d-

seq, Egrid + Content +HMM-prodn +HMM-d-seq)3, discourse

relation based approaches (Type+Arg+Sal,Arg+Sal, Type+Sal,

Type+Arg, Baseline+Type+Arg+Sal)4, probabilistic contentmodel

(Probabilistic content)5 and topic based model (Topic-relaxed)5.

Table 1: % of times where initial order is scored higher/low-

er/equally than/to permuted text

Data Method O>R1 R1>O O=R1 O>R2 R2>O O=R2 O>R R>O O=R

W
ik
ip
ed
ia

Lapata 38.80 44.07 17.14 38.33 49.26 12.42 30.25 58.96 10.79
TSP 58.04 26.20 15.75 67.13 25.10 7.77 81.43 13.86 4.71

TSPNoun 40.64 19.16 40.21 52.96 21.70 25.35 73.17 14.58 12.25
TopCom 58.86 25.99 15.16 68.12 24.72 7.16 83.64 12.39 3.96
TCNoun 41.04 19.89 39.08 53.21 22.53 24.25 73.82 14.83 11.35

R
o
b
u
st

Lapata 40.85 50.42 8.73 41.45 55.00 3.55 35.02 63.09 1.89
TSP 57.15 29.09 13.76 65.85 28.58 5.57 81.77 15.47 2.76

TSPNoun 44.68 23.67 31.66 55.94 26.87 17.20 75.46 18.56 5.98
TopCom 57.66 29.23 13.11 66.18 28.91 4.92 82.63 15.45 1.92
TCNoun 45.14 24.45 30.41 56.07 27.85 16.07 75.57 19.36 5.07

W
T
10
G

Lapata 42.78 51.30 5.92 42.37 55.57 2.06 32.33 66.66 1.01
TSP 54.35 24.02 21.62 65.42 24.81 9.78 84.99 12.07 2.95

TSPNoun 36.22 15.78 48.00 49.00 19.38 31.62 76.69 13.41 9.90
TopCom 54.31 24.46 21.22 65.24 25.37 9.38 85.72 11.69 2.59
TCNoun 36.42 16.21 47.38 48.91 20.04 31.06 76.84 13.69 9.47
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Figure 1: Correlation betweenwt t ,wct ,wtc ,wcc & accuracy

In Table 1,O , R, R1 and R2 refer to the initial sentence order and

the permutations described above and O > /< /= R• shows the

proportion of times where initial order was scored higher/lower/e-

qually than/to permuted text for the best set of parameter values

wt t = 0.25, wct = 0.5, wtc = 0.75, and wcc = 1. Topic-comment

term based method is denoted by TopCom. For all collections

according to the number of times where the original order was

ranked higher than the shu>ed one O > R, the topic-comment

approach outperformed the simple similarity-based metrics and

Lapata’s baseline. Smaller permutations in sentence order provoke

smaller changes in the score. In general noun-based similarity is less

accurate than all term based methods. It could be caused by lower

probability of non-zero similarity between the adjacent sentences.

However, both topic-comment based methods showed be%er results

than their analogues that do not consider text information structure.

We varied the coe"cients (wt t ,wct ,wtc ,wcc ) ∈ {0.25, 0.5, 0.75, 1}4

on the Wikipedia collection. Figure 1 visualizes the correlation be-

tween the number of times where the initial document is preferred

to shu>ed one O > R and each coe"cient with the !xed values of

others. Smaller values ofwt t , andwct refer to higherO > R, while

be%er results correspond to higherwtc andwcc .

Table 2 presents the results of accuracy on articles about Earth-

quakes and airplaneAccidents reports. On theAccidents dataset

3reported as in [23]
4reported as in [21]
5reported as in [9]



Table 2: Accuracy (%)

Method Accidents Earthquakes

TSP 88.7 73.5
TSPNoun 89 60.5
TopCom 86.3 75.1
TCNoun 87 60.4

Content + Egrid 76.8 90.7
Content + HMM-prodn 74.2 95.3
Content + HMM-d-seq 82.1 90.3
Egrid + HMM-prodn 79.6 93.9
Egrid + HMM-d-seq 84.2 91.1

Egrid + Content + HMM-prodn 79.5 95.0
Egrid + Content + HMM-d-seq 84.1 92.3

Egrid + Content + HMM-prodn + HMM-d-seq 83.6 95.7

Probabilistic content 74 -
Topic-relaxed 94 -

Baseline 89.93 83.59
Type+Arg+Sal 89.38 86.50

Arg+Sal 87.06 85.89
Type+Sal 86.05 82.98
Type+Arg 87.87 82.67

Baseline+Type+Arg+Sal 91.64 89.72

we obtained the results comparable with the state of the art. For the

Earthquakes articles, the accuracy of our system is slightly lower.

It can be explained by the following facts: (1) models are trained

and tested separately for each dataset [9, 21, 23]; (2) datasets are

very homogeneous (some articles are similar up to 90% of words)

and, as noted in [9], very constrained in terms of subject and style.

In contrast, the coe"cients for our method were learned from the

Wikipedia collection. $is proves that our metric is general and not

restricted by a collection but it demonstrates the results comparable

with the state of the art machine learning based approaches.

5 CONCLUSIONS

We introduced a novel self-su"cient metric for SO assessment

based on topic-comment structure. It has linear complexity and

requires only POS-tagging. We evaluated our method on three test

collections where it demonstrated high accuracy and signi!cantly

outperformed similarity-based baselines as well as a transition

probability based approach. $e evaluation results allow drawing

conclusions that (1) topic-comment methods are more e*ective

than simple similarity based approaches; (2) in general, noun-based

similarity is less accurate. In contrast to the state of the art ap-

proaches, our method is general and not restricted by a collection

but it demonstrates comparable results. One of the promising direc-

tion of the future work is the integration of co-reference resolution,

synonyms and IDF. Another possible improvement is applying syn-

tactic parsing and linguistic templates for topic-comment structure

extraction.
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[26] Eric SanJuan, Véronique Moriceau, Xavier Tannier, Patrice Bellot, and Josiane
Mothe. 2012. Overview of the INEX 2011?estion Answering Track (QA@INEX).
In Focused Retrieval of Content and Structure, Shlomo Geva, Jaap Kamps, and Ralf
Schenkel (Eds.). Lecture Notes in Computer Science, Vol. 7424. Springer Berlin
Heidelberg, 188–206.

[27] L. Si and J. Callan. 2001. A statistical model for scienti!c readability. Proc. of the
tenth international conference on Information and knowledge management (2001),
574–576.

[28] Radu Soricut and Daniel Marcu. 2003. Sentence Level Discourse Parsing Using
Syntactic and Lexical Information. In Proc. of NAACL ’03 on Human Language
Technology - vol. 1. ACL, 149–156.

[29] AJ Stenner, Ivan Horabin, Dean R Smith, and Malbert Smith. 1988. $e lexile
framework. Durham, NC: MetaMetrics (1988).

[30] Jade Tavernier and Patrice Bellot. 2011. Combining relevance and readability for
INEX 2011?estion–Answering track. (2011), 185–195.

[31] Ellen M. Voorhees and Donna Harman. 2000. Overview of the Sixth Text REtrieval
Conference (TREC–6).

[32] S. Wan, R. Dale, and M. Dras. 2005. Searching for grammaticality: Propagating
dependencies in the viterbi algorithm. Proc. of the Tenth European Workshop on
Natural Language Generation (2005).

[33] S. Zwarts and M. Dras. 2008. Choosing the right translation: A syntactically
informed classi!cation approach. Proc. of the 22nd International Conference on
Computational Linguistics (2008), 1153–1160.




