

Decision Support System for resource allocation in Brazil public universities

Carolina Lino Martins, Pascale Zaraté, Adiel Teixeira de Almeida, Danielle Costa Morais

▶ To cite this version:

Carolina Lino Martins, Pascale Zaraté, Adiel Teixeira de Almeida, Danielle Costa Morais. Decision Support System for resource allocation in Brazil public universities. 3rd International Conference on Decision Support Systems Technologies (ICDSST 2017), May 2017, Namur, Belgium. pp. 119-124. hal-01873767

HAL Id: hal-01873767 https://hal.science/hal-01873767v1

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 19059

To cite this version: Martins, Carolina Lino and Zaraté, Pascale and Teixeira De Almeida, Adiel and Costa Morais, Danielle *Decision Support System for resource allocation in Brazil public universities*. (2017) In: 3rd International Conference on Decision Support Systems Technologies (ICDSST 2017), 29 May 2017 - 31 May 2017 (Namur, Belgium).

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

ICDSST 2017 on Data, Information and Knowledge Visualization in Decision Support Systems

Decision Support System for resource allocation in Brazil public universities

Martins Carolina Lino 1, 2, Zaraté Pascale 1

De Almeida Adiel Teixeira 2 Morais Danielle Costa

1: IRIT – Toulouse Capitole University – 2 rue du Doyen Gabriel Marty 31042 Toulouse Cedex 9 – France

2 : UFPE - Production Engineering Department, Federal University of Pernambuco Av. Acadêmico, Hélio Ramos, s/n, Cidade Universitária, Recife-PE, Brazil carol_tcch@hotmail.com, Pascale.Zarate@irit.fr, almeida@cdsid.org.br, daniellemorais@yahoo.com.br

web-page: https://www.irit.fr/; http://www.cdsid.org.br/

ABSTRACT

This study aims to present the design of a Decision Support System (DSS) for internal resource allocation in Brazil public universities, once, currently, there aren't any kind of general DSS for such a problem. To do so, the analysis is carried out by identifying the general model from the Ministry of Education and the models from every Federal University, finding similarities between each model, and, dividing the models into categories, according to their similarities. The perspectives are to contribute to the decision problem of how to allocate resources properly faced by Brazilians public universities, take safer and reliable decisions, seeking to reduce uncertainties and to maximize their results.

Keywords: Decision Support System, Design, Resource Allocation, Budgeting

INTRODUCTION

One of the ongoing challenges faced by universities in general and especially in Brazil, where public universities perform an important role, it is to improve the provision of beneficial results for the society interest, considering an increasingly complex and changing environment. Therefore, the design of a Decision Support System (DSS) for resource allocation it is an important tool to respond to this ongoing challenge.

A Decision Support System can be defined as a computer-based information system that supports decision makers use data and models to solve semi-structured and unstructured problems. It helps decision makers to make better decisions and to answer complex questions [1, 2].

Generally, considering different definitions for a DSS, they all share the idea that a DSS is essential to support the decision-making process [2] and that is the reason its applicability will be considered for this study.

Thus, this work aims to present the design of a Decision Support System (DSS) for internal resource allocation in Brazil public universities, once, currently, there aren't any general DSS for such a problem, and this can contribute to the decision question of how to allocate resources properly faced by Brazilians public universities, enabling them to take safer and reliable decisions. Also, it should be considered that public universities in Brazil use their taxpayers' money to provide education services. As a result, there is significant societal interest (or at least should exist) in the way such money is allocated, where the cost of a failure is seen as something unacceptable [3].

Within this context, it is important to clarify that the main decision of each model (not the problem situation of this study) it is how to allocate resources correctly, and the Decision Maker is considered as each Federal University.

It is known that the correct use of a DSS can improve the competences of the Decision Maker in understanding better the considered problem, how to select efficient alternatives, cost and time savings [2].

SURVEY

The design of the DSS will consist, at first, in analysing possible courses of action for the case [4]. It will involve the process of understanding the resource allocation models in public universities in Brazil, comparing them and finding similarities between the models, with the aim of generating solutions and testing feasible solutions in the future for the problem.

The general resource allocation model in Brazil is based on the "OCC Matrix" (Others, Costing and Capital Matrix). This matrix has the purpose of establishing criteria for resource allocation in Brazil's Federal Universities, and it has equitable, qualitative, inductors, measurable and auditable criteria. The model is common for all federal Universities and the structure of the budget is programmed the year before [5].

The parameters are legally defined by the Brazilian Ministry of Education (Department of Education - MEC), and the basis of the matrix is the number of students (equivalent students) from each Federal University (FU) [6]. The general model is described in Figures 3, 4 and 5.

There are 55 Federal Universities in Brazil that receive resources from the OCC Matrix, and each one of them has their own resource allocation model.

Therefore, the resource allocation process could be described by Figure 1.

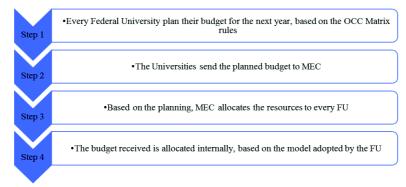
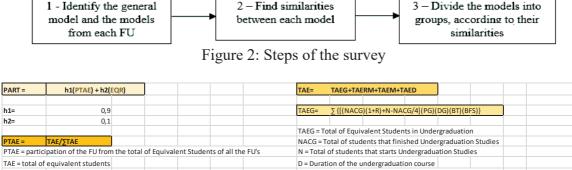



Figure 1: Resource allocation process in Brazil Federal Universities

It is important to point out that the DSS prototype proposed in this study is focused on the process described in STEP 4 (Figure 1), once the general model applicable for Steps 1 and 3 already exists (OCC Matrix). To do so, this survey was divided into three steps, that are shown in Figure 2.

2 - Find similarities

3 – Divide the models into

R = Standard "retention" factor of the undergraduation course DEQ/5DEQ PG = weight of the undergraduation course EQR = efficiency and scientific academic quality from the FU BT = bonus for having nightly undergraduation courses DEQ = efficiency and scientific academic quality dimension from the FU BFS = bonus for having an undergraduation course outside the main campus ΣDEQ = efficiency and scientific academic quality dimension from the set of FU's TAEG**= \sum (NMG)(PG)(BT)(BFS) DEQ = DEAE + DQG + DQM + DQD **= new undergraduation courses (less than 10 years) DEAE = efficiency dimension of the teaching activities in the FU NMG = Total of students enrolled in an undergraduation course DQG = quality dimension from the undergraduation courses PG = weight of the undergraduation course DQM = quality dimension from the master courses BT = bonus for having nightly undergraduation courses DQD = quality dimension from the doctorate courses BFS = bonus for having an undergraduation course outside the main campus

Figure 3: General model – part 1

DEAE = FRAP	$TAEG^{***} = \sum \{ [(NACG)(1+R)](PG)(DG)(BT)(BFS) \}$
	***= New undergraduation course
FRAP = RAP / RAP	
FRAP = relation factor between equivalent student and professor	DG = Standard duration of the undergraduation course
RAP = relation between equivalent student and professor	
RAP = average relation between equivalent student and professor	
	DQM = \(\sum_{FQM} / \nCM \)
DQG = ∑FCG / NCG	FQM = (CCM / CCM)
	FQM = quality factor from the master course
FCG = (CSG / CSG)	NCM = total number of master courses at the FU
FCG = quality factor from the undergraduation course	CCM = CAPES concept of the master course
CSG = SINAES concept of the undergraduation course	CCM = average CAPES concept from the set of FU's of the master courses
CSG = SINAES average concept from the undegraduation course from t	ne set of FU's that have the same area
NCG = number of undergraduation courses evaluated at the FU	
	DQD = ∑FQD / NCD
	FQD = (CCD / CCD)
	FQD = quality factor from the doctorate course
	NCD = total number of doctorate courses at the FU
	CCD = CAPES concept of the doctorare course
	CCD = average CAPES concept from the set of FU's of the doctorate
	courses that have the same area

Figure 4: General model – part 2

$TAERM = \sum (NAMRM)(PRM)$	$TAED = \sum (NACD)(DD)(PD)$
TAERM = total of equivalent students from medical residency	TAED = total of equivalent students in a doctorate course
NAMRM = total of students enrolled in a medical residency course	NACD = total of students that concluded the doctorate course
PRM = weight of the group from the medical residency course	DD = standard duration of the doctorate course
	PD = weight of the group from the doctorate course
$TAEM = \sum (NACM)(DM)(PM)$	
TAEM = total of equivalent students in a master course	
NACM = total of students that concluded the master course	
DM = standard duration of the master course	
PM = weight of the group from the master course	

Figure 5: General model – part 3

When analysing the available models (only 30 models were available for consulting or the university doesn't have a defined model) and their similarities, it was possible to divide them into three main categories: Model 1, based on the general resource allocation model, Model 2, based on some indicators suggested by the Brazilian audit office (Tribunal de Contas da União - TCU) [7], and, Model 3, based on some indicators that will be shown next.

MODEL 1

Model 1 is based on the general resource allocation model presented in Figures 3, 4 and 5, but some universities vary or adapted a few parameters from it.

MODELS 2 and 3

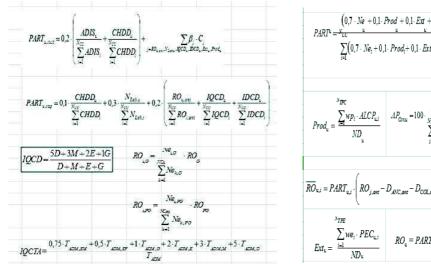


Figure 6: Indicators from model 2

 $PART^{i} = \frac{N_{CP} - N_{CP} + 0,1 \cdot Prod + 0,1 \cdot Ext + 0,1 \cdot AP}{\sum_{i=1}^{N} (0,7 \cdot Ne_{i} + 0,1 \cdot Prod_{i} + 0,1 \cdot Ext_{i} + 0,1 \cdot AP} (1 + FE)}$ $PART^{i} = \frac{N_{CP} - N_{CP}}{\sum_{i=1}^{N} (0,7 \cdot Ne_{i} + 0,1 \cdot Prod_{i} + 0,1 \cdot Ext_{i} + 0,1 \cdot AP} (1 + FE)}{\sum_{i=1}^{N} (0,7 \cdot Ne_{i} + 0,1 \cdot Prod_{i} + 0,1 \cdot Ext_{i} + 0,1 \cdot AP} (1 + FE)}$ $PART^{i} = \frac{N_{CP} - N_{CP}}{PART^{i}} \cdot PART^{i} = \frac{N_{CP} - N_{CP}}{N_{CP}} \cdot PART^{i} \cdot PART^{i} = \frac{N_{CP} - N_{CP}}{N_{CP}} \cdot PART^{i}$

Figure 7: Indicators from model 3

Model 2 is based mainly on indicators like costing; the amount of hour of each course; the number of students in every course; the number of professors and their workloads in teaching, research and extension activities; publications from every academic department; the number of laboratories and qualification of the academic staff.

Model 3 is based basically on the following indicators: number of professors; the number of technical employees; the number of students from each department; the total area from the laboratories; the total area from the departments; scientific production from the

departments; extension activities and others.

DSS PROTOTYPE

The DSS Prototype from the main three models found by this study is presented next. The models were divided into categories, according to their similarities. This initial prototype was designed in a Microsoft Excel file and it was the first step of a bigger research, that aims to improve the design of this DSS, by transforming the prototype into a web-based system, with a programming language, developing the data basis for the model and for the users, implementing the program, and, finally, tested by the users. The research also will include a project portfolio selection approach as an appropriate model to analyze the resource allocation process of the universities.

E F G Undergraduation TAEG 0,0820 2,0 Manag. Eng. 2,0 ENG 0,0820 0,0820 383 TOTAL **Master Course Doctorate Program** TAEN TAED Civil Eng. 0,75 22,5 Civil Eng. 0,38 7,6 7,6 Manag. Eng. Manag, Eng. 6,08 17,1 5,7 15 33,75

Model 1

Figure 8: DSS Prototype – Model 1

44,08 TOTAL

Model 2

Department _	ADIS _	CHDE	β	C	RO 🛫	N	PART cos: *	PART c	w	Total Pari			
Engineering	8000	7500	0,2	1,0	220000	22	0,2	0,2	0,2	0.316			
Computer Sci.	6000	5500	0,2	1,0	140000,0	14	0,2	0,2	0,2	0,281			
Human Sci.	5500	4800	0,2	1,0	210000,0	8	0,1	0,1	0,2	0,275			
Mathematics	4000	3600	0,2	1,0	130000,0	10	0,1	0,1	0,2	2,266			
Medical School	4500	4100	0,2	1,0	250000,0	28	0,4	0,4	0,2	4,026			
D	м	Е	G	w	IQCD		ADM,	ADM, EF	ADM. G	ADM, E	ADM,M	ADM, D	IQCTA
U							EM	ADIN, LF	ADIVI, U	ADIN, L	ADITIJITI	ADITI, D	IQCIA
150	120	50	10	1	3,69697		8	56	6	47	44	17	351
110	99	41	8	1	3,63178		76	28	67	37	27	48	533
160	150	46	4	1	3,73889		50	23	48	44	4	54	467
85	90	32	11	1	3,53211		40	54	80	36	56	21	482
155	110	62	3	1	3,73333		71	78	20	50	38	61	631

Figure 9: DSS Prototype – Model 2

Model 3

Depart. ~	Ne -	Proc -	Ext ~	AP ~	FE -	PAR' ~		Wp	ALCP	ND	Prod	
Engineering	2518,88	5,17	0,76	0,23	0,4	1,25		0,6	80	220	5,17	
Computer Sci.	1799,4	10,33	1,53	0,16	0,4	0,89		0,4	45	110	10,33	
Human Sci.	1092,9	4,84	0,72	0,21	0,6	0,62		0,8	112	235	4,84	
Mathematics	1461,1	13,37	1,98	0,14	0,3	0,67		0,5	22	85	13,37	
Medical School	2715,25	4,66	0,69	0,26	0,7	1,64		0,6	133	244	4,66	
We	PEC	ND	Ext		Aconu	Aconi	Apcon		PART	Roj	Roi	RO
0,6	12	220	0,76		480	2130,0	23		1,25	183192,6	778375,61	744.077
0,4	8	110	1,53		350	2130,0	16		0,89	214741,6	778375,61	503.673
0,8	16	235	0,72		450	2130,0	21		0,62	98820,1	778375,61	421.438
0,5	4	85	1,98		300	2130,0	14		0,67	118901,1	778375,61	444.590
0,6	18	244	0,69		550	2130,0	26		1,64	162720,2	778375,61	1.007.408

Figure 10: DSS Prototype – Model 3

PERSPECTIVES AND CONCLUSIONS

The purpose of this study was to present the design of a Decision Support System (DSS) for internal resource allocation in Brazil public universities. To do so, the survey was divided into three steps: identify the general model and the models from each FU; find similarities between each model; and, divide the models into categories, according to their similarities. This initial prototype was the first step of a bigger experiment. The system still must be improved to be useful for the users.

The next step is to transform the DSS prototype into a web-based system, with a programming language, constructing its data basis for the model and for the users, implement the program, and, finally, tested by the users. Also, the DSS could have potential expansions in the future, expanding its general prototype to be used by the Ministry of Education in Brazil or others public institutions with the similar decision problem.

The perspectives are to contribute to the decision problem of how to allocate resources correctly faced by Brazilians public universities, take safer and reliable decisions, seeking to reduce uncertainties and to maximize their results. In addition, it could be used to provide background for the Federal Universities strategic resource allocation planning.

It is worthwhile to note that the DSS prototype has no production intention but to deal with as an experiment with only research purposes.

REFERENCES

- 1. Bidgoli, H. "Decision Support System Principles and Practice." New York: West Publishing Company, 1989.
- 2. Sprague, Jr.; Watson, H. "Decision support systems: putting theory into practice." USA: Prentice-Hall, 1989.
- 3. Williams, G. "Applying Management of Risk (M_o_R®) for Public Services." GSW Consultancy, 2009.
- 4. Zaraté, P. "The process of designing a DSS: A case study in planning management." Eur. J. Oper. Res. 55, 394 402 (1991).
- 5. Brasil. "Decreto nº 7.233 de 19 de julho de 2010". Procedimentos orçamentários e financeiros relacionados à autonomia universitária, e dá outras providências. Brasília. Available in: http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2010/Decreto/D7233.htm
- 6. Ministério da Educação (MEC). "Portaria nº 651 de 24 de julho de 2013". Institucionaliza, no âmbito do Ministério da Educação a Matriz de Orçamento de Outros Custeios e Capital- Matriz OCC. Brasília. Available in: http://sintse.tse.jus.br/documentos/2013/Jul/26/portaria-no-651-de-24-de-julho-de-2013-fica

Tribunal de Contas da União (TCU). "Orientações para o Cálculo dos Indicadores de Gestão. Decisão TCU nº 408-2012 – Plenário". Brasília. 2012