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Abstract. It is widely accepted today that relational systems are not appropriate

to handle Big Data. This has led to a new category of databases commonly

known as NoSQL databases that were created in response to the needs for better

scalability, higher flexibility and faster data access. These systems have proven

their efficiency to store and query Big Data. Unfortunately, only few works have

presented approaches to implement conceptual models describing Big Data in

NoSQL systems. This paper proposes an automatic MDA-based approach that

provides a set of transformations, formalized with the QVT language, to translate

UML conceptual models into NoSQL models. In our approach, we build an

intermediate logical model compatible with column, document and graph ori-

ented systems. The advantage of using a unified logical model is that this model

remains stable, even though the NoSQL system evolves over time which sim-

plifies the transformation process and saves developers efforts and time.

Keywords: UML � NoSQL � Big data � MDA � QVT � Models transformation

1 Introduction

Big Data is one of the current and future research themes. Recently, the advisory and 
research firm Gartner Group outlined the top 10 technology trends that will be strategic 
for most organizations over the next five years, and unsurprisingly Big Data is men-
tioned in the list [13]. Relational systems that had been for decades the one solution for 
all databases needs prove to be inadequate for all applications, especially those 
involving Big Data [3]. Consequently, new type of DBMS, commonly known as 
“NoSQL” [2], has appeared. These systems are well suited for managing large volume 
of data; they keep good performance when scaling up [1]. NoSQL covers a wide 
variety of different systems that can be classified into four basic types: key-value, 
column-oriented, document-oriented and graph-oriented. In this paper, we focus on the 
last three. The first one (key-value) is implicitly considered since all of the mentioned 
systems extend the concepts of key-value [10].
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To motivate and illustrate our work, we present a case study in the healthcare filed.

This case study concerns international scientific programs for monitoring patients

suffering from serious diseases. The main goal of this program is (1) to collect data

about diseases development over time, (2) to study interactions between different

diseases and (3) to evaluate the short and medium-term effects of their treatments. The

medical program can last up to 3 years. Data collected from establishments involved in

this kind of program have the features of Big Data (the 3 V). Volume: the amount of

data collected from all the establishments in three years can reach several terabytes.

Variety: data created while monitoring patients come in different types; it could be

(1) structured as the patient’s vital signs (respiratory rate, blood pressure, etc.),

(2) semi-structured document such as the package leaflets of medicinal products,

(3) unstructured such as consultation summaries, paper prescriptions and radiology

reports. Velocity: some data are produced in continuous way by sensors; it needs a

[near] real time process because it could be integrated into a time-sensitive processes

(for example, some measurements, like temperature, require an emergency medical

treatment if they cross a given threshold).

The lack of a model when creating a database is a key feature in NoSQL systems.

In a table, attributes names and types are specified as and when the row is entered.

Unlike relational systems - where the model must be defined when creating the table -

the schema less appears in NoSQL systems. This property offers undeniable flexibility

that facilitates the evolution of models in NoSQL systems. But this property concerns

exclusively the physical level (implementation) of a database [14]. In information

system, the model serves as a document of exchange between end-users and devel-

opers. It also serves as a documentation and reference for development and system

evolution due to the business needs and typically deployment technologies evolution.

Furthermore, the conceptual model provides a semantic knowledge element close to

human logic, which guarantees efficient data management [3].

UML is widely accepted as a standard modelling language for describing complex

data [3]. In the medical application, briefly presented above, the database contains

structured data, data of various types and formats (explanatory texts, medical records,

x-rays, etc.), and big tables (records of variables produced by sensors). Therefore, we

choose the UML class diagram to design describe the medical data.

The rest of the paper is structured as follows: Sect. 2 defines our research problem

and reviews previous work on models transformation; Sect. 3 introduces our

MDA-based approach; two transformations processes are presented in this section, the

first one creates a logical model starting from a UML class diagram, and the second one

generates NoSQL physical models from this logical model; Sect. 4 details our exper-

iments; and Sect. 5 concludes the paper and announces future work.

2 Research Problem and Related Work

Big Data applications developers have to deal with the question: how to store Big Data

in NoSQL systems? To address this problem, existing solutions propose to model Big

Data, and then define mapping rules towards the physical level.



In the specific context of a data warehouse, both [9, 15] have proposed to transform

a multidimensional model into a NoSQL model. In [9] the authors defined a set of rules

to map a star schema into two NoSQL models: column-oriented and

document-oriented. The links between facts and dimensions have been converted using

imbrications. Authors in [15] proposed three approaches to map a multidimensional

model into a logical model adapted to column-oriented NoSQL systems.

Other studies [5, 6] have investigated the process of transforming relational data-

bases into a NoSQL model. Li [5] have proposed an approach for transforming a

relational database into HBase (column-oriented system). Vajk et al. [6] defined a

mapping from a relational model to document-oriented model using MongoDB.

To the best of our knowledge, only few works have presented approaches to

implement UML conceptual model into NoSQL systems. Li et al. [11] propose a

MDA-based process to transform UML class diagram into column-oriented model

specific to HBase. Starting from the UML class diagram and HBase metamodels,

authors have proposed mapping rules between the conceptual level and the physical

one. Obviously, these rules are applicable to HBase, only. Gwendal et al. [7] describe

the mapping between a UML conceptual model and graph databases via an interme-

diate graph metamodel. In this work, the transformation rules are specific to graph

databases used as a framework for managing complex data with many connections.

Generally, this kind of NoSQL systems is used in social networks where data are

highly connected.

Regarding the state of the art, some of the existing works [5, 6] focus on relational

model that, unlike UML class diagram, lacks of semantic richness, especially through

the several types of relationships that exist between classes. Other solutions, [9, 15]

have the advantage to start from the conceptual level. But, the proposed models are

Domain-Specific (Data Warehouses system), so they consider fact, dimension, and

typically one type of links only. [7, 11] consider, each, a single type of NoSQL systems

(column-oriented in [11] and graph-oriented in [7]). However, it makes more sense to

choose the target system according to the user’s needs. For example, if processing

operations requires access to hierarchically structured data, the document-oriented

system proves to be the most adapted solution.

The main purpose of our work is to assist developers in storing Big Data in NoSQL

systems. For this, we propose a new MDA-based approach that transforms a conceptual

model describing Big Data into several NoSQL physical models. This automatic

process allows the developer to choose the system type (column, document or graph)

that suits the best with business rules and technical constraints.

3 UMLtoNoSQL Approach

Our purpose is to define, to formalize and to automate the storage of Big Data by means

of NoSQL systems. For this, we propose UMLtoNoSQL approach that automatically

transforms a UML conceptual model into a NoSQL physical model. We introduce a

logical level between conceptual (business description) and physical (technical

description) levels in which a generic logical model is developed. This logical model

exhibits a sufficient degree of platform-independency making possibleits mapping to



one or more NoSQL platforms. This model have two main advantages: (1) it describes

data according to the common features of NoSQL models, (2) it is independent of

technical details of NoSQL systems, this means that the logical level remains stable,

even though the NoSQL system evolves over time. In this case, it would be enough to

evolve the physical model, and of course adapt the transformation rules; this simplifies

the transformation process and saves time for developers.

To formalize and automate UMLtoNoSQL process, we use the Model Driven

Architecture (MDA). One of the main aims of MDA is to separate the functional

specification of a system from the details of its implementation in a specific platform

[4]. This architecture defines a hierarchy of models from three points of view: Com-

putation Independent Model (CIM), Platform Independent Model (PIM), and Platform

Specific Model (PSM) [8]. Among these models, we use the PIM to describe data

hiding all aspects related to the implementation platforms, and the PSM to represent

data using a specific technical platform.

In our scenario, the UML class diagram and the generic logical model belong to the

PIM level. UMLtoNoSQL process transforms the UML class diagram (conceptual

PIM) into a generic logical model (logical PIM). At the PSM level, we consider three

different physical models that correspond to Cassandra (column-oriented system),

MongoDB (document-oriented system) and Neo4j (graph-oriented system). Figure 1

shows the different component of UMLtoNoSQL process.

UMLtoGenericModel (1) is the first transformation in UMLtoNoSQL process. It

transforms the input UML class diagram into the generic logical model (2). This model is

conform to the generic logical metamodel presented in Sect. 3.1. GenericModelto

PhysicalModel (3) is the second transformation (Sect. 3.2) that generates the NoSQL

physical models (PSMs) (4) starting from the generic logical model.

Fig. 1. Overview of UMLtoNoSQL process



3.1 UMLtoGenericModel Transformation

In this section we present the UMLtoGenericModel transformation, which is the first

step in our approach as shown in Fig. 1. We first define the source (UML Class

Diagram) and the target (Generic Logical Model). After that, we focus on the trans-

formation itself.

Source. A Class Diagram (CD) is defined as a tuple (N, C, L), where:

N is the class diagram name,

C is a set of classes. Classes are composed from structural and behavioral features;

in this paper, we consider the structural features only. Since the operations describe the

behavior, we do not consider them. For each class c 2 C, the schema is a tuple

ðN;A; IdentOcÞ, where:

• c.N is the class name,

• c.A ¼ ac1; . . .; a
c
q

n o

is a set of q attributes. For each attribute ac 2 A, the schema is

a pair (N,C) where “ac.N” is the attribute name and “ac:C” the attribute type; C can

be a predefined class, i.e. a standard data type (String, Integer, Date…) or a business

class (class defined by user),

• c.IdentOc is a special attribute of c; it has a name IdentOc.N and a type called “Oid”.

In this paper, an attribute which type is “Oid” represents a unique object identifier,

i.e. an attribute which value distinguishes an object from all other objects of the

same class,

L is a set of links. Each link l between n classes, with n >= 2, is defined as a tuple

ðN;Ty;PrlÞ, where:

• l.N is the link name.

• l.Ty is the link type. In this paper, we consider the three main types of links between

classes: Association, Composition and Generalization.

• l.Prl ¼ prl1; . . .; pr
l
n

� �

is a set of n pairs. 8 i 2 1; ::; nf g, prli ¼ ðc,crcÞ, where prli .c is

a linked class and prli .cr
c is the multiplicity placed next to c. Note that prli .cr

c can

contain a null value if nomultiplicity is indicated next to c (like in generalization link).

Class diagram metamodel is shown in Fig. 2; this metamodel is adapted from the

one proposed by the OMG [12].

Target. The target of UMLtoGenericModel transformation corresponds to a generic

logical model that describes data according to the common features of the three types of

NoSQL systems: column-oriented, document-oriented and graph-oriented. In the

generic logical model, a DataBase (DB) is defined as a tuple (N, T, R), where:

N is the database name,

T is a set of tables. The schema of each table t 2 T is a tuple ðN,A,IdentLtÞ), where:

• t.N is the table name,

• t.A ¼ at1; . . .; a
t
q

n o

is a set of q attributes that will be used to define rows of t; each

row can have a variable number of attributes. The schema of each attribute at 2 A

is a pair (N,Ty) where “at.N” is the attribute name and “at.Ty” the attribute type.



• t.IdentLt is a special attribute of t; it has a name IdentLt.N and a type called “Rid”.

In this paper, an attribute which type is “Rid” represents a unique row identifier, i.e.

an attribute which value distinguishes a row from all other rows of the same table,

R is a set of binary relationships. In the generic logical model there are only binary

relationships between tables. Each relationship r 2 R between t1 and t2 is defined as a

tuple ðN; PrrÞ, where:

• r.N is the relationship name.

• r.Prr ¼ prr1; pr
r
2

� �

is a set of two pairs. 8 i 2 1; 2f g, prri ¼ ðt; crtÞ, where prri .t is a

related table and prri .cr
t is the multiplicity placed next to t.

Metamodel of the proposed generic logical model is shown in Fig. 3. Note that the

attribute value may be either atomic or complex (set of attributes). We represent this by

using the UML XOR constraint.

Transformation Rules.

R1: each class diagram CD is transformed into a database DB, where DB.N = CD.N.

R2: each class c 2 C is transformed into a table t 2 DB, where t.N = c.N,

IdentLt.N ¼ IdentOc.N:

R3: each attribute ac 2 c.A is transformed into an attribute at, where at.N ¼ ac.N,

at.Ty ¼ ac.C, and added to the attribute list of its transformed container t such as

at 2 t.A.

R4: each binary link l 2 L (regardless of its type: Association, Composition or

Generalization) between two classes c1 and c2 is transformed into a relationship

r 2 R between the tables t1 and t2 representing c1 and c2, where

r.N ¼ l.N; r:Prr ¼ fðt1; cr
c1Þ; ðt2; cr

c2Þg, crc1 and crc2 are the multiplicity placed

respectively next to c1 and c2.

Fig. 2. Source metamodel

{XOR}

Fig. 3. Target metamodel



R5: each link l 2 L between n classes c1; . . .; cnf g n[ ¼ 3ð Þ is transformed into

(1) a new table tl, where tl:N ¼ l.N and tl:A ¼ ;, and (2) n relationships

r1; . . .; rnf g, 8 i 2 1; ::; nf gri links tl to another table ti representing a related

class ci, where ri.N ¼ ðt1.NÞ ðti.NÞ and ri:Pr
r ¼ fðt1; nullÞ; ðti; nullÞg.

R6: each association class casso between n classes c1; . . .; cnf g n[ ¼ 2ð Þ is

transformed like a link between multiple classes (R5) using (1) a new table

tac, where tac.N ¼ l.N, and (2) n relationships r1; . . .; rnf g, 8 i 2 1; ::; nf gri links
tac to another table ti representing a related class ci, where ri:N ¼ ðtac:NÞ ðti:NÞ
and ri:Pr

r ¼ fðtac; nullÞ; ðti; nullÞg. Like any other table, tac contain also a set of

attributes A, where tac:A ¼ casso:A.

We have formalized these transformation rules using the QVT

(Query/View/Transformation), which is the OMG standard for models transformation.

An excerpt from QVT rules is shown in Fig. 7.

3.2 GenericModeltoPhysicalModel Transformation

In this section we present the GenericModeltoPhysicalModel transformation, which is

the second step in our approach UMLtoNoSQL (Fig. 1). This transformation creates

NoSQL physical models starting from the proposed generic logical model.

Source. The source of GenericModeltoPhysicalModel transformation is the target of

the previous UMLtoGenericModel transformation.

Target. To illustrate our approach, we have chosen three well known NoSQL systems:

Cassandra, MongoDB and Neo4j.

Cassandra physical model

In Cassandra physical model, KeySpace (KS) is the top-level container that owns all

the elements. It’s defined as a tuple (N, F), where:

N is the keyspace name,

F is a set of columns-families. The schema of each columns family f 2 F is defined

as a tuple ðN;Cl; PrimaryKey f Þ, where:

• f.N is the columns-family name,

• f:Cl ¼ cl1; . . .; clq
� �

is a set of q columns that will be used to define rows of f;

each row can have a variable number of columns. The schema of each column cl 2
Cl is a pair (N,Ty) where “cl.N” is the column name and “cl.Ty” the column type.

• f.PrimaryKey f is a special column of f; it has a name PrimaryKey f .N and a type

PrimaryKey f .Ty (standard data type). PrimaryKey f identifies each row of f.

MongoDB physical model

In MongoDB physical model, DataBase DBMDð Þ is the top-level container that owns all
the elements. It’s defined as a tuple (N, Cll), where:

N is the database name,



Cll is a set of collections. The schema of each collection cll 2 Cll is a tuple

ðN; Fl; IdcllÞ, where:

• cll.N is the collection name,

• cll:Fl ¼ FlA [ FlCX sis a set of atomic and complex fields that will be used to define

rows, called documents, of Cll. Each document can have a variable number of

fields. The schema of an atomic field fla 2 FlA is a tuple (N,Ty) where “fla:N” is

the field name and “fla:Ty” is the field type. The schema of a complex field flcx 2
FlCX is also a tuple (N, Fl’) where flcx N is the field name and flcx:F1’ is a set of

fields where Fl’� Fl.

• cll:Idcll is a special field of cll; it has a name Idcll:N and a type Idcll:Ty (standard data

type).Idcll identifies each document of cll.

Neo4j physical model

In Neo4j physical model, Graph (GR) is the top-level container that owns all the

elements. It’s defined as a tuple (V, E), where:

V is a set of vertex. The schema of each vertex v 2 V is a tuple ðL; Pro; IdvÞ, where:

• v.L is the vertex label,

• v:Pro ¼ pro1; . . .; proq
� �

is a set of q properties. The schema of each property pro

2 Pro is a pair (N,Ty), where “pro.N” is the property name and “pro.Ty” the

property type.

• v:Idv is a special property of v; it has a name Idv:N, a type Idv:Ty and the constraint

“Is Unique”. It identifies uniquely v in the graph.

E is a set of edges. The schema of each edge e 2 E is a tuple ðL; v1; v2Þ, where:

• e.L is the edge label,

• e:v1 and e:v2 are the vertexes related by e.

Transformation Rules

For some NoSQL systems, many solutions can ensure the implementation of the

generic logical model. In order to choose the most suitable solution, the developer can

be well guided thanks to the performance measurement shown in Sect. 4.2. These

measurements concern the response time of queries that access two related tables; the

relationship between these tables has being implemented according to the different

solutions shown below. The developer will make his choice according to the queries

features he needs to perform as well as the expected performances.

We note that the set of solutions proposed in this section is not inclusive; more

marginal solutions may be considered.

To Cassandra physical model

R1: each database DB is transformed into a keyspace KS, where KS.N = DB.N.

R2: each table t 2 DB is transformed into a columns-family f 2 KS, where

f:N ¼ t:N;PrimaryKey f
:N ¼ IdentLt

:N.

R3: each attribute at 2 t:A is transformed into a column cl, where

cl:N ¼ at:N; cl:Ty ¼ at:Ty, and added to the column list of its transformed

container f such as cl 2 f:Cl.



R4: As Cassandra does not support imbrication; the only solution we can use to

express relationships between columns-families consists in using reference

columns. A reference column is a monovalued or multivalued column in one

columns-family whose values must have matching values in the primary key of

another columns-family; we note that this constraint is not automatically managed

by the system Cassandra; it remains the responsibility of the user to check it.

For each relationship r between two tables t1 and t2, three solutions could be

considered:

Solution 1: r is transformed into a reference column cl referencing f2 (the

columns-family representing t2), where cl:N ¼ ðf2:NÞ _Ref and

cl:Ty ¼ PrimaryKeyf 2:Ty, and then added to the columns list of f1
(the columns-family representing t1) such as cl 2 f1:Cl. While instan-

tiating f1, the value of the reference column cl will correspond to one or

many values in the primary key of f2.

Solution 2: r is transformed into a reference column cl referencing f1 (the

columns-family representing t1), where cl:N ¼ ðf1:NÞ _Ref

et cl:Ty ¼ PrimaryKeyf 1:Ty, and then added to the columns list of f2
(the columns-family representing t2) such as cl 2 f2:Cl While instan-

tiating f2, the value of the reference column cl will correspond to one or

many values in the primary key of f1.

Solution 3: r is transformed into a new columns-family f composed of two reference

columns referencing the columns-families f1 and f2 representing the

related tables t1 and t2, where f.N = r.N, f:Cl ¼ cl1; cl2f g, cl1:N ¼

ðf1:NÞ _Ref, cl1:Ty ¼ PrimaryKeyf1:Ty; cl2:N ¼ ðf2:NÞ _Ref and

cl2:Ty ¼ PrimaryKeyf2:Ty.

A reference column can either be monovalued or multivalued. Table 1 indicates the

type of the reference column according to the relationship cardinalities and the trans-

formation solution used.

Table 1. Descriptive table of reference column types

Relationship Solution Reference column type

r ¼ ðN; fðt1; �Þ; ðt2; 1ÞgÞ Solution 1 Monovalued

Solution 2 Multivalued

Solution 3 Monovalued

r ¼ ðN; fðt1; 1Þ; ðt2; 1ÞgÞ Solution 1 Monovalued

Solution 2 Monovalued

Solution 3 Monovalued

r ¼ ðN; fðt1; �Þ; ðt2; �ÞgÞ Solution 1 Multivalued

Solution 2 Multivalued

Solution 3 Monovalued



To MongoDB physical model

R1: each database DB is transformed into a MongoDB database DBMD, where

DBMD.N = DB.N.

R2: each table t 2 DB is transformed into a collection cll 2 DBMD, where

cll:N ¼ t:Net Idcll:N ¼ IdentLt
:N.

R3: each attribute at 2 t.A is transformed into an atomic field fla, where

fla.N ¼ at:N, fla:Ty ¼ at.Ty, and added to the field list of its transformed

container cll such as fl 2 cll:FlA.

R4: relationships in MongoDB could be transformed by using reference fields or

embedding. A reference field is a monovalued or multivalued field in one

collection whose values must have matching values in the Id of another

collection; checking this constraint remains the responsibility of the user.

For each relationship r between two tables t1 and t2, five solutions could be

considered:

Solution 1: r is transformed into a reference field fl referencing cll2 (the collection

representing t2), where fl:N ¼ ðcll2:NÞ _Ref and fl:Ty ¼ Idcll2 :Ty, and

then added to the fields list of cll1 (the collection representing t1) such as

fl 2 cll1:Fl
A.

Solution 2: r is transformed into a reference field fl referencing cll1 (the collection

representing t1), where fl:N ¼ ðcll1:NÞ _Ref and fl:Ty ¼ Idcll1 :Ty, and

added to the field list of cll2 (the collection representing t2) such as

fl 2 cll2:Fl
A.

Solution 3: r is transformed by embedding the collection cll2 representing t2 in the

collection cll1 representing t1, where cll2 2 cll1:Fl
CX .

Solution 4: r is transformed by embedding the collection cll1 representing t1 in the

collection cll2 representing t2, where cll1 2 cll2:Fl
CX .

Solution 5: r is transformed into a new collection cll, where cll.N = r.N,

cll:Fl ¼ fl1; fl2f g, fl1:N ¼ ðcll1:NÞ _Ref, fl1:Ty ¼ Idcll2 :Ty, fl2:N ¼

ðcll2:NÞ _Ref and fl2:Ty ¼ Idcll2 :Ty, where cll1 and cll2 are the

collections representing t1 and t2.

Each reference field used in Solution 1, 2 and 5 can either be monovalued or

multivalued. Table 2 indicates the type of the reference field according to the rela-

tionship cardinalities and the transformation solution used.

To Neo4j physical model

R1: each table t 2 DB is transformed into a vertex v 2 V, where v.L = t.N,

Idv:N ¼ IdentLt
:N.



R2: each attribute at 2 t.A is transformed into a property pro, where pro:N ¼ at:N,

pro:Ty ¼ at.Ty, and added to the property list of its transformed container v

such as pro 2 v:Pro.

R3: Each relationship r between two tables t1 and t2 is transformed into an edge e,

where e.L = r.N, relating two vertex v1 and v2, where v1 and v2 are the vertex

representing t1 and t2.

4 Experiments

In this section, we show how to transform a UML conceptual model into NoSQL

physical models. As presented in Sect. 3.2, several solutions can ensure this trans-

formation; we therefore began by implementing the UMLtoNoSQL process according

to each proposed solution, and then we evaluated their performances to assist the

developer in choosing the most effective one.

4.1 Implementation

Experimental environment. We carry out the experimental assessment using a model

transformation environment called Eclipse Modeling Framework (EMF). It’s a set of

plugins which can be used to create a model and to generate other output based on this

model. Among the tools provided by EMF we use: (1) Ecore: the metamodeling

language that we used to create our metamodels. (2) XML Metadata Interchange

(XMI): the XML based standard that we use to create models. (3) Query/View /

Transformation (QVT): the OMG language for specifying model transformations.

Implementation of UMLtoGenericModel Transformation. UMLtoGenericModel

transformation is expressed as a sequence of elementary steps that builds the resulting

model (generic logical model) step by step from the source model (UML class

diagram):

Table 2. Descriptive table of reference field types

Relationship Solution Reference field type

r ¼ ðN; fðt1; �Þ; ðt2; 1ÞgÞ Solution 1 Monovalued

Solution 2 Multivalued

Solution 5 Monovalued

r ¼ ðN; fðt1; 1Þ; ðt2; 1ÞgÞ Solution 1 Monovalued

Solution 2 Monovalued

Solution 5 Monovalued

r ¼ ðN; fðt1; �Þ; ðt2; �ÞgÞ Solution 1 Multivalued

Solution 2 Multivalued

Solution 5 Monovalued



Step 1: we create Ecore metamodels corresponding to the source (Fig. 2) and the

target (Fig. 3).

Step 2: we build an instance of the source metamodel. For this, we use the

standard-based XML Metadata Interchange (XMI) format (Fig. 4).

Step 3: we implement the transformation rules by means of the QVT plugin pro-

vided within EMF. An excerpt from the QVT script is shown in Fig. 7; the

comments in the script indicate the rules used.

Step 4: we test the transformation by running the QVT script created in step 3. This

script takes as input the source model builded in step 2 and returns as output

the logical model. The result is provided in the form of XMI file as shown in

Fig. 5.

Implementation of GenericModeltoPhysicalModel Transformation. The generic

logical model that we proposed in this paper does not imply a specific system; it

exhibits a sufficient degree of independence so as to enable its mapping to different

NoSQL platforms. For some NoSQL systems, relationships could be transformed into

several forms (monovalued or multivalued references, embedding). Lacks of place, we

only present one implementation of the generic logical model that was performed on

Cassandra according to Solution 1. Figure 8 shows the corresponding QVT script. This

script takes as input the logical model (Fig. 5) generated by the previous transformation

and return as output Cassandra physical model (Fig. 6).

Fig. 4. Source model Fig. 5. Target model Fig. 6. Cassandra model



4.2 Evaluation

The graph-oriented system Neo4j does not offer many solutions to implement rela-

tionships; therefore, the developer does not need to choose between several solutions.

For Cassandra and MongoDB, where many choices are available, we have evaluated

the transformation solutions proposed in Sect. 3.2. This evaluation aims at studying the

impact that the choice of the used solution may have on the queries execution time.

Experimental environment. The experiments are done on a cluster made up of 3

machines. Each machine has the following specifications: Intel Core i5, 8 GB RAM

and 2 TB disk.

Data set. In order to perform our experiments, we have used data generator tools. We

have generated a dataset of about 1 TB with CSV format for Cassandra and JSON

format for MongoDB. These files are loaded into the systems using shell commands.

Queries set. For our experiments, we have written 6 queries; each query concerns two

tables and the relationship between them. The complexity of these queries increases

gradually. The simplest one applies a filter to a table and returns attributes of the other

table; the most complex one applies several filters and returns attributes of the two

related tables. We note that the concepts “table” and “attribute” correspond respectively

to “columns-family” and “column” in Cassandra or “collection” and “field” in Mon-

goDB. An excerpt from our experiment results is depicted in Table 3 and Figs. 9(a),

(b) and (c). For each query, we indicate the response time obtained according to (1) the

relationship cardinalities and (2) the solution used.

modeltype UML uses "http://UMLClassDiagram.com";
modeltype COLM uses "http://GenericLogicalModel.com";
transformation
TransformationUmlToColumnsOrientedModel(in Source:
UML, out Target: COLM);main() 
{Source.rootObjects()[ClassDiagram] -> map toDataBase();}
-- Transforming Class Diagram to DataBase
mapping ClassDiagram::toDataBase():DataBase{name := 
self.name;table:=self.classes -> map
toClass();relationship:=self.links -> toRelationship();}
-- Transforming Class to Table
mapping UML
::Class::toClass():COLM::Table{name:=self.name;attributet:=
self.attributec -> map toAttribute();}
-- Transforming Attribute to Column
mapping UML
::Attribute::toAttribute():COLM::Attribute{name:=self.name;
typea:=self.typea -> map toType(); }
mapping UML
::Type::toType():COLM::Type{typea:=self.typea;}
mapping UML
::Link::toRelationship():COLM::RelationShip{name:=self.na
me; linkedtable:=self.linkedclass -> map toLinkedTable();

Fig. 7. UMLtoGenericModel

TransformationTransformationGenericModelToCassan
draModel(in Source: LogicalPIM, out Target:
CassandraPSM);
main() {
Source.rootObjects()[DataBase] -> map toKeySpace();}
-- Transforming DataBase to KeySpace
mapping DataBase::toKeySpace():KeySpace{
name := self.name;
columnsfamily:=self.table ->
map toColumnsFamily();} 
-- Transforming Table to Columns-Family
mapping LogicalPIM 
::Table::toColumnsFamily():CassandraPSM::
ColumnsFamily{name:=self.name;column:=self.attribute
t -> map toColumn();referencecolumn:=self.islinkedto ->
map toReferenceColumn();} 
mapping LogicalPIM 
::Type::toType():CassandraPSM::Type{
if(self.typea = 
"Rid"){type:='Int';}endif;type:=self.typea;}
-- Transforming (1,*) RelationShip to a Monovalued Ref
mapping LogicalPIM 
::LinkedToTable::toReferenceColumn():CassandraPSM 
::ReferenceColumn{if(self.cardinalityoftable = "*" and
self.cardinalityoflinkedtable

Fig. 8. GenericModeltoCassandraModel



5 Conclusion and Future Work

In this paper we have proposed an automatic approach that guides and facilitates the

Big Database implementation task within NoSQL systems. This approach is based on

MDA especially known as a framework for models automatic transformations. Our

approach provides a set of transformations that generate a NoSQL physical model

starting from a UML conceptual model. In our approach, we build an intermediate

logical model compatible with column, document and graph oriented systems; this

model uses tables and binary relationships that link them. The independence between

the three physical models is ensured. The advantage of using a unified logical model is

that this model remains stable, even though the NoSQL system evolves over time. In

this case, it would be enough to evolve the physical models, and of course adapt the

transformation rules. Furthermore, we have proposed different solutions to transform

the binary relationships of the logical model under Cassandra and MongoDB.

Depending on the systems functionalities, the binary relationships could be converted

Table 3. Queries response time

NoSQL

system

Relationship Solution Query Time

(s)

Cassandra r ¼ ðN; fðt1; �Þ; ðt2; 1ÞgÞ Solution

1

Q1 140

Q4 980

…

Solution

2

Q1 830

…

Solution

3

…

Q4 420

r ¼ ðN; fðt1; 1Þ; ðt2; 1ÞgÞ Solution

1

…

Q5 310

Solution

2

…

Q6 290

Solution

3

…

Q4 735

r ¼ ðN; fðt1; �Þ; ðt2; �ÞgÞ Solution

1

…

Q2 720

Q5 1400

Solution

2

…

Q3 1050

Solution

3

…

Q5 510

Q6 530

MongoDB r ¼ ðN; fðt1; �Þ; ðt2; 1ÞgÞ Solution

1

…

Q4 4300

Solution

2

…

Q6 6200

Solution

3

Q5 1700

Q6 1500

Solution

4

Q2 870

Fig. 9. Cassandra experimental results



into different forms. We have measured the queries response time using each of the

proposed solution. The developer can choose the most suited solution according to:

(1) Queries features (number of filters, number of attributes to return, etc.), (2) The time

response and (3) Query frequency of use.

As future work, we plan to complete our transformation process in order to take

into account the constraints of the conceptual level and to preserve the semantics of

links when transforming the conceptual model to the logical one. Furthermore, we want

to define the transformations rules of physical models into NoSQL scripts using

model-to-text transformation (M2T).
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