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Abstract - This paper presents and compares statistical methods for evaluating the 

performance of parametric model estimation for insulation lifespan in the case of small 

size training sets. Parametric models are derived from accelerated aging tests on twisted 

pairs covered with an insulating varnish under different stress constraints (voltage, 

frequency and temperature). The estimation of the parametric model coefficients 

requires some hypothesis on the lifespan statistical distribution. However, since the 

number of measurements for each configuration is constrained by the experimental cost, 

the results given by classical goodness-to-fit tests and graphical tools may be 

questionable. This paper thus proposes to use the bootstrap technique for a more 

thorough statistical analysis. Indeed, bootstrap has been specifically designed to infer 

the statistical properties of an estimator when only few observations are available. In 

our case of study, the bootstrap technique confirms the results obtained using graphical 

tools and goodness-to-fit tests and thus the adequacy of the underlying statistical 

hypothesis required for model parameter estimation. 
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1. INTRODUCTİON 

Nowadays, an increasing number of applications 

involve electrical systems. In particular, the 

airplane industry moves towards “More Electrical 
Aircrafts” by replacing heavy mechanical and 

pneumatic systems by electrical ones [1]. However, 

this evolution implies an increasing power demand 

and voltage increase and thus, a growing risk of 

partial discharge (PD) in the associated insulation 

systems [2]. Consequently, lifespan of electrical 

insulation materials becomes a key issue for aircraft 

reliability assessment. 

Several empirical and physical models have been 

proposed to relate insulation aging with different 

constraints such as temperature, voltage, or 

frequency supply [3]. Nonetheless, these models 

often failed to take into account these multiple 

constraints simultaneously. Recent works have 

addressed this problem using the Design of 

Experiments (DoE) method to model insulation 

lifespan as a function of voltage, frequency and 

temperature using a minimized number of 

experiments [4, 5, 6]. These models obtain good 

prediction results. They require however to perform 

several measurements, for each experimental 

configuration, in order to estimate significant 

parameters, to infer their statistical distribution and 

thus their performance. However, in practice, the 

experimental cost restricts the number of 

measurement repetitions. The main contribution of 

this paper is to overcome this problem by using the 

bootstrap technique [7, 8]. We show that, under the 

constraint of a reduced number of experiments, the 

bootstrap allows a deeper analysis of the statistical 

properties of the lifespan estimator proposed and 

studied in [4, 5, 6]. Moreover, it allows to validate 

some underlying assumptions on the lifespan 

model. The paper is organized as follows. Section 2 

briefly presents the experimental setup. The 

lifespan model computed with DoE is described in 

section 3. A first data analysis is processed in 

section 4 in order to estimate the different 

distributions. The different assumptions are 

confirmed in section 5 using the bootstrap method. 

2. EXPRİMENTAL SETUP 

The tested samples consist of twisted pairs covered 



 

   
 

with Poly-Amide-Imide (PAI) with a thermal class 

of 200°C (Ederfil C200 with a diameter of 0.5mm). 

These materials are widely used in rotating machine 

wiring insulation for aeronautics applications. 

Three stress factors are considered: voltage 

amplitude (V), frequency (F), and temperature (T). 

As in [5], the insulation lifespan logarithm (Log(L)) 

is supposed to follow an inverse power model 

depending on Log(10V), Log(F) and exp(-bT). 

Materials are tested in a climatic chamber where the 

temperature (T) can be set to a desired value. Power 

electronics generate a periodic square voltage 

controlled in amplitude (V) and frequency (F). In 

order to get affordable lifespan measurements, 

materials are tested under high stress levels, i.e. 

higher than nominal operation conditions. Table I 

describes the voltage amplitude and frequency and 

the temperature ranges.  

Table I. Extreme values of stress factors 

Factors 
Minimum 

Value 

Maximum 

Value 

Voltage (kV) 1 3 

Frequency (kHz) 5 15 

Temperature (°C) -55 180 

Thirty-two experiments were carried out, each one 

defined by a combination of the stress values V, F 

and T. The different configurations are plotted in 

Fig. 1 with normalized stress factors: 18 

experiments were specified according to the DoE 

(blue and red circles), while the other experiments 

were carried out with random values for V, F and T 

(green circles). For each experiment, six samples 

were tested simultaneously and their failure time or 

lifespan was measured. The measured lifespans 

range from 7s to 1h 21mn.  
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Fig. 1. Three dimension representation of 

experimental points with 3 test factors, V, F and T 

3. ACCELERATED FAİLURE TİME MODELS 

Parametric models are commonly used to describe 

the relationship between a response and a set of 

predictor variables. In general, a parametric model 

is defined by two elements: the statistical 

distribution of the response under fixed conditions, 

and an analytical function relating the response to 

the stress factors. Accelerated failure time (AFT) 

models are one of the most widely used parametric 

models in survival data analysis. AFT models 

assume a multi-linear lifespan-stress relationship as 

follows in (1), [10],[11]: 

ebm ++= XLLog )(  (1) 

where L is the n´1 vector of the measured lifespans, 

X is the n´p experimental matrix composed by the 

stress factor levels, eventually transformed, µ is the 

model intercept, b is the p´1 vector of model 

coefficients and e is the n´1 error vector, composed 

of the so-called residuals, having the same 

distribution as Log(L) with the same constant scale 

parameter s. Therefore, according to AFT models, 

stress factors only shift the location parameter of 

Log(L) (µ+Xb) without modifying the scale 

parameter or the type of distribution [10],[11]. 

Weibull and log-normal distributions are two of the 

most commonly used distribution in lifespan data 

analysis [10][11]. After logarithmic transformation, 

Log(L) have extreme value (EV) and normal 

distribution, respectively.  In general, AFT model 

coefficients can be estimated using the Maximum 

Likelihood Estimator (MLE). In the particular case 

of normal distribution, MLE is equivalent to the 

Ordinary Least Square (OLS) estimator [11]. The 

OLS estimated coefficients are computed as in (2) 

where X’ is the transpose of X : 

YXXX ')'(ˆ 1-=b  (2) 

4. PRELİMİNARY DATA ANALYSİS 

4.1. STRESS FACTOR FORMS 

AFT model first assumption is the linear 

relationship between lifespan logarithm and the 

predictor variables, eventually transformed. İt has 
been already shown in [4],[5] with three separate 

tests conducted on the same insulation material that 

Log(L) varies linearily as a funtion of Log(V), 

Log(F) and exp(-bT), with b=4.825´10
-3

. Therefore, 

these preliminary tests validate the general form of 

the AFT lifespan model. On the other hand, an 

accurate parametric lifespan model must take into 

account all relevant stress factors as well as their 

interaction terms. The Design of Experiments 

(DoE) method used to organize the experiments 

allows to evaluating the main factor effects as well 

as their interaction effects from the 8 blue points of 

the 2-level full factorial design of Fig. 1. The 

general form of an AFT lifespan model designed 

with DoE is therefore in (3): 
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where XV, XF and XT are respectively the levels of 

Log(V), Log(F) and exp(-bT). The unknown model 

parameters are the lifespan mean M, the main factor 

effects EV, EF and ET and the interaction effects IVF, 

IVT, IFT and IVFT. 

4.2. LİFESPAN DİSTRİBUTİON 

In a parametric AFT model, the distribution of 

lifespans under fixed conditions must be also 

verified. Fig. 2 shows the logarithms of the 

lifespans measured in minutes in each experiment.  
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Fig. 2. Lifespan data 

Since only six lifespan measurements per 

experiment are available, it is difficult to assess 

wether the underlying distribution of Log(L) is a 

normal or an EV distribution. However, there are 

four central points (N0 = 4), with six lifespan 

measurements for each. Therefore, 24 lifespans are 

measured under the same central conditions and 

compose a larger dataset to test the underlying 

distribution. Central point distribution is thus tested 

with three different methods: graphical tests, 

hypothesis tests, and distribution goodness of fit. 

Graphical tests [12] allow a first comparison 

between the empirical and theoretical normal or EV 

cumulative density function (cdf). Fig. 3 shows that 

the differences between empirical and theoretical 

cdf are higher in the case of EV distribution. 
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Fig. 3. Graphical tests for normal (left) and extreme 

value (right) distributions applied to central points 

These results can be confirmed with well-known 

hypothesis tests based on the difference between 

empirical and theoretical cdf [13],[14]: 

Kolmogorov-Smirnov, Lilliefors and Anderson-

Darling tests. The null hypothesis of these tests is 

that the underlying distribution of the central point 

Log(L) is the normal or the EV distribution. The 

alternative hypothesis is that they are not. Table II 

summarizes the p-values of these tests in both 

cases. This table shows that normal distribution 

hypothesis is accepted with higher p-values, which 

confirms the graphical test results. 

Table III. Results of hypothesis distribution tests 

applied to central points 

Hypothesis test 
Normal 

distribution 

EV 

distribution 

Kolmogorov-

Smirnov 
0.981 0.628 

Lilliefors 0.888 0.167 

Anderson-

Darling 
0.793 0.138 

Finally, using Matlab distribution fitting tool, it is 

possible to compare the goodness of fit of the 

central points measured Log(L) to each of the two 

distributions by evaluating the log-likelihood of the 

normal and EV fitting. Table III summarizes the 

distribution fitting estimated parameters (location 

parameter µ and scale parameter s) and the 

corresponding log-likelihood in both cases.  

Table IV. Results of distribution fitting applied to 

central points 

 Distribution 

parameter 

Normal 

distribution 

EV 

distribution 

µ (std. error) 2.41 (0.018) 2.47 (0,018) 

s (std. error) 0.086 (0.013) 0.081 (0,012) 

Log-likelihood 25.3 23.9 

The log-likelihood of normal fitting is higher than 

that of the EV fitting, which confirms that the 

normal distribution fits better the central point 

lifespans than EV distribution.  

Under AFT model assumptions, stress factors only 

shift the location parameter of Log(L). Therefore, 

the same (normal) distribution can be assumed to 

Log(L) measured under the other stress conditions, 

in particular, those required to construct the lifespan 

model (8 blue points of Fig. 1). This hypothesis will 

be confirmed with different methods in section 5. 



 

   
 

5. MODEL ESTİMATİON AND VALİDATİON 

Equation (3) has the general form of a multi-linear 

regression model between Log(L) and the predictor 

variables (main factors and interaction terms). With 

the normality assumption verified with previous 

tests, model (3) coefficients can be estimated using 

the OLS method. They are shown in Fig. 4. 

Therefore, voltage and temperature have the highest 

main effects (EV and ET) and interaction (IVT).  

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

E V E F E T I VF I VT I FT
I VFT  

Fig. 4. DoE model estimated coefficients 

In general, an AFT model having the general form 

of a multi-linear regression model as (3) must 

verify the following basic hypotheses [15],[16]: 

1. Linearity of (Y,X) relationship 

2. Full rank X 

3. Non-stochastic X 

4. n ³ p+1 

5. Zero-mean residuals 

6. Homoscedasticity (residual constant variance) 

7. Residual normality  

While hypotheses 2, 3 and 4 are naturally satisfied 

by model (3), it is important to perform a residual 

analysis in order to verify hypotheses 1, 5, 6 and 7. 

5.1. RESİDUAL ANALYSİS 

Residual graphical analysis is the most informative 

study that can be performed to check a multi-linear 

regression model assumptions [15],[16]. First, the 

scatterplot of residuals against the predicted values 

of Y allows to check hypotheses 1, 5 and 6. If these 

hypotheses are satisfied, then residuals will be 

randomly distributed around zero with no 

noticeable pattern of residual dependency on the 

predicted Y values. Second, residual normality 

(hypothesis 7) can be checked with QQ-plots 

(quantile-quantile plots). This graphical tool plots 

the observed residual quantiles against the 

corresponding theoretical normal quantiles. If 

residuals are normally distributed, the QQ-plot 

follows a straight line. Fig. 5 shows model (3) 

residual graphics. First, the scatterplot of Fig. 5 

shows that residuals are randomly distributed 

around zero, except for only 4 points (8% of the 

total number of points). These are the same points 

that do not belong to the straight line formed by the 

other points of the QQ-plot. From these two 

graphics, homoscedasticity and residual normality 

can be globally confirmed.  
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Fig. 5. DoE model residual analysis 

Residual properties are directly related to the 

response form Y=Log(L). Therefore, 

homoscedasticity of model (3) can be also 

confirmed by testing other commonly used 

functions of the lifespan as the model response. Fig. 

6 a to d show residual scatterplots of four models 

estimated as in (3) but with responses Y 

respectively equal to 1/L, 1/ÖL, L and ÖL, instead of 

Log(L). 
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Fig. 6.a. DoE model 

residual analysis with 

Y=1/L 
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Fig. 6.b. DoE model 

residual analysis with 

Y=1/ÖL 
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Fig. 6.c. DoE model 

residual analysis with 

Y=ÖL 
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Fig. 6.d. DoE model 

residual analysis with 

Y=L 

These scatterplots show a special pattern of the 

residual variation with respect to predicted Y. In 

particular, residual values and dispersion increase 

as Y increases. Compared to these four functions, 

the logarithmic transformation is the most 

appropriate response form that can satisfy model 

basic hypotheses. Therefore, this result confirms the 

choice of Log(L) as model (3) response.  

5.2. COEFFİCİENT STATİSTİCAL PROPERTİES 

Under the residual normality assumption verified in 

the previous section, a statistical analysis can be 

performed on model (3) coefficients. İn particular, 
coefficient variability can be evaluated by 

computing the standard errors (SE) and their 



 

   

confidence intervals (CI). The CI based on an OLS 

estimated coefficient bj (j = 1 ... p) for a confidence 

level ( a-1 ) can be computed as [15],[16]: 
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and )1(
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-

pnt a is the quantile of order (
2

1
a

- ) 

of the Student distribution having ( 1-- pn ) 

degrees of freedom. Moreover, the statistical 

significance of each coefficient in the model can be 

assessed with the Student test (St. Test). The idea is 

to test whether the normalized value of an estimated 

coefficient )(/ˆ
jj SE bb  is significantly different 

from zero. The rejection zone of this test is 

therefore [15],[16]: 
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Table III shows the statistical properties of model 

(3) coefficients.  

Table IV. DoE model coefficients and their 

statistical properties 

Coef. 
Estimated 

value 
95% CI 

p-value 

(St. test) 

M 0,742 [0,692 ; 0,791] 0,000 

EV -0,522 [-0,571 ; -0,472] 0,000 

EF -0,236 [-0,286 ; -0,187] 0,000 

ET -0,253 [-0,303 ; -0,204] 0,000 

IVF -0,036 [-0,085 ; 0,014] 0,153 

IVT 0,061 [0,012 ; 0,111] 0,016 

IFT -0,010 [-0,059 ; 0,040] 0,697 

IVFT -0,018 [-0,067 ; 0,032] 0,476 

Therefore, we can confirm that the three factors and 

the most important interaction (VT) having the 

highest estimated effects (EV, EF, ET and IVT) are 

statistically significant at 95% significance level. 

5.3. NON-PARAMETRİC BOOTSTRAP METHOD 

In this section, an alternative method to validate 

model (3) statistical properties is presented. With 

small size training sets as those involved in the DoE 

method, it might be difficult to assess some 

hypothesis regarding statistical properties. In the 

previous section, a statistical analysis of the model 

coefficients based on residual normality assumption 

was performed. This hypothesis was verified 

through preliminary tests on central point 

distribution and with residual graphics. In this 

section, coefficient properties will be evaluated 

with the non-parametric bootstrap method. This 

method was introduced by Efron in 1979 [7] in 

order to derive statistical properties of an estimator 

based on a non-parametric resampling of the data. 

In regression problems, the idea is to obtain a high 

number B (50 < B < 200) of replications of model 

coefficients b* and to use these replications to 

compute their statistical properties. Two resampling 

methods exist for regression models [8]: 

1. Bootstrap on xy pairs: B models are estimated 

by making random sorts with retrieval of pairs 

(X*,Y*) in the original (X,Y) sample.  

2. Bootstrap on residuals: B models are estimated 

by creating new response values Y* from 

random sorts with retrieval of residuals in the 

original residual sample. 

Using the obtained bootstrap replications b*, their 

standard errors SE(b), their confidence intervals 

CI(b) and their statistical significance (St. test p-

values) can be computed as shown in  

Fig. 7 a and b [8],[9]. Since no assumption is made 

on the underlying distribution, the bootstrap method 

can be particularly interesting for making statistical 

inference on small size samples as in the case of 

DoE model training sets. The bootstrap method is 

applied on model (3) coefficients with B = 200 and 

using the two resampling methods.  

 

Fig. 7.a. Bootstrap SE and CI 

 

Fig. 7.b. Bootstrap p-values of Student test 



 

   
 

Fig. 8 a and b show respectively the coefficient CI 

and p-values of Student test obtained with the 

bootstrap method, as well as those computed under 

residual normality assumption (see Table IV).  
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Fig. 8.a. Confidence Intervals for DoE model 

coefficients under residual normality assumption 

and with bootstrap 
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Fig. 8.b. P-values of student test applied to DoE 

model coefficients under residual normality 

assumption and with the bootstrap method 

6. CONCLUSİON AND FUTURE WORK 

This paper focussed on the parametric modelling of 

insulation lifespan in the very special case of a 

small number of training samples. Classical 

statistical methods such as graphical tools 

(Quantile-Quantile plots) and goodness-to-fit tests 

were implemented. However, to take into account 

the lack of data, the paper proposed a comparison 

with results obtained from a bootstrap procedure. 

The bootstrap method confirmed the underlying 

hypotheses we made for parameter estimation. The 

paper showed that the bootstrap technique is a 

powerful validation tool when the number of 

training samples is constrained.  
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