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a b s t r a c t

Using power meters and performance counters to get insight on system’s behavior in terms of power

consumption is common nowadays. The values coming from these external or internal meters are usually

used directly by the research community, for instance to derive higherlevel power models with learning

techniques or to use them in decision tools such as schedulers in HPC and Cloud Computing. While it is

reasonable when one wants only to have a broad view on the power consumption, they can not be used

directly in most cases: We prove in this article that the problems of distributed measure and hardware

limits are way more complex and create bias, and we give the keys to understand and chose the proper

methodology to handle these bias to obtain relevant values for enhanced usage. A generic methodology

is analyzed and its main lessons extracted for a direct usage by the research community to master system

and power measures for servers in datacenter.

1. Introduction

While it is well known that measurements setups, jitter in acqui

sition monitoring, lost and repeated observations, inaccuracies of

different meters, system counters availabilities, processor perfor

mance counters monitoring are all bias when dealing with power

and system measures, there does not exist a consolidated analysis

of these problems. The quality of performance and power mea

surements relies not only on the available physical infrastructure’s

accuracy but also on how the experiments are conducted. Inter

estingly, while everyone would agree on the importance of the

process of measurements and the knowledge of the expected accu

racy, many do not discuss enough of its importance. In particular,

depending on the use cases some inaccuracies can be acceptable or

not. For instance, power and performance counters (PMC) mea

surements’ high accuracy is of great importance when used for

regression models for creating power models, since the precision

of the model will depend on the accuracy of the learning data [15].

Alternatively, when the question is only to estimate the maximum

power consumption of an infrastructure of several hundreds of

servers, an accuracy of 100 W or 10 s will not even make a dif

ference. In the same vein, a cloud management system having to

place, consolidate, migrate services among servers will probably

only need accurate enough values every hour and not at high fre

quency.

∗ Corresponding author.

For each of the analyzed bias, we will demonstrate through real

experiments its impact in terms of accuracy of the power estimates,

and the extra power needed when taking it into account. These

results serve the community in order to take wise decisions on

questions like: which biases should I take into account in a par

ticular case? How to improve the behavior of my platform? We

will exhibit lessons learnt for challenges that are commonly faced.

Two aspects will draw particular attention: First, we define a

novel model of Power Supply Unit (PSU) power conversion losses.

Second, we exhibit the overhead of tracking performance coun

ters on Intel i7 processors and the need to limit the number of

concurrent monitoring.

The remainder of this article is organized as follows: Section

2 describes the capabilities of hardware devices used to measure

power consumption. In Section 3, the data acquisition infras

tructure is detailed. It is followed by Section 4 concerning the

power measures bias. Section 5 outlines the problematic of mea

suring system values. Finally we conclude this research work in

Section 6.

2. Power monitoring devices

Hardware power meters are the most accurate source of

system’s power measurements. The granularity of measurement

is crucial for both, power measuring and modeling, and depends

on the type of power meter used: external or internal. External

meters are placed between the electric outlet and system’s power

supply unit, while internal meters are located inside the system

[24]. Several studies rely on the precision of the power and systemEmail address: dacosta@irit.fr (G. Da Costa).
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monitoring infrastructure to correlate both but without details

on the exact methodology. In [33] or in [20] for example, authors

model power consumption of VMs without explaining in details

the bias of the measuring infrastructure and its impact on the

resulting models.

2.1. Intranode devices

Finegrained measurements can be achieved by embedding

power sensors into the system, enabling device specific measure

ments. Such technique monitors device’s direct current (DC) power

rails to decouple its consumption from the system’s power. The

measurements can be done using shunt resistors or clamp meters.

Shunt resistors are placed in line with each power rail to measure

the voltage drop across the resistor, allowing current and power

calculation [25]. The resistors need to be carefully chosen to give

high precision and low power loss; besides, if the voltage provided

by the rail varies, additional components are needed to measure it

as well. Likewise, clamp meters are placed around each power rail

without disconnecting the wire, providing a less intrusive power

measurement [3].

Despite the use of such techniques during product design and

testing phases, manufacturers rarely incorporate internal meters

into commodity products, due to additional costs and increased

board area. PowerMon2 [2] is a standalone monitoring device

placed between system’s PSU and its devices. It fits in a standard

3.5′′ hard drive bay, monitoring voltage and current on DC rails in a

sampling rate of 1 kHz through a USB interface. Similar approaches

can be found in PowerPack [16] and SEFLab [13]. PowerPack is a

framework to isolate the power consumption of devices including

disks, memory, NICs, and processors in a highperformance clus

ter and correlate these measurements to application functions. The

measurements are done through the use of a shunt resistor for each

power rail, detecting the power of each device. The information of

each device’s power consumption is used to evaluate the impact of

DVFS techniques on clusters.

Even though, some vendors provide integrated monitoring solu

tions on their hardware. Intel RAPL (running average power limit)

provides power measurements for recent processors. While the

power was previously modelled in the Intel Sandy Bridge family,

real measurements are now given by RAPL in the Haswell chips,

using this measurements for hard power capping. In [17] Hacken

berg et al. study the energy efficiency features of Haswell chips. One

of the major accelerators used in HPC applications nowadays, GPUs

explore their high performance per watt capability on their mar

keting campaigns. Nvidia’s recent graphic cards contain embedded

power sensors, providing power usage of the entire board (GPU and

memory). The data can be retrieved in milliwatts with a 5% accuracy

through the NVIDIA Management Library [27]. Another common

practice is to include such sensors in blade servers. Dell’s Pow

erEdge M1000e [7] enables realtime reporting for enclosure and

blade power consumption, providing a total chassis power inven

tory including power supplies, iKVM, I/O Modules, fans and server

modules. RECS (Resource Efficience Computer System) compute

box [29] also includes embedded meters for each of its modules

with 1 W accuracy.

2.2. External devices

The most architecture independent and less intrusive method

is to measure alternative current (AC) power at the outlet. External

power meters measure the power consumed by the entire system.

Smallscale environment can be deployed with general purpose

solutions such as Plogg [11], Kill A Watt [28] and watts up? [10].

The data measurements can be retrieved through serial, Ethernet or

even BlueTooth connections depending on the model. In [14], the

authors introduce PowerScope, a methodology to collect detailed

energy use per process using external meter and customized sys

tem calls.

For largescale deployment, such as in data centers, intelligent

PDUs can be installed in rack cabinets [1,8]. These are standard rack

PDUs with embedded power meters for each power socket, which

can be monitored through a serial or an Ethernet port. Although

the requirement of additional investment, intelligent PDUs are easy

to deploy and provide a valuable information regarding AC power

consumption in a data center, which can be used by managers

to improve data center’s energy efficiency. In addition, AC power

is used by energy providers to charge their clients. Therefore, if

the economical aspect of energy efficiency in a data center will

be evaluated, AC power needs to be estimated. Different methods

are available to obtain the measured values depending on the goal.

IPMI (Intelligent Platform Management Interface) as an example is

often used for detecting anomalies and cannot be used for precise

measurement.

However, external power meters measure power in a coarse

grain fashion, i.e. only the system level power is monitored. They

cannot decouple the actual used power from the power wasted due

to inefficiencies of the PSU, i.e. during AC to DC conversion. When

using such meter as target for models’ creation, this lack of informa

tion regarding conversion losses adds noise to the measurements,

impacting the quality of power models.

3. Data acquisition infrastructure

Power and performance monitoring increases system’s process

ing overhead, either to gather target system’s Key Performance

Indicators (KPIs), or to connect to a power meter. To avoid adding

more noise to a complex system during the data gathering, an inde

pendent monitoring node, i.e. a data acquisition server (DAQ server)

is required. This monitoring server is responsible for fetching power

measurements from the remote power meter during the execution

of a given load, and synchronizes it with the performance indicators

collected on the target architecture. Accurate measuring requires

that the internal clock of all servers are synchronized before the

monitoring starts, this is achieved using a Network Time Protocol

server. Moreover, other synchronization issues exist and will be

tackled later in this chapter.

In order to evaluate the measure precision and related impact,

we used as a demonstration testbed a highdensity server with

internal and external power meter at different levels. The avail

able testbed consists of a highdensity server1; a Power Supply

Unity (PSU); an external power meter (Plogg, a bluetooth power

meter); and an independent monitoring node (DAQ server). The

RECS server monitors internally KPIs (performance values such as

processor load, memory or any other relevant value) but also uses

an internal power meter inbetween the PSU and the motherboard.

The RECS server is composed of 18 modules connected through

a backplane controller in a single 1U rack chassis. Each of its mod

ules operates as an independent computing node, connected to a

central backplane through a COM Express based mainboard. This

enhances the server’s reconfiguration capabilities, allowing the use

of any available COM Express mainboard with the basic size, to

be plugged in as a module. Moreover, embedded in each module

there is a thermal and a current sensor to measure its temperature

and power, respectively. The central backplane forwards the net

work’s traffic of each module to the front panel of the server though

a Gigabit Ethernet Network. In addition, it also connects the mod

ules’ microcontrollers with the central master microcontroller.

1 RECS from Christmann www.christmann.info.



Fig. 1. Geometry of the RECS high density computing system [30]. The RECS server

(a) is composed of 18 independent modules (b) arranged in two rows.

Fig. 2. Comparison between power measured using IPMI and a precise wattmeter

for a changing workload.

Fig. 3. Data acquisition’s infrastructure. The monitoring server (DAQ server) uses

different communication techniques to gather data from the remote power meter

and the server, generating disparate response times.

Module’s microcontroller switches the node on/off and reads its

power and temperature measurements through dedicated sensors.

The geometry of a RECS module and a RECS server is shown in Fig. 1.

A schematic view of the data acquisition infrastructure is pre

sented in Fig. 3. The DAQ server communicates with the Plogg

and the server through Bluetooth and Ethernet connection, respec

tively; while the KPIs are logged locally in the modules. All file logs

are synchronized after the benchmark execution, to not interfere

neither on its network, nor its CPU overhead. This method ensures

a low memory impact in order to have a negligible impact on the

running applications.

Even if the rack in which the highdensity server was equipped

with an IPMI monitoring tool, it has to be noted that such values

cannot be considered as precise measurement of the power con

sumption. As shown in Fig. 2, IPMI usually returns a higher value

with some latency. Indeed, IPMI has been designed in order to

Table 1

Performance indicators (KPI) and External Power measurements’ response times.

Min. Mean � Max. Samples

External power 0.3189 0.6162 0.1894 1.646 3810

KPI 0.0021 0.0060 0.0047 0.052 2537

detect problems and to raise alarms. IPMI usually provides over

estimated values changing infrequently.

In our site, we have a hybrid server with six i7 and twelve Atom

modules. Each i7 module contains an Intel Core i73615QE pro

cessor with 16 GB of RAM and an Intel 82579LM Gigabit Ethernet,

while each Atom module has an Intel Atom N2600 processor with

2 GB of RAM and a Realtek RTL8111 / 8168B PCI Express Gigabit

Ethernet controller. All nodes are diskless and boot the same OS

image – Scientific Linux release 6.4 with kernel v2.6.32. Scientific

Linux is a Red Hat Enterprise Linux rebuild sponsored by Fermi

National Accelerator Laboratory [12]. Each RECS module contains

an integrated fan with only two operational modes: on and off, i.e.

it does not feature adaptive cooling using fan speed control. The fan

is switched on/off by the node’s microcontroller at the same time

as its motherboard; when turned on, it consumes approximately

6 W of DC power.

Challenge I: How to synchronize different timeseries?

The data acquisition process is creating three log files: Internal

Power, External Power and KPI. The Internal and External Power

logs are built in the DAQ server, while the KPI is created in the tar

get platform. Each log file contains its measurements, along with

request and response timestamps. The data acquisition method

includes some postprocessing procedures to enhance the accuracy

of the measurements (detailed in Section 4).

The synchronization between power and KPIs measurements

needs to consider the external meter’s limitations, i.e. commu

nication latency, time delay and sampling rate. In the case of

our infrastructure (the Plogg), the communication latency varies

accordingly to Table 1. This experiment (a set of microbenchmarks

stressing more and more the CPU, memory, network, used to

challenge the platform) lasts 2537 s, the KPI are collected at 1 Hz

frequency. One can see that the time required to fetch KPI’s

measurements are almost 100 times faster than the External Pow

ermeter’s data, i.e. 6 against 616 ms, and with a higher variance.

Internal power measurements are not shown in the table as usually

it is not possible to have access to the internal code of the internal

wattmeter and thus, there is no way to measure its latency.

To provide accurate values for the high latency of the Plogg

meter, the power measurements are done at its higher frequency,

creating a log file with timestamps of the requested (treq) and

retrieved (tret) times for each measurement. However, KPIs’ mea

surements are quite fast to be fetched and can be considered

instantaneous. Thus, they were gathered at the lowest rate possible

(1 Hz) to avoid system’s overhead. Therefore, during any experi

ment, one can also note from Table 1 that the number of samples for

both are different: Indeed the Plogg is not providing data at 1 Hz. If

one wants to get a correct snapchat of the running platform, so that

to identify the relationships and correlations between power and

PKIs data, it is mandatory to synchronize them. Due to the Plogg’s

low latency, the measurements for KPIs and power are only syn

chronized once per second. After the workload execution, all logged

data files are synchronized based on their closest timestamps, as

follows:

∀i, j ∈ [0, td]

argminKPIi,Ploggj

(t
KPIi
req + t

KPIi
ret )

2
−

(t
Ploggj
req + t

Ploggj

ret )

2

(1)



Fig. 4. Power (from Plogg) and performance (KPI) data synchronization. Circles having the same color and pattern represent the synchronized data.

Fig. 5. Power metering infrastructure using a Plogg and 18 RECS embedded meters.

where td is the time duration and KPIi and Ploggj are the KPIs and

power measurement.

Fig. 4 represents a real synchronization case, where lines repre

sent averaged response times and the circles having the same color

are synchronized together. One can see that some of the Plogg’s

measurements will be dismissed.

Lesson I: Synchronisation by closest timestamps using Eq. (1)

4. Power measuring

Power measurements’ accuracy is of great importance when

using the power as explanatory variable of regression models, since

the accuracy of the model will depend on the quality of the learn

ing data. To provide precise measurements, we implemented a

power measuring infrastructure that extends the capabilities of the

RECS server by adding an external power meter to measure the

power drained at the outlet level. The power metering infrastruc

ture schema is presented in Fig. 5, which depicts where the Plogg

and RECS embedded power meters are placed to acquire outlet

and modulelevel measurements, respectively.

Our server comes with one power sensor per module, summing

up 18 sensors. Each sensor can measure the power dissipated by a

module with a 1 W precision. RECS server’s microcontrollerbased

monitoring architecture is accessible to the user through Ether

net connection by a dedicated network port. The data acquisition

requires a single request to gather information about all installed

modules. Although efficient to provide high throughput, the mon

itored values are updated once per second.

Plogg is a low cost power meter with a power outlet which

makes it easy to deploy any device fed through a power plug. Its

small size and deployment simplicity makes it a device that can be

used to measure different computer system’s power in a hetero

geneous data center. In [22], the authors compare several low cost

power meters, reporting that Plogg was the most accurate device

with 1.5% average error. In fact, later experiments shows that the

Plogg power meter provides more accurate measurements than

the RECS embedded meters. Plogg uses Bluetooth communication

to transmit consumption information, but the time monitoring

Table 2

Power meters’ communication latencies.

Power meter Min. Mean � Max. Samples

Plogg 0.3199 0.6164 0.1844 1.637 1513

RECS 0.0529 0.0550 0.0055 0.074 1009

frequency is kept the same, providing the same average value per

second.

Due to the different communication protocols, the time to

fetch data from the Plogg and RECS meters varies significantly. An

experiment profiling their response times was done measuring the

elapsed time between each meter’s request and response. Table 2

shows the latency for accessing each power meters’ measurements.

Due to the Bluetooth connection, Plogg presents an average latency

of 0.6 and can reach up to 1.6 s to fetch a single value. The RECS

embedded meter provides an Ethernet connection which provides

stable response time of 0.05 s.

Challenge II: How to choose between internal and external powermeter

RECS embedded power meter is noisy, presenting some mea

surement errors. Fig. 6 shows the boxplot of 1000 power

measurements using the RECS meter, when idle and during the

execution of Linux’s stress command in all cores of all nodes.

As all nodes run the same load, the power dissipation per module

type is expected to be the same. However, the results show a high

variation of the values for both Atom (IDs 1–6 and 10–15) and i7

(IDs 7–9 and 16–18) modules. When the systems are idle, Fig. 6(a),

the measurements are quite noisy, presenting several outliers in

the boxplot, up to 11 W. With the system under stress, Fig. 6(b),

the variance of the measurements for each module is more visible

(with almost no outliers), reaching almost 10 W difference between

the two boxplots of two similar modules (see nodes 8 and 17 for

instance).

Although acceptable for data center level measurements, the

low precision of the RECS embedded meter would have a huge

impact on a power model creation. The vendor claims that the

embedded watt meters have a 1 W precision per module, but our

experiments show that this error can be much higher. To com

pare the accuracy of both meters (RECS and Plogg), a CPU intensive

experiment was conducted. Only one i7 node of the RECS server

was turned on. All cores were set to operate at their maximal avail

able frequency, while the processor load was increased in 2.5% (10%

per core) step using Linux stress command. The values reported

from each RECS module were aggregated and plotted against the

values from the outlet. The results in Fig. 7 points out the impact of

meters’ accuracy on the measurements. The solid lines represent

the measured data. The big gap between RECS and Plogg measure

ment lines comes from power conversion losses and the backplane

power consumption, which are not taken into account when using



Fig. 6. RECS embedded power meter line issues. IDs 1–6 and 10–15 are Atom modules, IDs 7–9 and 16–18 are I7 modules.

Fig. 7. Comparison of embedded (RECS DC power) and external (Plogg AC power)

watt meters for a workload which sequentially increases the processor’s load.

the embedded RECS meters. One can see that while the Plogg mea

surements increases in a step forward manner while the embedded

meter presents a lot of oscillation, creating a lot of noise to be used

as a target for a model creation. The noisy data from RECS meters

incurs in discontinuities, making it difficult to extract knowledge

from data. RECS measurements were then filtered using a moving

average (dashed line). The moving average avoids sharp variations

on the measurements depending on the sliding window. The value

of the sliding window (15) was carefully chosen by measuring the

distance between peaks. The results of the moving average show

a high correlation with the measurements from the Plogg meter.

However, moving average cannot be used during model creation

since it avoids sharp variations that may actually exist when mea

suring the power consumed by hardware.

Lesson II: Internal powermeters are limited to coarse grained measures

4.1. PSU’s power conversion losses

Challenge III: How to take into account PSU efficiently?

Power supply units (PSU) always waste power during current

and voltage transformations. As far as we know, PSU’s conversion

losses have never been considered while proposing new power

models. In the literature, authors usually choose between internal

or external meters, without handling AC to DC conversion losses

when exploiting external powermeter measurements. Even though

the reported errors of fitted model are small, there is no indepth

knowledge of where does this error comes from.

A simple way to model power losses is to use the average effi

ciency rate, like those proposed by the 80 Plus label, and to create a

simple linear model. However, PSU’s efficiency is not constant over

its entire input range, which implies that its AC to DC conversion

losses need to be more deeply modeled. In this section we propose

an univariate polynomial modeling of PSUs to eliminate the

conversion losses from the power estimation errors when dealing

with external power meters. The order of the polynomial is defined

based on experimental data as will be detailed later in this section.

The PSU used to supply the needed 12 V DC for the RECS server is

based on six single Power Units. To model the electrical characteris

tics, a set of measurements has been done by the manufacturer [30].

These measurements compare the PSU’s input (PAC) and output

power (PDC), determining the load dependent efficiency as the ratio

PDC/PAC. Although, in this case, the data used to model the PSU losses

was provided from its vendor, the use of a clamp meter will pro

vide a nonintrusive solution to measure AC/DC conversion losses

when the data is not available. The difference between the input

and output power is due to the power dissipation which is con

verted to heat emitted to the air. The results in Fig. 8 present PSU’s

efficiency and power losses based on server’s DC power request.

One can see in Fig. 8(a) that the efficiency is nonlinear, presenting

low efficiency for small power loads, a barely constant efficiency

for a large range of load and a decrease in the upper range. The

low efficiency of the lower load may be explained by the current

leaked in the electronic circuitry, which is the same for any range,

but has a bigger impact for small loads. At the other edge, high loads

will overheat the PSU due to a limit of the fans speed, increasing the

leakage power, once again. The most efficient operating range of the

PSU is between 200 and 800 W DC, achieving around 80% of effi

ciency. As the RECS server used in our experiments operates from

60 W AC (20 W DC) (all modules turned off) to 600 W AC (450 W

DC) (all nodes fully stressed using a CPU intensive workload), the

measurements when using a single node will be in the transient

phase (below 200 W DC). Fig. 8(b) presents the amount of power

lost during the current conversion. The power losses can vary from

26 to 380 W per server, which will have a significant impact when

using AC power data to generate power models.

We propose a solution where the actual power usage of the

RECS server can be estimated using AC power measurements by

modeling the PSU’s power losses. To handle such losses, we use

a univariate polynomial model. The order of the polynomial was

defined by creating a linear regression of the power at the input

and output of the PSU while sequentially incrementing its order

until the regression’s residuals start to increase (following method

described in [6]). Once the degree of the polynomial is defined,

variables having the highest pvalues were sequentially excluded

from it until the residuals start to increase once again. The achieved

polynomial is given as follows:

PDC = w0 ∗ PAC + w1 ∗ P2
AC + w2 ∗ P3

AC + . . . + w7 ∗ P8
AC (2)

where w is the vector of weights computed by the linear regression,

PAC and PDC represents the AC and DC power, respectively.



Fig. 8. RECS 2.0 PSU’s power conversion profile.

Fig. 9. PSU model’s data fit and residuals. The reference line (DC = AC) corresponds

to the estimations when no modeling is done.

Fig. 9 shows the PSU estimated and measured power along

with their residuals for the proposed polynomial model, a simple

80% efficiency based model (PDC = 0.8PAC) and a reference model

(PDC = PAC). One can notice that the residuals for the reference model

does not even appear in the residual graph since it varies from −26.4

to −379.7 W, evidencing one more time the need to model PSU’s

losses. The 80% efficiency model provides more realistic approx

imation providing errors smaller than 15 W in the (187, 670) DC

range, but achieve errors up to 107.6 W. The polynomial model

presents a correlation of 1, i.e. an almost perfect fit. Its residuals

vary from 5.3 to 6.6 W with a standard error of 2.46, these resid

uals can be neglected if compared to the other model’s residuals.

The residuals of the polynomial model reach at most 2.88 % of error.

Thus, the polynomial model is considered to have good predictive

ability.

The evaluation of the impart of modeling PSU’s losses for a single

node is shown in Fig. 10 where the presented model is the DC power

(estimated) blue line. The lines on the graph represent the dynamic

power, while running the workload, i.e. the actual power minus the

idle one. One can see that, removing the power losses from Plogg’s

DC Power, the measurements get closer to the embedded meter

measurements from RECS’s DC Power. This enhances the impor

tance of decoupling the power losses from the data used to create

power models.

Fig. 10. Comparison between measured and estimated powers. The plotted val

ues correspond to the dynamic power, i.e. actual minus idle power, for the same

workload as Fig. 7.

Lesson III: Polynomial model (Eq. (2)) is efficient for PSU modeling

This methodology can be used to model any PSU conversion

losses, enhancing the accuracy of power models independently of

the chosen power modeling method. The PSU modeling can be done

either based on the vendor information, or using an external meter

to measure the input power and a clamp meter to measure its out

put power under different power loads, providing the input data to

create the PSU’s losses model.

Interestingly, some home appliances already come with mul

tiple circuits in PSU which are switched on and off according to

its usage, e.g. idle and active power of televisions, decreasing the

impact of leakage power for small loads. Similar approaches may

be implemented for computing systems, requiring the composition

of several formulas to proper model the switch.

Alternatively, besides following the proposed method, RAILS

(Redundant Array for Inexpensive Load Sharing) from PowerNap’s

authors [26] proposed to use several smaller PSU instead of one

big, where each smaller one is efficient in a smaller zone, but their

assembly allows for larget power distribution. In this way, losses

are decreased at the cost of using more PSU.

4.2. Timing jitter

Challenge IV: Keeping synchronicity of hardware with independent clocks on

largescale experiments

When monitoring the power, its measurements may be delayed

in time due to the meter’s limitation. In electronics and telecom

munication, this deviation from the true periodicity of a expected

periodic signal is called jitter. The jitter can be random or deter

ministic. The Plogg device presents a deterministic jitter, i.e. the

time latency is kept the same for an entire experiment. To deter

mine whether the power measurements are delayed on time, a load

pattern is included at the beginning of each workload monitor

ing. This pattern stresses the processor in a constant time interval



Fig. 11. The impact of time latency on the data. Time jitter can be removed using a

synchronization pattern before the execution of each workload.

Fig. 12. The Plogg’s power meter provides some repeated values.

and the data gathered during its execution is used to determine

the time latency of the power measurements and to synchronize

them with the KPIs. The importance of time synchronization is pre

sented in Fig. 11 by plotting the processor usage along with the

power consumption shifted in time. The first 40 s are due to the

synchronization pattern that is added in all workload and allows

us to determine the time latency between KPIs and power. Sim

ilarly, a pattern is added at the end of the execution (not shown

on the figure). The synchronization pattern’s Mean Average Error

(MAE) is 0.16, 0.05 and 0.15, when considering 0, 1 and 2 s latency

for the power measurement, respectively. The results show that

data is actually delayed and provide a better fitting when consid

ering 1 s latency. After synchronizing, the synchronization pattern

data is removed from the workload data.

Lesson IV: Using starting and ending patterns makes readjustment simple

4.3. Repeated values

Challenge V: Finding artifacts

Another issue when dealing with the Plogg meter is that when a

request arrives and for some unknown reason the device is not able

to measure the power, it provides the last measured value. As the

Plogg watt meter have a milliwatt precision, it is easy to identify

when this problem happens because even for two similar consec

utive measurements, their values are not likely to be identical. The

repetition of the data adds noise to the data and may cause some

false validations. Thus, all data entry which are repeated power

measurements must be removed from the acquired dataset. Fig. 12

shows the repeated values during the initial execution of a work

load. One can see that the number of invalid repeated values is quite

significant, representing 32% of the total power measurements for

this case. It also important to notice that the repeated values do not

follow a pattern; thus, they cannot be avoided by simply changing

the sampling rate.

Lesson V: Harness the inherent hardware characteristics such as lack of

stability

5. Performance measuring

The modules are the main actors of the RECS server, execut

ing the workload and monitoring performance indicators either to

create a model or to estimate applications’ power consumption.

A modular library of sensors and power estimators, called Energy

Consumption Library (libec) [5,4], was developed to accurately

measure KPIs with low overhead.2 The main goal of libec is to

aid the development of new power estimators. To make it easy to

extend and maintain, it was implemented in C++ and distributed

under the GNU General Public License (GPL) version 3.0 or later.

This library contains a set of performance indicators, or sensors,

which can be used as input variables for several power models. The

information provided from the sensors comes mainly from Linux

kernel’s API and the /sys and /proc file systems. Nevertheless,

these sensors can be extended in order to collect different data

coming from any source specific sensors.

Sensors in libec can be implemented at two levels: system

and/or process. Processlevel sensors can be directly associated

with a process identifier (PID), having a straight relationship with

software usage. Usually, every processlevel sensors may be ported

to systemlevel by aggregating all running processes’ measure

ments, the reciprocal is not true. Systemlevel sensors measures

not only the aggregated value for all the processes, but also some

physical properties that cannot be decoupled and associated to

a PID, such as CPU thermal dissipation. In addition, the library

provides applicationlevel sensors to estimate application’s power

consumption, which will be later extended to include the results

presented on this research. A complete list of explored performance

indicators can be found in Table 3. In this table the KPIs are cate

gorized into OS information (SYS), hardware (HW), software (SW)

and cache memory (CM) performance monitoring counters (PMC)

and modelspecific registers (MSR). The concept and implementa

tion of each available sensor will be further described based on its

category.

5.1. Operating system information

The operating system has a strategic position to profile every

device performance. Since OS kernel operates devices’ drivers, it

can accurately monitor their interaction with the system. Different

from other performance indicators that provide mainly processor

related information, such as PMC and MSR, OS can provide fine

grained events of several components, such as memory, disk and

network card. Monitored events are made available in userspace

through the /sys and /proc file systems, some of them may require

specific kernel modules or patches. The OS events used during the

data acquisition are described as follows:

• The amount of time a system or a process spends inside a

processor can be measured as the time it has been scheduled

in kernel and user mode times. Time spent in different pro

cessor mode can be fetched, in jiffies, from /proc/stat and

/proc/[pid]/stat for system and processlevel, respectively.

The size of a jiffy is determined by the value of the kernel constant

HZ, which can be retrieved in userspace using the command

sysconf( SC CLK TCK). The kernel version used on the exper

iments presents a constant of 100 Hz, meaning that the time is

reported in a granularity of 1 sample per 10 ms. Time is not con

verted from jiffies to seconds to not lose precision. CPU elapsed

time is measured by subtracting the previous from the current

2 Available for download in http://github.com/cupertino/ectools.



Table 3

Performance indicators divided into several categories: hardware (HW), software

(SW) and cache memory (CM) performance monitoring counters (PMC), OS infor

mation (SYS) and modelspecific registers (MSR).

Type Name Name

SYS cputime cpupstate

ramusage cpuusage

netsndbytes cpucstate

netrcvbytes

MSR cpupstatemsr cpucstatemsr

cputemp

PMCSW cpuclock contextswitches

majorfaults taskclock

cpumigrations alignmentfaults

pagefaults minorfaults

emulationfaults

PMCHW instructions cachemisses

idlecyclesfrontend branchinstructions

cpucycles idlecyclesbackend

branchmisses buscycles

cachereferences refcycles

PMCCM L1dcacheloads L1dcacheloadmisses

iTLBloads L1dcachestores

L1dcachestoremisses iTLBloadmisses

L1dcacheprefetches L1dcacheprefetchmisses

branchloads L1icacheloads

L1icacheloadmisses branchloadmisses

L1icacheprefetches L1icacheprefetchmisses

nodeloads LLCloads

LLCloadmisses nodeloadmisses

LLCstores LLCstoremisses

nodestores LLCprefetches

LLCprefetchmisses nodestoremisses

dTLBloads dTLBloadmisses

nodeprefetches dTLBstores

dTLBstoremisses nodeprefetchmisses

dTLBprefetches dTLBprefetchmisses

time. This indicator is used to filter the active processes as it will

be seen later.
• Processor’ usage can be estimated, in terms of load percentage,

by the ratio between CPU and total elapsed time. A formal def

inition is provided in Eq. (3), where tsys, tusr and tidl are the

system, user and idle time, respectively. Although cputime infor

mation regarding each core activity at systemlevel is available,

processlevel times available in the /proc/[pid]/stat file do

not distinguish between cores, i.e. one cannot precisely deter

mine the processor’s core usage of a process. Estimations may be

done using the last core on which the process ran, but this will

not take in account possible context switches that may happen

during a time period.

CPUuse =
tsys + tusr

tsys + tusr + tidl
(3)

• Processor’s performance states (PStates) defines its operating

frequency through the DVFS (Dynamic Voltage Frequency Scal

ing) technique. Operating system’s requested frequency can be

retrieved in KHz from the virtual /sys/ filesystem.3 One should

notice that this file only provides the requested frequency, not

the actual frequency itself. Information regarding Intel’s Boost

Technology frequencies, for instance, cannot be fetched this way.

Besides, although recent operating systems allow different fre

quencies requests for each processor’s cores, many architectures

do not feature independent core frequencies, feeding all cores at

the same frequency when in active state, in this case, the infor

mation from scaling cur freq will be far from reality. Some

hardware allows the kernel to fetch the actual processor’s core

3 /sys/devices/system/cpu/cpu[coreID]/cpufreq/scaling cur freq.

operating frequency using the cpuinfo cur freq file, this is not

the case in our environment.
• Processors have different idle powersaving states (CStates)

which defines the processor’s idle units to be shut down. The

number of power states may vary according to the target hard

ware, the consensus is that in all hardware C0 is the active state,

i.e. when the processor is fully turned on. Time spent on each CPU

power state can be fetched from the virtual /sys/ filesystem.4

This file does not have a good precision for C0 when the system

is highly loaded.
• Memory usage can be measured in system and userlevel.

Systemlevel usage is measured by extracting the free from the

total memory provided by the /proc/meminfo file, the available

field present in this file is not used because it only provides the

amount of memory available for userspace allocation without

causing swapping. At the processlevel, the portion of its memory

that is held in RAM is provided by the resident set size variable

in the /proc/[PID]/stat file.
• Networking received/transmitted packets/bytes flow can be

retrieved in systemlevel from the /proc/net/dev file. The user

must define if the retrieved data will come from the sum of the

networking interfaces or from just one of them. Processlevel

information require kernel patches or modules such as netatop

[21].

5.2. Modelspecific registers

Intel introduced modelspecific registers (MSRs) in Pentium

processors as experimental test registers. Nowadays, most proces

sors from all vendors contain MSRs that overcome the experimental

behavior, storing data and setting information for the CPU. MSRs

provide control for a number of hardware and softwarerelated fea

tures, such as performance monitoring counters, debug extensions,

memory type range registers, thermal and power management,

instructionspecific support, processor feature/mode support [19].

The MSRs can be read and written in Linux platforms through the

/dev/cpu/[cpuID]/msr file interface. A given MSR may not be

supported across all families and models of processors.

• Processors contain embedded digital temperature sensors which

can be read through MSRs. A kernel driver, namely coretemp,

works on Intel processors by reading the IA32 THERM STATUS

MSR [19]. This component dynamically creates a native events

table for all the sensors, providing per core input temper

ature at /sys/bus/platform/drivers/coretemp/coretemp.

[coreID]/temp1 input.
• Processor’s cores’ frequencies can also be retrieved by MSRs. The

average frequency over a period of time can be precisely cal

culated, including Boost frequencies, observing a pair of MSRs

available in recent X86 processors [19]. MPERF and APERF

increase with the maximum and actual frequency in C0, respec

tively. Each core’s operating frequency can be estimated using

MPERF and APERF MSRs as follows:

fcoreID = fmax ×
APERF

MPERF
. (4)

• Time spent in active state (C0) is another variable that can be

more accurately measured using MSR. It can be estimated using

the same MPERF MSR as the cpupstatemsr, as follows:

tcoreID,C0 =
MPERF

ttotal
(5)

4 /sys/devices/system/cpu/cpu[coreID]/cpuidle/state[stateID]/time.



Fig. 13. Frequency measurements using operating system (syspstate) and MSR

(msrpstate) information.

Challenge VI: When different sources are available for a sensor, which one to

choose?

The accuracy of cpupstatemsr performance indicator was

analyzed while comparing it to the operating system’s frequency.

An experiment run in an i7 module stressed the system differently

in 30 s time steps. Each processor’s core was set to operate in a

different frequency; more precisely core 0, 1, 2 and 3 were set to

Boost, 2.0, 1.6 and 1.2 GHz, respectively. At first the system was

kept idle, and then one core was fully loaded using Linux’s stress

benchmark for 30 s each (e.g. for 30 s core 0 was stressed, then core

1 was stressed for 30 s, etc). As the execution of a process can be

switched between cores, processor’s core affinity of the stress

process was changed sequentially from core 0 to 3 through the

taskset command. Processor’s core affinity is a scheduler property

that associates a process to a given set of cores on the system. The

results of the experiment are sumarized in Fig. 13.

During the first 30 s, all cores operate near to the specified fre

quency when the system is idle, except for Boost mode. Once a

core is under stress the processor sets cores’ frequency depending

on the overloaded core’s setup. When the stressed core is in Boost

mode, its frequency raises to 3.3 GHz, which is coherent with Intel’s

datasheet [19]. When stressing all subsequent cores, the stressed

core has its frequency set precisely to the requested frequency (sys

pstate).

Interestingly, it is important to notice that other cores may

also change their frequencies, even when not stressed and not

asked for: When a core is overloaded, all cores that should oper

ate in higher frequencies do not change their frequencies (normal

behaviour), although those that should operate in lower frequen

cies gets the same frequency as the stressed core (and then gets

higher frequencies than expected, leading finally to additionnal

power dissipation).

Even if MSR’s values present a significant noise when the core

is idle, operating system ones do not properly measures core’s fre

quency when in Boost mode and consider that the cores operates

independently, which depends on the number of core’s voltage reg

ulators available [18], which is not always true. It is important to

carefully understand the behaviour of the sockets and cores at hand

when conducting experiments.

Lesson VI: Hardware level sensors (e.g. MSR) are usually more precise than

system level ones

5.3. Performance monitoring counters

Low level event counters are often used to detect software bot

tlenecks and improve their performance. As stated in Section 5.2,

performance monitoring counters are a special kind of MSRs. These

counters have no immediate relation to energy consumption, being

a good metric to be used as power model’s input. As some MSRs

may not be present or do not have the same address for different

processors’ architecture, the Linux kernel includes some standard

counters presented in several architectures. The perf events ker

nel API provides a simple interface to access such counters and has

been part of the kernel since version 2.6.31 [9]. It classifies events

into software or hardware counters. A detailed description of each

PMC can be found in the Linux man pages [23]. Table 3 list the PMCs

used during this research. Moreover, recent Linux kernel versions,

such as 3.15.6, provide tracepoint event counters for KVM and Xen

virtualization engines, enabling the use of our methodology within

Cloud infrastructures as well.

Software event counters, listed as PMCSW in Table 3, are OS

level counters and only require kernel implementation of such

counters. There is no restriction on the number of concurrently

observed software events; the same does not apply to hardware

events.

Processors have embedded performance monitoring units

(PMU) to provide hardware event counters, see PMCHW and PMC

CM in Table 3. Some PMUs are generic and available in most

architecture, although some of them can be nondeterministic,

most of the measurements present a small standard deviation [32].

The quantity of PMUs present in hardware will impact its size,

cost and power consumption; thus, depending on the target audi

ence, the processors’ manufacturer decides whether to include such

PMUs or not.

The number of hardware counters present in the processor is

limited. Hence, to allow a larger number of monitored counters,

the kernel will automatically multiplex them over time whenever

the number of concurrently monitoring events surpass the actual

number of counters [31]. Timedivision multiplexing only applies

to PMU events, providing for each event a chance to access the mon

itoring hardware. With multiplexing, an event is not measured all

the time, underestimating its values. Generic PMUs may be fixed,

programmable or not available depending on the processor. Table 4

lists hardware performance events available in the target machine

nodes. Accordingly to the perf application, the Atom and i7 pro

cessors used in our testbed support a maximal number of 1 fixed

and 2 and 8 programmable concurrent PMU events without multi

plexing, respectively. This means that, when measuring more than

the maximal concurrent events in a node, one need to be aware

that the measurements will lack precision and may vary from one

execution to another, even when running the same workload.

Challenge VII: Drawbacks of using multiple hardware counters

An experiment to evaluate the impact of concurrent measure

ments was executed in an i7 module. This experiment consists in

running a deterministic algorithm several times while changing

the number of monitored PMCs. The CPU cycles counter was chosen

as a reference counter and the number of monitored counters was

increased from 1 to 18. Each counter monitor is configured to col

lect data from all cores. For each run, the accumulated performance

counter is computed and a boxplot of 25 samples of each configu

ration is plotted. Fig. 14 shows the results of this experiment. Since

the workload is deterministic, the number of CPU cycles is expected

to be the same for all runs. However, the results show that, as the

number of monitored counters increases, the precision decreases.

A similar behavior can be noticed with the second monitored vari

able (branch misses), showing a general behavior in all monitored

programmable counters. It must be noticed that all the works in the

literature modeling the performance (or the power consumption)

do not take this aspect in consideration. Moreover, this is a crucial

aspect to deal when using machine learning techniques to approx

imate functions, since they are deeply dependent on the data and

can only make proper estimations when the range of the inputs are

kept the same. ML needs to explore the search space, so it needs

the maximal number of variables in order to select the most impor

tant ones, but as the number of monitored PMCs impacts their



Table 4

Hardware performance events available in RECS i7 and Atom modules.

Processor Processor

Hardware event counter Atom i7 Hardware event counter Atom i7

instructions Fixed Fixed L1icacheprefetches N/A N/A

cycles Prog. Prog. L1icacheprefetchmisses N/A N/A

cachereferences Prog. Prog. LLCloads N/A Prog.

cachemisses Prog. Prog. LLCloadmisses N/A Prog.

branchinstructions Prog. Prog. LLCstores N/A Prog.

branchmisses Prog. Prog. LLCstoremisses N/A Prog.

buscycles Prog. Prog. LLCprefetches N/A Prog.

idlecyclesfrontend N/A Prog. LLCprefetchmisses N/A Prog.

idlecyclesbackend N/A Prog. dTLBloads N/A Prog.

L1dcacheloads N/A Prog. dTLBloadmisses N/A Prog.

L1dcacheloadmisses N/A Prog. dTLBstores N/A Prog.

L1dcachestores N/A Prog. dTLBstoremisses N/A Prog.

L1dcachestoremisses N/A Prog. dTLBprefetches N/A N/A

L1dcacheprefetches N/A N/A dTLBprefetchmisses N/A N/A

L1dcacheprefetchmisses N/A Prog. iTLBloads N/A Prog.

L1icacheloads N/A N/A iTLBloadmisses N/A Prog.

L1icacheloadmisses N/A Prog.

Fig. 14. Impact of the number of concurrent monitoring on the precision of the CPU

cycles and Branch misses counters.

accuracy, once the variables are selected, a second execution of the

data acquisition must be done to reduce the issue of concurrent

monitoring of PMCs. This aspect needs to be taken into account

when implementing any model construction methodology.

Lesson VII: Reduce the number of monitored hardware counters to the

minimum

5.4. Power consumption overhead

Challenge VIII: What is the power impact of the measure itself?

The monitoring of performance counters increases the power

consumption of the system, since it increases system’s overhead.

This overhead is related to the quantity of monitored KPIs and their

frequency of updates. An experiment was conducted to analyze

the power impact of monitoring variables in an i7 module. Four

scenarios were monitored during 1000 s with a sampling rate of

1 Hz, while using Linux ondemand governor. The idle scenario

collected only machine’s idle power with no KPI monitoring on the

node; sys collected only KPIs at systemlevel; and pid f and pid a

collected KPIs for system and processlevel with and without fil

tering. The filter works by only measuring KPIs of the processes

which executed at least one CPU cycle during the last 5 time steps,

decreasing the total number of monitored processes from 157 to

70 processes while monitoring approximately 20 concurrent pro

cesses.

Fig. 15 shows that, when logging all implemented KPIs (around

240 monitored variables), the power consumption of the system

increases according to the type of measurement done. System level

measurements can increase up to 0.87 W (from 32.6 W on Idle to

33.5 W), while process level may make it larger going up to 0.95 W

Fig. 15. Power impact of logging KPI at systemlevel only (sys), system and process

level with and without filtering (pid f, pid a).

when filtered and even 1.31 W logging all process running in the

operating system. As one can see the increase in power consump

tion is quite small when compared to the idle power, i.e. less than

4% in the worst case. It is important to notice that these power

measurements consider the worst case scenario because they are

done comparing to an idle system, which usually is not intended to

be monitored. Power consumption of processors are not linear and

present a significant jump from idle to active mode, mainly when

using the ondemand governor.

Lesson VIII: The impact of measurements is not only higher power

consumption but also reduced accuracy

6. Summary and conclusion

This article described issues of power and performance measur

ing. When using external power meters, the contributions on the

total power of a PSU can be at the same order of magnitude or even

higher than the reported accuracy of the state of the art models

of power consumption in function of system values. This enhances

the need of modeling its power losses in order to reach more accu

rate models and can be done using a linear regression model. Other

power metering issues such as timing jitter and repeated values

were identified and methodology of detection were discussed. On

the performance measuring, several details need to be taken into

account. The same property, such as processor’s core frequency,

can be measured in different ways, providing different accuracies.

In addition, concurrent measurements of PMCs have a big impact

on the overall counts and may impact models’ estimations.



All of these aspects need to be carefully addressed when defin

ing the scope of measured values. The number of measured values

should be kept to a minimum, not only to reduce the performance

impact on servers, but also to increase accuracy of measured values.

In [15], we shown for instance that when using the measured val

ues to model the power consumption of an infrastructure through

machine learning, the accuracy and the precision are both increased

significantly, up to 20% when combining PSU losses, jitter, repeated

values and correct usage of PMC.

The measurements techniques presented in this work were used

in our environment but can be easily generalized for any infras

tructure. The PSU power modeling can be done either based on

the vendor information, or using an external meter to measure the

input power and a clamp meter to measure its output power under

different power loads, providing the input data to create the PSU’s

losses model. All other techniques presented earlier are machine

independent, and can be used for any architecture.
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