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Abstract

This paper analyzes the dynamic traffic assignment problem on a three-alternative
network with day-based incentive routing strategies by using graphical solution method.
It is assumed that the cumulative count curve of vehicles is known and that the arrival
rate is unimodal. The dynamic system optimum (DSO) allocation lines are first drawn
based on calculus of variations. Three possible optimal allocation lines are analyzed. A
day-based incentive routing strategy is designed and conditions that when and how to
implement the incentive scheme to realize DSO are then derived. Extension to general
parallel networks is also given. Examples are presented to demonstrate the effectiveness
of the scheme.
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1. Introduction

Until now, many methods have been proposed to reduce the traffic congestion in
both static and dynamic cases, including (1) economic policies, e.g., congestion pric-
ing (Pigou, 1920; Evans, 1992; Yang and Huang, 2005; Laval et al., 2015; Daganzo
and Lehe, 2015); tradable credits (Yang and Wang, 2011; Akamatsu and Wada, 2017;
Lahlou and Wynter, 2017); rewards (Rouwendal et al., 2012); transit subsidy (Parry
and Small, 2009); parking pricing (D’Acierno et al., 2006); and (2) engineering control
schemes, e.g., speed limits (Knoop et al., 2010; Yang et al., 2012; Chen and Ahn, 2015);
ramp metering (Papageorgiou and Kotsialos, 2002); license plate rationing (Nie, 2017);
lane control (Dahlgren, 1998; Daganzo and Cassidy, 2008; Fosgerau, 2011) and so on.
Although the popular congestion pricing schemes have been implemented in some cities,
there are still a long way toward eliminating the public’s reluctance to accept tolls. For
tradable credits, to our best knowledge, it has not been implemented in any cities yet.
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For engineering control schemes, most studies investigate the effects of these schemes
on network performance based on simulation approach. Other combined schemes (e.g.,
Daganzo, 1995; Daganzo et al., 2002; Basso and Jara-Dı́az, 2012; Wang et al., 2015)
are also studied in literature.

For this paper we focus on the day-based incentive routing strategies that should
be associated with multiple days, which is a very challenging research topic. Take
two routes for example. One route is the main route M with lower free flow travel
time. Another route is side route S with higher free flow travel time. Users who want
to choose M for one-day use need to pay some credits or points which can be freely
obtained by choosing S for a few days. Note that the concept of credit in this paper is
different with the one in Yang and Wang(2011) in the following two aspects: (1)in Yang
and Wang(2011) the credits that are freely obtained from the government are tradable.
Users need to pay some money to obtain additional credits or can earn some money
by selling some credits. That is, the value of the credits as one part of total trip cost
will affect the users’ route choice decisions; (2)while in this paper the credits or points
that represent one kind of rights are freely obtained by choosing side route. With the
credits or points users have the right to choose the main route. That is, the only role
of the credits or points is to encourage or motivate users to choose the side route. Note
that the credits are not tradable in this paper. Thus the values of the credits are not
considered as one part of the route trip cost. For each user, they have to make the
decisions, i.e., how many days in one period (e.g., P days) I can choose route M and
how many days in one period I need to choose route S? The question of interest is
how to design this day-based incentive routing strategy to realize the state of system
optimum, which will be investigated in this study. That is, the whole idea is to obtain
a daily flow pattern, which is close to SO while users keep follow a UE discipline. The
switch is made considering day-based incentive, i.e., by providing credits for not using
the optimal individual path for some days.

Another related literature to this study is about system optimum dynamic traffic
assignment(SODTA) problem. A vast body of literature has been developed in this area
over the past four decades (e.g., Merchant and Nemhauser,1978a,b; Friesz et al., 1989;
Ghali and Smith, 1995; Ziliaskopoulos, 2000; Nie, 2011; Abdul Aziz and Ukkusuri,
2012; Carey and Watling, 2012; Zhu and Ukkusuri, 2013; Ma et al., 2014; Doan and
Ukkusuri, 2015; Lu et al., 2016). Two kinds of models, i.e., discrete-time models and
continuous-time models, are mostly used in the existing literature. Most discrete-time
models share a similar mathematical programming structure with heuristic approaches
to find the DSO solutions; while the continuous-time models use continuous optimal
control method.

A persistent issue is the need to trade-off mathematical tractability with traffic
realism. This paper will focus on another analytical method, i.e., graphical solution
method, to find the exact DSO solutions. Note that this method belongs to continuous-
time models. There are only a few publications that have approached the DSO problem
by using this method. To our best knowledge, Muñoz and Laval (2006) are the first to
introduce the method based on dynamic optimality conditions and calculus of varia-
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tions to draw the dynamic system optimum (DSO) allocation lines. Recently, Laval et
al.(2015) analyzed the effects of system optimum tolls on dynamic traffic assignment
problem in a two-alternative network. As mentioned in the above two papers, the time
intervals when the alternatives are used at capacity can be defined uniquely, but the
allocation of the queues is not. Laval (2009) also studied the dynamic user optimum
(DUO) traffic assignment problem in a simple parallel network and derived some ana-
lytical results. One important assumption is used in the above three papers that the
cumulative count curve of vehicles is known and exogenous. That is, no departure time
choice is considered in these papers. By relaxing the assumption, Arnott et al. (1990a)
and Shen and Zhang (2009) studied both departure time and route choice problem in
a parallel network.

In all, in this study we will investigate the DSO traffic assignment problem in a
three-alternative network with the assumption that the cumulative arrival curve of
vehicles is known based on Muñoz and Laval (2006). The logic framework of this paper
includes three parts, i.e., Step a: Solve the DSO solutions by using graphical solution
method; Step b: Design the routing strategies based on the DSO solutions and prove
the DSO is DUE with the designed strategies; Step c: Extension to general parallel
networks.

This rest of the paper is organized as follows: Section 2 presents the modeling as-
sumptions and problem formulation in a three-alternative network. Section 3 illustrates
the extended graphical solution method to draw the DSO allocation lines. Section 4
describes the day-based incentive routing strategies and examines the DUO equilibrium
state obtained as a result of its application. Extension to general parallel networks is
also given in this section, and finally Section 5 concludes the paper.

2. Problem formulation

The network consists of one origin, one destination, and three alternatives (i.e.,
a freeway with two lanes and a city-street); see Fig.1. Note that the network, i.e.,
one-lane freeway with city-street alternative, is often used to analyze classical morning
commute problem, but here we add the opportunity to consider the lane-allocation
strategy on the freeways, especially to analyze the effects of day-based incentive routing
strategies. Suppose that we know the cumulative count curve A(t) of vehicles entering
a freeway segment with two lanes or city-street with longer free flow travel time. Let
the corresponding flow be λ(t) = Ȧ(t). As shown in Fig.1, the cumulative count curve
of vehicles at time t using route r is denoted Ar(t) and the flow, λr(t) = Ȧr(t). Clearly,
we have λ(t) = λ2(t)+λ1(t)+λ0(t). Another assumption is used throughout the paper
that the arrival pattern is unimodal, where the arrival rate continuously increases to
exceed total capacities of the three routes, and then decreases.

Point queue approach will be used to model the dynamic route choice problem. The
capacity and free flow travel time of each alternative r, r = 2,1,0, are denoted µr and
τr, respectively. Suppose that the three bottlenecks are located at the beginning of the
three alternatives. Let τr(t) be the trip time in route r experienced by a user arriving
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at time t:

τr(t) = τr +wr(t), (1)

where wr(t) is the queuing delay, which can be expressed as (see Arnott et al., 1990b;
Laval et al., 2015):

wr(t) =
Ar(t) −Ar(tr)

µr

− (t − tr), tr ⩽ t ⩽ Tr, (2)

where tr and Tr represent the times when route r begins and ends being congested,
respectively.

Due to the departure time of each user is fixed, the goals in this paper are: (1) to
determine the time dependent path flow distributions that vehicles should follow so that
the total time spend in the system is minimized; (2) to design the day-based incentive
routing strategy based on the flow diversion results to realize the DSO.

Fig. 1. Schematic of the three route network.

3. One method to draw the DSO allocation lines

In this section, we will draw the DSO allocation lines based on graphical solution
method and calculus of variations. Note that “the allocation line” means the determined
time intervals when flows should be diverted to different routes. More details about this
kind of line will be given in Subsections 3.1 and 3.2 when drawing these lines. Before
we draw the lines, optimality conditions should be given first. As mentioned in Muñoz
and Laval (2006), the route with the least marginal cost will be chosen for all times and
all origins. For a given route the marginal cost corresponds to the extra delay imposed
by an additional vehicle on all following vehicles (Specifically, the extra delay imposed
by an additional vehicle at time t is equal to the duration until the queue vanishes;
see Ghali and Smith(1995) and Kuwahara(2007) for more details) plus the additional
vehicle’s trip time.

In the following analysis, we consider the case τ2 < τ1 < τ01. Next we will first
review the graphical solution method introduced in Muñoz and Laval (2006), and then

1Actually, case τ1 < τ2 < τ0 is similar with this case. Because we just need to exchange the positions
of “1” and “2” when drawing the allocation lines. Note that for the third case τ2 = τ1 < τ0, we just
need to think of Route 2 and Route 1 as one route with capacity µ2 + µ1.
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develop our method. Three cases will be considered. Case 1: (µ2;µ1;µ0) = (µ2;∞;∞);
Case 2: (µ2;µ1;µ0) = (µ2;µ1;µ0); Case 3: (µ2;µ1;µ0) = (µ2;µ1;∞), where µr represents
the value of bottleneck capacity on route r is constant. The first two cases have been
considered in Muñoz and Laval (2006). We will extend the graphical solution method
in Case 3.

3.1. Review of Muñoz and Laval’s method

3.1.1. Case 1: (µ2;µ1;µ0) = (µ2;∞;∞)
Due to the unlimited capacities of routes 1 and 0, these two routes will never become

congested. Then, at optimum, only route 2 and route 1 will be used in this case. Let
T2 be the moment when the queue of route 2 vanishes and T1 the moment when the
last vehicle is assigned to route 1. The optimality condition, in which the sum of the
quantities of variations is zero, is given by

T2 − T1 = τ1 − τ2 (3)

For more details about the condition, see Muñoz and Laval (2006).
The DSO solution for this case is presented in Fig.2. Note that t2 is the moment

when λ(t) initially exceeds µ2. Based on the optimality condition of Equation (3), as
mentioned in Muñoz and Laval (2006) and Laval et al.(2015), as long as the arrival
rate is lower than µ2, there is no need for re-routing. Re-routing starts immediately
when λ(t) > µ2 (i.e., at t2) and ends at T1. The optimal solution implies no queue
at the bottleneck µ2 during re-routing. Congestion happens on route 2 after the re-
routing period between T1 and T2. Graphically, as shown in Fig.2(a), starting from
point (t2,A(t2)), draw the black line that grows linearly at a rate µ2. A2(t), the
green line as shown in Fig.2(b), can be determined by shifting the arrival curve A(t)
down vertically until the horizontal distance between the intersection points with black
line equals τ1 − τ2. A1(t), the green line as shown in Fig.2(c), can be determined by
A1(t) = A(t) −A2(t) when t2 ⩽ t ⩽ T1.

We call the red line L(t) in Fig.2(a) as “allocation line”. That is, this line can
determine the time interval, i.e., (T1, T2), and then determine the total time intervals,
i.e., (0, t2), (t2, T1) and (T1, T2), when to assign flows to different routes to realize DSO.
In all, the DSO assignment for users arriving at time t satisfy:

1. 0 ⩽ t ⩽ t2: everybody uses route 2.

2. t2 ⩽ t ⩽ T1: the route 2 is used at capacity, excess inflow uses the route 1.

3. t ⩾ T1: everybody uses the route 2.

Remark 1: The above analysis for Case 1 can also be used to analyze Case 1’, i.e.,
(µ2;µ1;µ0) = (µ2;∞;µ0). Clearly, no users want to choose route 0 because route 1 with
unlimited capacity has lower free flow travel time than route 0.
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Fig. 2. Optimal solution for Case 1: (a) The procedure of drawing allocation lines. (b) DSO arrival
curve of route 2. (c) DSO arrival curve of route 1.

3.1.2. Case 2: (µ2;µ1;µ0) = (µ2;µ1;µ0)
As analyzed in Muñoz and Laval (2006), the optimality conditions for this case are

given by

{ T2 − T1 = τ1 − τ2
T1 − T0 = τ0 − τ1

(4)

where Tr, r = 1,0, represents the moment when the last vehicle leaves the bottleneck of
route r, and T2 is the moment when the queue of route 2 vanishes.

The DSO graphical solution for this case is presented in Fig.3. Three steps are
needed to draw the allocation lines as shown in Fig.3(a).

Step 12: Lengthen A(t) horizontally; see the horizontal dotted line in Fig.3(a).

2It is worth noting that Step 1 is necessary to make sure that the queue can be cleared and the
optimality conditions are satisfied. Actually, for Case 1 we also need this step to obtain the optimal
solution; see Fig.4 for example. Of course, we do not need to do so if the initial A(t) is long enough.
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Notice that the extension line is still one part of A(t).
Step 2: Choose one point M on A(t) with large enough time value (e.g., TM) as

starting point, draw the initial allocation line L(t) (the right red line in Fig.3(a)) based
on the optimality conditions of Equation (4). Note that the slopes of the three parts of
the line L(t), from up to down, are µ2, µ2 + µ1, µ2 + µ1 + µ0, respectively.

Step 3: Shift L(t) from the right to the left along A(t) until it “touches” A(t) again
(the left red line in Fig.3(a)). Two intersection points are (T2,A(T2)) and (t0,A(t0)).
Due to the assumption that the arrival rate continuously increases to exceed total
capacities of the three routes, all of the three routes could possibly be used to divert
vehicles in this case. That is, there exists t = t0, it holds λ(t0) = µ2 +µ1 +µ0. Note that
t0 and T0 will coincide when t0 + τ0 − τ1 = T1 as mentioned in Muñoz and Laval (2006).

Fig. 3. One extreme optimal solution for Case 2: (a) The procedure of drawing allocation lines. (b)
DSO arrival curve of route 2. (c) DSO arrival curve of route 1. (d) DSO arrival curve of route 0.

Note that in Fig.3(a), λ(t2) = µ2 and λ(t1) = µ2 + µ1. In all, with this procedure,
based on the allocation lines the DSO assignment for users arriving at time t satisfy:

1. 0 ⩽ t ⩽ t2: everybody uses route 2.

2. t2 ⩽ t ⩽ t1: the route 2 is used at capacity, excess inflow uses the route 1.
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Fig. 4. One example to illustrate Step 1 for Case 1.

3. t1 ⩽ t ⩽ t0: the route 2 and route 1 are used at capacity, excess inflow uses the
route 0.

4. t0 ⩽ t ⩽ T0: all of the three routes are used at capacity.

5. T0 ⩽ t ⩽ T1: both routes, route 2 and route 1, are used at capacity.

6. t ⩾ T1: everybody uses the route 2.

We call the two red lines L(t) in Fig.3(a) as “allocation lines”, based on which Tr,
r = 2,1,0, is uniquely identified for any optimal solution and time intervals in which
time the routes will be used are also uniquely determined. As mentioned in Muñoz and
Laval (2006) and Laval et al.(2015), in t0 ⩽ t ⩽ T0 the bottleneck of route 0 is working
at capacity. In t1 ⩽ t ⩽ T1 the bottleneck of route 1 is working at capacity. In t2 ⩽ t ⩽ T2
the bottleneck of route 2 is working at capacity. But the assignment solution between
t0 and T2 in terms of the route-specific flows λr(t), r = 2,1,0 is not unique. Fig.3(b), (c)
and (d) show one extreme optimal solution of Ar(t) (i.e., green lines in Fig.3) based on
the Fig.6(b) in Muñoz and Laval (2006). With this solution no queue grows on routes
1 and 0. Table 1 gives the detailed optimal solution in terms of arrival rate.

Table 1. One extreme optimal solution based on Fig.3

Time interval λ2(t) λ1(t) λ0(t)
0 ⩽ t ⩽ t2 λ(t) 0 0
t2 ⩽ t ⩽ t1 µ2 λ(t) − µ2 0
t1 ⩽ t ⩽ t0 µ2 µ1 λ(t) − µ2 − µ1

t0 ⩽ t ⩽ T0 λ(t) − µ2 − µ1 µ2 µ1

T0 ⩽ t ⩽ T1 λ(t) − µ2 µ2 0
t ⩾ T1 λ(t) 0 0
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3.2. Our method

In this subsection, we consider the Case 3: (µ2;µ1;µ0) = (µ2;µ1;∞), and introduce
an extended method (i.e., shift L(t) from the left to the right) to draw the allocation
lines, which is different from the above two methods (i.e., shift A(t) from up to down
for case 1; shift L(t) from the right to the left for case 2). The optimality conditions
for this case are the same with Case 2; see Equations (4). With this extended method,
three steps are needed to draw the allocation lines as shown in Fig.5.

Step 1: Lengthen A(t) horizontally.
Step 2: Starting from the point (t1,A(t1)), where λ(t1) = µ2 + µ1, draw the initial

allocation line L(t) (i.e., the left or down red line in Fig.5) based on the optimality
conditions. Note that the slopes of the two parts of the line, from the left to the right,
are µ2 + µ1, µ2, respectively.

Step 3: Shift L(t) from the left to the right along A(t) until the end point of the
line “touches” A(t) again (the right or up red line in Fig.5).

Fig. 5. One possible optimal solution for Case 3.

We call the red lines L(t) in Fig.5 as “allocation lines”, based on which the DSO
assignment for users arriving at time t satisfy:

1. 0 ⩽ t ⩽ t2: everybody uses route 2.

2. t2 ⩽ t ⩽ t1: the route 2 is used at capacity, excess inflow uses the route 1.

3. t1 ⩽ t ⩽ T0: the route 2 and route 1 are used at capacity, excess inflow uses the
route 0.

4. T0 ⩽ t ⩽ T1: both routes, the route 2 and route 1 are used at capacity.

5. t ⩾ T1: everybody uses the route 2.

It is worth noting that Fig.5 only shows one possible optimal solution for Case 3.
There exist two other possible allocation lines; see Fig.6 and Fig.7 for example. For
convenience, three key points on the allocation line as shown in Fig.6 are denoted as
K1, K2, K3, respectively. Perform the Step 3 in Subsection 3.2, when the point K3 first
touches A(t), there exist three possible positions for point K2:
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(i) Under A(t) as shown in Fig.5.

(ii) On A(t) as shown in Fig.6.

(iii) Above A(t) as shown in Fig.7(a).

Fig. 6. The second possible optimal solution for Case 3.

Fig. 7. The third possible optimal solution for Case 3: (a) One example of the position of K2 that is
above A(t) when K3 touches A(t); (b) The procedure to draw allocation line.

Here we focus on the analysis of Case (iii). Actually the analysis for Case (ii) is the
same with Case (i). As shown in Fig.7(b), the procedure to draw the allocation lines
includes:

Step 1: Lengthen A(t) horizontally.
Step 2: The same procedure to draw L(t) in Fig.5.
Step 3: From the left to the right, shift L(t) along A(t) until K2 touches A(t).

Clearly, K3 is still under A(t).
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Step 4: To satisfy the optimality condition, starting from K2, shift the right part of
L(t) (i.e., line segment K2K3 in Fig.7(b)) along A(t) until K3 touches A(t). As shown
in Fig.7(b), the two new intersection points are denoted as K

′

2 and K
′

3, respectively.
With this procedure, tk in Fig.7(b) is uniquely defined corresponding to the point

K
′

2 when comparing with Fig.5. Based on the allocation lines as shown in Fig.7(b), the
DSO assignment for users arriving at time t satisfy:

1. 0 ⩽ t ⩽ t2: everybody uses route 2.

2. t2 ⩽ t ⩽ t1: the route 2 is used at capacity, excess inflow uses the route 1.

3. t1 ⩽ t ⩽ T0: the route 2 and route 1 are used at capacity, excess inflow uses the
route 0.

4. T0 ⩽ t ⩽ T1: both the route 2 and route 1 are used at capacity.

5. T1 ⩽ t ⩽ tk: the route 2 is used at capacity, excess inflow uses the route 1. This is
because the condition, i.e., µ2 < λ(t) < µ2 +µ1, holds when T1 ⩽ t ⩽ tk as shown in
Fig.7(b).

6. t ⩾ tk: everybody uses the route 2.

Note that the procedure as shown in Fig.7 can make sure that the solutions are
system optimal. Firstly, it is worth noting that the point K2 cannot be above A(t) as
shown in Fig.7(a). This is because the cumulative departure curve cannot be higher
than the cumulative arrival curve at each time t. Secondly, we check the change of the
system total trip times by considering the diversion of one more or one fewer vehicle to
route 0 at each time t, i.e., the variational principle for optimality. The optimality of
this solution can be checked by calculus of variations as follows.

First consider the diversion of one more vehicle to route 0.
If t ⩽ t2 then the diversion has no impact on the freeway queue since the queue

would be triggered at the same time. However, the diversion imposes an extra delay of
τ0 − τ2 on the diverted vehicle.

If t2 ⩽ t ⩽ T0 then the diversion imposes an extra delay of at least τ0 − τ1 or at most
τ0 − τ2 on the diverted vehicle.

If T0 < t ⩽ T1 then (1) when the queue is assigned to route 1, the system benefits
(i.e., T1−t) include two parts, the queue would vanish at most 1/µ1 units of time earlier
and the diverted vehicle would save its freeway delay. However, the diverted vehicle
would suffer an extra delay of at least τ0−τ1. Since T1− t < τ0−τ1, diverting this vehicle
is not optimal. Since at T1 the freeway queue vanishes, diverting the vehicle does not
affect the formation of the second queue; (2) when the queue is assigned to route 2, we
have the similar result.

If t > T1 then the case is similar with Case 1 and the optimality condition (i.e., Eq.3)
need to be satisfied.

Now consider the diversion of one fewer vehicle at t to route 0. We can get the
similar results. That is, this perturbation is also non-optimal. For more details about
the analysis, please refer to Section 3.2 in Muñoz and Laval (2006).

Remark 2: Our method for Case 3, i.e., move L(t) from the left to the right along
A(t), can be used to analyze Case 1 to find the optimal solution. But the method of
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Muñoz and Laval (2006) for Case 1 can not be used for Case 3. This is because the
optimality conditions of Case 3 can not be satisfied when shifting A(t) vertically from
up to down. Furthermore, our method with a modification can also be used for Case
2, i.e., “shift L(t) along A(t)” should be modified to “shift L(t) along the lines with
the slope of µ2 + µ1 + µ0”; see Fig.8 for more details. As shown in Fig.8, we first need
to draw the line k1 with the slope of λ(t0) = µ2 + µ1 + µ0 that passes through the point
(t0,A(t0)) and choose the point (t0,A(t0)) on the line k1, i.e., K2, as starting point;
and then draw the allocation line, i.e., line segments K2K3 and K3K4, based on the
optimality conditions of Equations (4); and at last move the line K2K3K4 from the left
to the right along k1 until K4 touches A(t). Also note that in the process of moving line
segments K2K3K4, the position of the point K3 may be under (or on, or above) A(t)
as mentioned in the previous analysis. Our method can also be extended to analyze
the general parallel networks, especially to determine the highest number of routes that
could possibly be used to divert vehicles, which will be discussed in the last section of
the paper.

Fig. 8. Graphical optimum solution for Case 2 based on our modified method.

In summery, in this section we uniquely defined the time intervals at which time
which route will be used at the state of DSO by drawing the graphical allocation lines.
But the uniqueness of the flow assignment results can not be guaranteed when two or
more routes are used at capacity. It is shown that at DSO route 2 with lowest free flow
travel time is always being used and route 1 is used for less time and route 0 is used
for least time. Based on these results, in the next section a day-based incentive routing
strategy will be designed to realize the state of DSO.

4. Day-based incentive routing strategy

In this section, we investigate the long-term dynamic route choice behavior and
design one kind of day-based incentive routing strategy to realize the state of DSO
which is obtained by graphical solution method.
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Users are assumed to be perfectly rational and want to minimize their own travel
times every day when making route choice decisions. Basically, user follows a double
layer optimization principle. Over the long run, e.g., one period of P days, they may
choose to take non optimal route to gain credits and be able to spend them on the
fastest track some days. Over the short run (daily based), they are following a UE
principle by trying to minimize their travel time. As a result, we use the term of PUE
(i.e., Period User Equilibrium) to distinguish the traditional within-day DUE.

4.1. Definition and properties of the strategy

Inspired by Daganzo and Garcia (2000), in one period (e.g., P days), the fraction
of days that a commuter arriving at time t choosing route r, r = 2,1,0, is denoted as
fr(t). Clearly, it holds f2(t) + f1(t) + f0(t) = 1. Let f(t) = (fr(t), r = 2,1,0) be the
fraction vector. Before we describe the routing strategy, the concept of Period User
Equilibrium (PUE) or Period User Optimum (PUO) should be given first: at PUE, the
total trip times of P days are minimized for each commuter arriving at time t. Based
on this, at PUE the fraction of days for one commuter choosing route r, r = 2,1,0, is
denoted as fu

r (t). Let fu(t) = (fu
r (t), r = 2,1,0) be the PUE fraction vector.

Our goal is to design a day-based incentive routing strategy to make sure that the
DSO is PUE with this strategy. Let f s(t) = (f s

r (t), r = 2,1,0) (where f s
r (t) denotes at

DSO the fraction of total flows arriving at time t that are assigned to the route r, which
can be obtained by graphical solution method) be the DSO fraction vector. The DSO
allocation lines analyzed in the above section provide a powerful tool to design this
strategy. Specifically, what we should do is (1) to design a scheme to realize DSO based
on the graphical system optimal solution and (2) to prove that DSO is PUE under this
scheme, i.e., equations f s

r (t) = fu
r (t) hold.

Based on the DSO assignment results described in Section 3, we know that at DSO
in different time intervals different routes will be used. Thus the day-based incentive
routing strategies can be described as follows:

(i) If only one route (i.e., route 2) is used, we do not implement any incentive strate-
gies, just close other routes if necessary3.

(ii) If two routes (i.e., routes 2 and 1) are used, users arriving at time t who want
to choose route 2 need to pay one Credit II4 for one day. The credits can be
obtained by choosing route 1. Every user can obtain f s

2(t)/f s
1(t) Credits II if he

or she chooses route 1 for one day.

(iii) If all of the three routes are used, users arriving at time t who want to choose
route 2 need to pay one Credit II and choose route 1 need to pay one Credit I.
The two kinds of credits can be obtained by choosing route 0. Every user can

3See Proposition 3 for more details.
4As mentioned above, in this paper the credits represent one kind of rights. Users can obtain

different kinds of rights by choosing different routes, e.g., users can acquire Credits I by choosing route
1 or Credits II by choosing route 2.
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obtain f s
2(t)/f s

0(t) Credits II and f s
1(t)/f s

0(t) Credit I if he or she chooses route
0 for one day.

It is worth noticed that the credit is not tradeable in this paper because it is precisely
the point of the incentive strategy. Users have first to save credits on non-optimal route
to get access to the shortcut. This ensures that a fraction of the flow is move to route
1 and then that the SO can be reached (this is exactly the point achieved with the
credit, we know that users will not change otherwise as they would have loose time on
a particular day but as they can save on a long run, this choice becomes also efficient
at an individual level). All the credit scheme is designed to match the flow switch that
is required to move the system from classical UE to SO. Note that we are reasoning on
average and we don’t specifically care who is using their credits which day.

Before we discuss the effectiveness of the routing strategies, more details about the
DSO flow assignment results, especially when two or more routes are used at capacity,
need to be given first.

• Type I: DSO flow assignment results are unique when no queue exists or only
one route is used; see time intervals (0, T2) in Fig.2; (0, t0) ∪ (T1, T2) in Fig.3;
(0, T0)∪ (T1, T2) in Fig.5; (0, T0)∪ (T1, tk)∪ (tk, T2) in Fig.7(b) for example. That
is, in these time intervals, the flows arriving at time t will be uniquely assigned
to the routes at DSO.

• Type II: DSO flow assignment results are not unique when two or three routes
are used at capacity with queues; see other time intervals except those in Type I,
i.e., (t0, T1) in Fig.3; (T0, T1) in Fig.5; (T0, T1) in Fig.7(b).

For Type I, λsr(t) and f s
r (t) = λsr(t)/λ(t) can be uniquely determined by graphical

solutions. For Type II, two extreme optimum solutions for two-route case based on Fig.6
in Muñoz and Laval (2006) are shown in Fig.9. Note that the time interval (t1, T1) in
Fig.9 corresponds to the assignment result of Type II.

Proposition 1. For the assignment solution as shown in Fig.9(a), the trip times of
route 2 are always lower than that of route 1 for users arriving at time interval (t1, t⋆).
For Fig.9(b), the relationships of trip times between the two routes are not determined
for users arriving in time interval (t1, T1).
Proof. For Fig.9(a), in time interval (t1, t⋆), route 2 is used at capacity with no queues,
then τ2(t) = τ2; route 1 is used at capacity with queues, then τ1(t) = τ1 +w1(t), where
w1(t) ⩾ 0. Clearly, we have τ2(t) < τ1(t) with the assumption τ2 < τ1. For Fig.9(b), in
time interval (t1, T1), route 1 is used at capacity with no queues, then τ1(t) = τ1; route
2 is used at capacity with queues, then τ2(t) = τ2 +w2(t), where w2(t) is given by

w2(t) =
∫

t

t1
(λ(t) − µ1)dt

µ2

− (t − t1), t1 ⩽ t ⩽ T1 (5)
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Fig. 9. Two extreme optimum solutions for two-route case based on Fig.6 in Muñoz and Laval (2006):
(a) The queue of route 2 starts as late as possible. (b) No queue grows on route 1.

ẇ2(t) =
λ(t) − µ1

µ2

− 1, t1 ⩽ t ⩽ T1 (6)

Solve ẇ2(t) = 0, we have λ(tm) = µ1 + µ2, where tm is the moment when w2(t)
reaches the maximum value, i.e., w2(tm) = (A(tm)−A(t1))/µ2 − (µ1/µ2 + 1)(tm − t1). It
follows that in time interval (t1, T1), w2(t) will reach the maximum value, i.e., wm

2 , at
time tm or T1 due to the unimodal arrival rate. The range of w2(t) is (0,wm

2 ). When
comparing the trip times of two routes based on the solution of Fig.9(b), we can not
get the determined relationship. This completes the proof. ◻

Clearly, if the assignment solution as shown in Fig.9(a) is the PUE solution, then we
have the fractions of days for all commuters arriving at time t choosing route r(r = 2,1)
should be the same. This statement can be proved by contradiction. If fu

1 (t)i > fu
1 (t)j

and fu
2 (t)i < fu

2 (t)j hold for User i and User j, then they will experience different trip
times of total P days based on the Proposition 1. This contradicts the condition of user
equilibrium. In all, the conditions, i.e., fu

2 (t)i = fu
2 (t)j = fu

2 (t) and fu
1 (t)i = fu

1 (t)j =
fu
1 (t), hold. As a result, the total days that users arriving at time t choose route r for
P days are P ⋅ λ(t) ⋅ fu

r (t). This means that for each day at PUE the total commuters
or flows arriving at time t (i.e., λ(t)) that are assigned to the route r are λ(t) ⋅ fu

r (t).
That is, at PUE the fraction of days for each commuter arriving at time t choosing
route r and the fraction of total flows arriving at time t that are assigned to the route
r for each day are both denoted as fu

r (t).
In Proposition 1, it is found that the optimal solution presented in Fig.9(a) has more

advantages than Fig.9(b). Another advantage will be shown in proposition 2 below.
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Proposition 2. Considering the DSO flow assignment result presented in Fig.9(a),
with strategy (ii), users will spend all of the credits that are obtained by choosing route
1 on route 2 in one period of total P days.

Proof. It is shown in Fig.9(a) that in time interval (t1, t⋆), flows will be assigned to
the two routes, though two routes are used at capacity in time interval (t1, T1). With
t ∈ (t1, t⋆), we have λs2(t) = µ2 and λs1(t) = λ(t) − µ2. Correspondingly, f s

2(t) = µ2/λ(t)
and f s

1(t) = 1− f s
2(t). For each day of total P days, at DSO the fractions of total flows

that assigned to the two routes are f s
2(t) and f s

1(t), respectively.
Due to the lower trip times of route 2 in time interval (t1, t⋆) at DSO as mentioned

in Proposition 1, our goal is to prove that, with the strategy (ii), f s
1(t) = fu

1 (t) and
f s
2(t) = fu

2 (t) hold. Now consider the strategy (ii) in the following two cases: (1)
if fu

1 (t) < f s
1(t), then, fu

2 (t) > f s
2(t) holds. This is because fu

1 (t) + fu
2 (t) = 1 and

f s
1(t) + f s

2(t) = 1. That is, the PUE fraction of days for each user choosing route 1 is
lower than f s

1(t), and the corresponding amount of credits obtained by choosing route
1 is fu

1 (t) ⋅ P ⋅ f s
2(t)/f s

1(t), which is lower than f s
2(t) ⋅ P . With these credits users have

the right to choose route 2 for one-day use by paying one unit credit, and the fraction
of days that users can choose route 2, i.e., fu

2 (t), is fu
1 (t) ⋅ f s

2(t)/f s
1(t). Thus we have

fu
2 (t) < f s

2(t). This contradicts the condition fu
2 (t) > f s

2(t). In other words, if one user
chooses fewer days in route 1, he cannot obtain enough credits to choose route 2 in one
period. (2) Similarly, if fu

1 (t) > f s
1(t) and fu

2 (t) < f s
2(t) hold, the corresponding amount

of credits are higher than f s
2(t) ⋅ P , then we have fu

2 (t) > f s
2(t). This contradicts the

condition fu
2 (t) < f s

2(t). In all, at PUE we have fu
1 (t) = f s

1(t) and fu
2 (t) = f s

2(t). This
means at PUE for each user arriving at time t ∈ (t1, t⋆), with routing strategy (ii), the
fractions of days in one period of total P days choosing routes 2 and 1 are f s

2(t) and
f s
1(t), respectively. This completes the proof. ◻

In time interval (t1, t⋆), route 2 with lower trip times is more attractive than route
1, but he or she has to obtain enough credits by choosing route 1. Proposition 2 states
that each user can not reduce his or her total trip times of P days by increasing or
decreasing the fraction of days choosing route 1 or 2. In other words, in this time
interval, PUE fractions of total users that are assigned to the two routes at time t
for each day are, f s

1(t) and f s
2(t), respectively. Proposition 2 also states that in time

interval (t1, t⋆), the state of DSO can be realized by the strategy (ii).
With the statements of “for each day the fractions of total commuters or flows

arriving at time t that are assigned to the route r are same” and “each commuter aims
to find the best route on each day”, we have the following Proposition 3.

Proposition 3. With the proposed day-based incentive routing strategies, the state
of DSO as shown in Fig.9(a) is PUE.

Proof. From Fig.9(a), it is known that the DSO flow assignment results are

1. 0 ⩽ t ⩽ t2: all flows are assigned to route 2.

2. t2 ⩽ t ⩽ t⋆: assign flows µ2 to route 2, excess flows λ(t) − µ2 are assigned to route
1.
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3. t ⩾ t⋆: all flows are assigned to route 2.

For 0 ⩽ t ⩽ t2, it holds λ(t) ⩽ µ2, thus no queue exists in this time interval. Choosing
route 2 with lower free flow travel time is the optimal choice for each user arriving in
this time interval. That is, in 0 ⩽ t ⩽ t2, DSO is PUE, and no strategies need to be
implemented.

For t2 ⩽ t ⩽ t⋆, the time interval (t1, t⋆) has been analyzed in Propositions 1 and 2,
which can be applied to analyze the time interval (t2, t1). We just need to change the
trip times of route 1 to τ1(t) = τ1 due to the free flow travel time of route 1 in (t2, t1).
In all, in t2 ⩽ t ⩽ t⋆, strategy (ii) needs to be implemented to realize DSO, which is also
the state of PUE.

For t ⩾ t⋆, we just need to close route 1 to make sure only route 2 can be used,
which means that route 2 is the optimal choice5.

In all, the proposed day-based incentive strategies can realize DSO, which is also
the state of PUE. This completes the proof. ◻

Proposition 3 states that one of the DSO flow assignment results as shown in Fig.9(a)
can be realized by the proposed day-based incentive strategies. Actually, properties
of Propositions 1, 2 and 3 can be easily extended to three-route or general parallel
networks; see next Subsections 4.2 and 4.3 for more details.

4.2. Two examples

In this subsection, two examples based on Figs.3 and 7(b) will be presented to
demonstrate the effectiveness of the proposed day-based incentive routing strategies.
In both examples, we first give the extreme DSO flow assignment results based on
Fig.9(a), i.e., assign flows as early as possible to the route with higher free flow travel
time when routes are used at capacity with queues, and then propose the corresponding
strategies.

4.2.1. Example 1 with Fig.3

One extreme DSO flow assignment result is shown in Fig.10. Green lines (i.e., A2(t),
A1(t), A0(t)) represent the cumulative arrival curves of the three routes. ti and tj are
uniquely and sequentially determined by

µ0(T0 − t0) = ∫
ti

t0
(λ(t) − µ2 − µ1)dt (7)

5Note that in this time interval t ⩾ t⋆, the relationships of trip times between the two routes, i.e.,
τ2(t) = τ2 +w2(t) and τ1(t) = τ1, are not determined as shown in Fig.9(a) with the assumption τ2 < τ1.
Closing route 1 is one kind of method to make sure the state of DSO. Of course, we can also adopt
the toll or credit scheme, but how to use the toll for managers or credit for users is still a question.
The user’s reluctance to accept tolls is another problem. The value of toll V can be calculated by: (1)
determine the two times tu and tv by solving τ2(t) = τ1(t); (2) in time interval tu ⩽ t ⩽ tv, users who
want to choose route 1 need to pay toll V = τ2(t) − τ1(t) or more. Similarly, we can also calculate the
value of credit for the users who want to choose route 2.
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µ1(T1 − ti) = ∫
tj

ti
(λ(t) − µ2)dt (8)

Fig. 10. One extreme DSO flow assignment solution for Case 2.

Based on Fig.10, the DSO flow assignment results are shown in Table 2. The
corresponding day-based incentive strategies are:

• In 0 ⩽ t ⩽ t2, we do not implement any strategies. Because only route 2 is used
and has minimal trip times.

• In t2 ⩽ t ⩽ t1 and ti ⩽ t ⩽ tj, each user who wants to choose route 2 needs to
pay one Credit II for one day use; µ2/(λ(t) − µ2) Credits II can be obtained by
choosing route 1 for one day. Based on Proposition 2, we have fu

2 (t) = µ2/λ(t)
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and fu
1 (t) = 1 − µ2/λ(t), which corresponds to the DSO assignment results. Note

that, for practical implementation of the scheme, the parameter of period days,
P , should be given by Pmin = max{1/f s

1(t); 1/f s
2(t)}, where Pmin is the minimal

possible value of P . In order to ensure the effectiveness of the scheme, the credits
obtained in one period of total P days should be spent in the same period. Of
course, if the credits can be traded among users, it will become more complicated.
We will discuss this topic in the future research.

• In t1 ⩽ t ⩽ ti, each user needs to pay one Credit II for one day use of route 2 and
one Credit I for route 1; µ2/(λ(t) − µ2 − µ1) Credits II and µ1/(λ(t) − µ2 − µ1)
Credits I can be obtained by choosing route 1 for one day. In this time interval,
the relationships of trip times among the three routes at DSO are: τ s2 < τ s1 < τ s0 .
Thus, Propositions 1, 2 and 3 hold in t1 ⩽ t ⩽ ti.

• In t ⩾ tj, close routes 1 and 0, only route 2 can be used.

Table 2. DSO flow assignment results based on Fig.10

Time interval λs2(t) λs1(t) λs0(t)
0 ⩽ t ⩽ t2 λ(t) 0 0
t2 ⩽ t ⩽ t1 µ2 λ(t) − µ2 0
t1 ⩽ t ⩽ ti µ2 µ1 λ(t) − µ2 − µ1

ti ⩽ t ⩽ tj µ2 λ(t) − µ2 0
t ⩾ tj λ(t) 0 0

4.2.2. Example 2 with Fig.7(b)

Similar with the analysis of Example 1, based on Fig.7(b), the extreme DSO flow
assignment results are presented in Fig.11. Green lines, A2(t) and A1(t), represent the
cumulative arrival curves of routes 2 and 1, respectively. ti is uniquely determined by

µ0(T1 − T0) = ∫
ti

T0

(λ(t) − µ2)dt (9)

Based on Fig.11, the DSO flow assignment results are shown in Table 3. The
corresponding day-based incentive strategies are:

• In 0 ⩽ t ⩽ t2, we do not implement any strategies. Because only route 2 is used
and has minimal trip times.

• In t2 ⩽ t ⩽ t1, T0 ⩽ t ⩽ ti and T1 ⩽ t ⩽ tk, each user who wants to choose route
2 needs to pay one Credit II for one day use; µ2/(λ(t) − µ2) Credits II can be
obtained by choosing route 1 for one day.
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Fig. 11. One extreme DSO flow assignment solution for Case 3b.

• In t1 ⩽ t ⩽ ti, each user needs to pay one Credit II for one day use of route 2 and
one Credit I for route 1; µ2/(λ(t) − µ2 − µ1) Credits II and µ1/(λ(t) − µ2 − µ1)
Credits I can be obtained by choosing route 1 for one day.

• In t ⩾ tj, ti ⩽ t ⩽ T1 and t ⩾ tk, close routes 1 and 0, only route 2 can be used.

4.3. Extension to general parallel networks

The extended method to draw DSO allocation lines in this paper can be extended to
general parallel networks. Two steps are needed: (1) Sort the routes from low to high
according to the size of the free flow travel time, and number the routes as 1,2,3,...r.
Denote R = {1,2, ..., r}. (2) Determine the number of routes, i.e., n, that will be used
at DSO. It is also assumed that arrival rate is unimodal. Denote the maximum value
of λ(t) as λm. There are two cases to determine n. (2a) If there exists i ∈ R, it
holds λm = ∑i

1 µr. We then have n = i. Choose the point (tm,A(tm)), where λ(tm) =
λm, as starting point, draw the allocation lines with slopes ∑i−1

1 µr, ..., µ2, µ1 based on
optimality conditions. (2b) If it holds ∑i

1 µr < λm < ∑i+1
1 µr, we then have n = i + 1.
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Table 3. DSO flow assignment results based on Fig.11

Time interval λs2(t) λs1(t) λs0(t)
0 ⩽ t ⩽ t2 λ(t) 0 0
t2 ⩽ t ⩽ t1 µ2 λ(t) − µ2 0
t1 ⩽ t ⩽ T0 µ2 µ1 λ(t) − µ2 − µ1

T0 ⩽ t ⩽ ti µ2 λ(t) − µ2 0
ti ⩽ t ⩽ T1 λ(t) 0 0
T1 ⩽ t ⩽ tk µ2 λ(t) − µ2 0
t ⩾ tk λ(t) 0 0

Choose point (tj,A(tj)), where λ(tj) = ∑i
1 µr, as starting point, draw the allocation lines

with slopes ∑i
1 µr, ..., µ2, µ1 based on optimality conditions. This proposed method to

determine n is different with the method mentioned in Muñoz and Laval (2006) (i.e.,
determine the value of p).

The day-based incentive routing strategies can also be extended to general parallel
networks. With the value of n obtained by the above graphical solution method, the
strategies can be described as follows. (i) If only one route, i.e., Route 1, is used, we
do not implement any incentive strategies, just close other routes if necessary. (ii) If
there are i,2 ⩽ i ⩽ n, routes are used, the users arriving at time t who want to choose
Route j, j = 1, ..., i − 1, need to pay one Credit j, j = 1, ..., i − 1, for one day use. All of
these credits can be obtained by choosing Route j, j = i. Every user arriving at time t
can obtain f s

j (t)/f s
i (t), j = 1, ..., i − 1, Credits j, j = 1, ..., i − 1, respectively, if he or she

chooses route j, j = i, for one day use.

5. Concluding remarks

This paper studied the dynamic route choice behavior in a three-route network.
With the assumption that cumulative arrival curve is known, we extended the graphical
solution method to draw the DSO allocation lines based on point-queue model. The
extended method follows that (1) Sort the routes by size in free flow travel time. From
low to high, routes should start diverting vehicles and stop diverting from high to low as
mentioned in Muñoz and Laval (2006); (2) If there exist routes with infinite capacity, at
DSO the vehicles will not be diverted to the routes whose free flow travel time is higher
than the first route with infinite capacity; see Cases 1, 1’ and 3 for example.(3) If there
are no routes with infinite capacity, at DSO three routes will be assigned vehicles; see
Case 2 for example. Furthermore, our method is divided into two categories: (i) shift
L(t) along A(t) for the case (e.g., Cases 1 and 3) that there exist routes with infinite
capacity; (ii) shift L(t) along k1 for the case (e.g., Cases 2) that there is no route with
infinite capacity.

Based on the DSO graphical solutions, a simple day-based incentive routing strategy
was designed to realize DSO, which provides a benchmark for ITS applications. Some
properties were examined base on one extreme DSO flow assignment result as shown
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in Fig.6(a) in Muñoz and Laval (2006).
The framework proposed in this paper can possibly be extended to include (1)

multiple-peak demand, (2) tradable credits among users, (3) departure time choice and
(4) queue spillovers. Furthermore, a natural extension would be to incorporate the
user heterogeneity, e.g., heterogeneous value of trip times. It remains open whether the
conclusions obtained in this paper still stand when considering other DSO graphical
solutions, e.g., the extreme DSO flow assignment result as shown in Fig.6(b) in Muñoz
and Laval (2006). It is worth noticed that our method is not expandable to more
general networks but it is important to point out that parallel network like here are
very common in practice when studying the morning/evening commute problem, and
that the dynamic traffic assignment for general networks is a very challenging problem
and many theoretical issues (e.g., existence, uniqueness, stability, solution method)
remain to be solved, which is our persistent research objective.
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