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ABSTRACT
Starting from a stack of co-registered SAR images in inter-
ferometric configuration, SAR tomography performs a recon-
struction of the reflectivity of scatterers in 3-D. Scatterers
seen within the same resolution cell in each SAR image can
be separated by jointly unmixing the SAR complex ampli-
tude observed throughout the stack. In urban areas, Com-
press Sensing (CS) approaches have been applied to achieve
super-resolution in the estimation of the position of the scat-
terers. However, even if all the local information coming from
a stack at a given pixel is used, the structural information
that is inherent to the image is not directly used to improve
the rendering of the scene. This paper addresses the problem
of adding structural constraints to sparse tomographic recon-
structions of urban areas. We derive an algorithm allowing the
inversion of tomographic data under structural constraints and
illustrate its performances on a stack of Spotlight TerraSAR-
X images.

Index Terms— SAR tomography, structural information,
spatial regularization

1. INTRODUCTION

SAR tomography is the extension of the 2-D SAR imaging to
three dimensions. As conventional 2-D SAR imaging uses a
synthetic aperture in azimuth direction, 3-D SAR imaging is
performed by a synthetic aperture in the elevation direction by
collecting several images from parallel tracks. Using multi-
baseline interferometry techniques on the well-calibrated
SAR images stack, it is possible to retrieve the localization
of the scatterers in the third dimension. This approach al-
lows separating scatterers mapped in the same resolution cell,
which is likely to happen on the dense urban area due to the
layover phenomenon.

To perform 3-D SAR focusing, application of the inverse
discrete Fourier transform gives a resolution inversely propor-
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tional to the synthetic baseline aperture in the cross-range di-
rection. Depending on the baseline repartition this resolution
is generally much worse compared to the resolution in az-
imuth or range. Several spectral super-resolution techniques
have been used to overcome this limitation [1] but they all
rely on the covariance matrix. This matrix has to be esti-
mated which adds a strong limitation on the number of im-
ages that can be used and can be difficult when the observed
scene is very heterogeneous. Compress Sensing (CS) also
leads to super-resolution but by performing a direct inversion
of the data under sparsity constraint. As it doesn’t require the
estimation of the covariance matrix, this method is far more
robust for unmixing multiple close point scatterers.

CS provides a sparse reconstruction of the 3-D scene [2]
but is applied pixel by pixel without exploiting any structural
knowledge of the scene. Different strategies have been devel-
oped to re-process the estimated signal in order to improve its
spatial coherence [3], but until now the structural information
has not been taken into account directly in the inversion step.

Here, we develop an algorithm that allows to inverse a to-
mographic stack to retrieve a sparse 3-D complex scene using
structural geometric priors. To do so, we first write the trans-
formation that allows us to express the scene in ground geom-
etry and then we describe the inversion process. We present
3-D reconstructions obtained from a dataset of TerraSAR-X
images over the city of Paris.

2. GROUND TO RADAR GEOMETRY

A SAR tomographic stack consists of a collection of N co-
registered SAR images. The geometry of the objects and the
sensors is illustrated Fig. 1. In the absence of moving objects,
the value of the complex pixel in image n at position (x, r) is
[4]

vn(x, r) =

∫
(y,z)∈∆(x,r)

u(x, y, z)exp
(
−jξnh(y, z)

)
dydz + n

(1)



Fig. 1. Radar and ground geometry: The geometry of the
sensors (x, r, h) doesn’t allow a good expression of the struc-
tural particularity of the scene. In particular, it is not natural
to express the orthogonality of ground / walls or walls / roofs.
We place ourselves in the ground geometry (x, y, z) to be able
to take those observations into account.

Complex variables are from now on underlined. Here,
∆(x, r) is the extension of the radar resolution cell along
the elevation direction h, u(x, y, z) the complex reflectivity
of the scatterer located at position (x, y, z) and h(y, z) its
elevation. We chose to have the azimut and x axis being the
same for simplification. ξn = 4πbn

λr is the spatial frequency
depending on the baseline bn, λ stand for the wavelength and
θ is the incidence angle of the master antenna. n is a complex
additive white noise coming from the sensors.
As we can see the ground geometry that describes best the ob-
jects is not the same as the radar geometry which will depend
on the incidence angle. Usually, the tomographic inversion is
processed using the radar geometry, but in order to express
some structural constraints we will use the ground geometry
during the inversion process. We now refer to v ∈ CNx.Nr.N

as the tomographic stack and u ∈ CNx.Ny.Nz as the 3-D
unknown scene, with Nr, Nx, Ny and Nz being the number
of bins in the corresponding directions.
We write Φ ∈ C(Nx.Nr.N)×(Nx.Ny.Nz) the matrix that ex-
press the signal back-scattered from a scene sampled in
ground geometry to the antennas. An element of Φ is then

Φi,j+(n−1).N = δri,c(yj ,zj)exp
[
−jξnh(yj , zj)

]
(2)

The function c(y, z) return the corresponding range of a
point located at the position (y, z). The matrix Φ is highly
sparse which can be used to speed-up the computation and its
non-null elements correspond to permutations of the classi-
cal sensing matrix used in SAR tomography. We now have

designed a linear operator that allows us to express the tomo-
graphic stack from the 3-D complex scene :

v = Φu + n (3)

3. TOMOGRAPHIC INVERSION

In this part we will derive the inversion of equation (3) using
some basic priors on the urban topography. To achieve super
resolution, we will have a number of unknowns variables far
more important than the size of v. To be able to estimate u
we will add two constraints. First, we will assume that the
3-D scene is sparse which is the same hypothesis as in CS.
Secondly, we will make the assumption that the objects are
smooth in the x, y and z directions. Those hypothesis express
the fact walls and roofs are seen as punctual objects in at least
one direction and are smooth in the other two directions. We
then want to solve the following minimization problem

û = argmin
u
||Φu− v||22 +R(|u|)

with R(|u|) = µx · ‖Dx|u|‖22 + µy · ‖Dy|u|‖22
+ µz · ‖Dz|u|‖22 + µL1

· ‖|u|‖1 (4)

µx, µy , µz and µ`1 are the parameters allowing to tune the
impact of each term in R. Here the regularization is applied
to the modulus of the 3-D reflectivity. One big reason is that
we don’t want to risk to converge to zero as we smooth two
neighboring scatterers with opposite phase. The introduction
of the modulus add a lot of complexity to this problem even
with a relatively simple prior. To be able to solve (4), we
introduce two more variables and chose an alternating mini-
mization scheme. We now want to solve

û = argmin
u

‖Φu− v‖22 +R(w)

s.t. u = f

|f | = w (5)

The real image w will converge to the modulus of the image
u and the complex image f links them. We solve (5) using a
modified ADMM [5] algorithm by jointly optimizing over u
and w and updating the two Lagrange multipliers :

• {û, ŵ} ← arg min
u,w

{
1

2
||Φu− v||22

+
β1

2
||f(u,w)− u + d̂1||22

+
β2

2

∥∥w − |f(u,w)|+ d̂2

∥∥2

2
+R(w)

}
• d̂2 ← d̂2 + ŵ − |f(û, ŵ)|

• d̂1 ← d̂1 + f(û, ŵ)− û .

(6)



β1 and β2 are two parameters needed for the optimization and
f(u,w) is given by

f(u,w) =

[
β1 · |u− d̂1|+ β2 · (w + d̂2)

β1 + β2

]+

· exp
[
i · arg

(
u− d̂1

)]
(7)

The first step in (6) is easy to optimize as it is a sum of
quadratic and linear functions. As the modulus is positive, the
`1 norm can be seen as the sum of all the elements in the vec-
tor. The algorithm described in (6) gives a new tool capable to
inverse a tomographic problem under structural priors. Even
if the model we choose is still simple, it gives good results
on urban areas as shown in the next section. As the frame-
work is completely independent of the regularization chosen,
the structure of the algorithm can be used to add even more
sophisticated priors on the reconstructed data.

4. EXPERIMENTAL RESULT

The algorithm described in the previous section has been im-
plemented and tested on a dataset of 40 TerraSAR-X images
over the front de Seine in the south-west of Paris, France. The
observed scene is presented Fig. 31.The spatial (orthogonal
component) and temporal baseline are shown in Fig. 2. The
total spatial baseline span is more than 775m and the total
temporal baseline more than 5 years with a large gap of al-
most two years in it.
Fig. 4 we present the intensity of the 3-D inversion over the
Mirabeau Tower and we also plot in Google Hearth the height
of the discretized reconstruction obtained by thresholding the
intensity. Fig. 5 we present the intensity of the 3-D inversion
over the Ministry of Foreign Affairs and the height of the
discretized reconstruction in Google Hearth.

5. CONCLUSION

In this paper, we have proposed a new algorithm for the inver-
sion of a stack of tomographic images. In this approach, we
add structural constraints on the modulus of the 3-D reflectiv-
ity in order to describe more accurately a dense urban scene.
This algorithm has been implemented and gives good results
on real images. Finally, as the priors we add can be changed,
we introduce a framework capable of performing 3-D tomo-
graphic inversion under spatial constraint.

1These data have been provided by the DLR in the framework of the
project LAN1746

Fig. 2. Spatial Baseline (orthogonal part) vs. Temporal Base-
line

Fig. 3. (Top) TerraSAR-X intensity image of the observed
scene (Paris). The building back-scattering a strong signal in
the center af the image is the Mirabeau Tower. In the bottom
left corner is the Ministry of Foreign Affairs with a periodic
appearing rooftop. (Bottom) Optical image from Geoportail
of the scene.



Fig. 4. (top) Intensity of the 3-D reconstruction of the
Mirabeau Tower [6]. (bottom) height of the brightest points
in the 3-D reconstruction plotted in Google Hearth.
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