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INTRODUCTION

SAR tomography is the extension of the 2-D SAR imaging to three dimensions. As conventional 2-D SAR imaging uses a synthetic aperture in azimuth direction, 3-D SAR imaging is performed by a synthetic aperture in the elevation direction by collecting several images from parallel tracks. Using multibaseline interferometry techniques on the well-calibrated SAR images stack, it is possible to retrieve the localization of the scatterers in the third dimension. This approach allows separating scatterers mapped in the same resolution cell, which is likely to happen on the dense urban area due to the layover phenomenon.

To perform 3-D SAR focusing, application of the inverse discrete Fourier transform gives a resolution inversely propor-This project has been funded by ANR (the French National Research Agency) and DGA (Direction Générale de l'Armement) under ALYS project ANR-15-ASTR-0002 tional to the synthetic baseline aperture in the cross-range direction. Depending on the baseline repartition this resolution is generally much worse compared to the resolution in azimuth or range. Several spectral super-resolution techniques have been used to overcome this limitation [START_REF] Oriot | Introduction to Spectral Analysis[END_REF] but they all rely on the covariance matrix. This matrix has to be estimated which adds a strong limitation on the number of images that can be used and can be difficult when the observed scene is very heterogeneous. Compress Sensing (CS) also leads to super-resolution but by performing a direct inversion of the data under sparsity constraint. As it doesn't require the estimation of the covariance matrix, this method is far more robust for unmixing multiple close point scatterers.

CS provides a sparse reconstruction of the 3-D scene [START_REF] Zhu | Tomographic sar inversion by l 1 -norm regularization 2014;the compressive sensing approach[END_REF] but is applied pixel by pixel without exploiting any structural knowledge of the scene. Different strategies have been developed to re-process the estimated signal in order to improve its spatial coherence [START_REF] Zhu | Facade reconstruction using multiview spaceborne tomosar point clouds[END_REF], but until now the structural information has not been taken into account directly in the inversion step.

Here, we develop an algorithm that allows to inverse a tomographic stack to retrieve a sparse 3-D complex scene using structural geometric priors. To do so, we first write the transformation that allows us to express the scene in ground geometry and then we describe the inversion process. We present 3-D reconstructions obtained from a dataset of TerraSAR-X images over the city of Paris.

GROUND TO RADAR GEOMETRY

A SAR tomographic stack consists of a collection of N coregistered SAR images. The geometry of the objects and the sensors is illustrated Fig. 1. In the absence of moving objects, the value of the complex pixel in image n at position (x, r) is [START_REF] Fornaro | Threedimensional multipass sar focusing: experiments with long-term spaceborne data[END_REF] 

v n (x, r) = (y,z)∈∆(x,r) u(x, y, z)exp -jξ n h(y, z) dydz + n (1)
Fig. 1. Radar and ground geometry: The geometry of the sensors (x, r, h) doesn't allow a good expression of the structural particularity of the scene. In particular, it is not natural to express the orthogonality of ground / walls or walls / roofs. We place ourselves in the ground geometry (x, y, z) to be able to take those observations into account.

Complex variables are from now on underlined. Here, ∆(x, r) is the extension of the radar resolution cell along the elevation direction h, u(x, y, z) the complex reflectivity of the scatterer located at position (x, y, z) and h(y, z) its elevation. We chose to have the azimut and x axis being the same for simplification. ξ n = 4πbn λr is the spatial frequency depending on the baseline b n , λ stand for the wavelength and θ is the incidence angle of the master antenna. n is a complex additive white noise coming from the sensors. As we can see the ground geometry that describes best the objects is not the same as the radar geometry which will depend on the incidence angle. Usually, the tomographic inversion is processed using the radar geometry, but in order to express some structural constraints we will use the ground geometry during the inversion process. We now refer to v ∈ C Nx.Nr.N as the tomographic stack and u ∈ C Nx.Ny.Nz as the 3-D unknown scene, with N r , N x , N y and N z being the number of bins in the corresponding directions. We write Φ ∈ C (Nx.Nr.N )×(Nx.Ny.Nz) the matrix that express the signal back-scattered from a scene sampled in ground geometry to the antennas. An element of Φ is then

Φ i,j+(n-1).N = δ ri,c(yj ,zj ) exp -jξ n h(y j , z j ) (2) 
The function c(y, z) return the corresponding range of a point located at the position (y, z). The matrix Φ is highly sparse which can be used to speed-up the computation and its non-null elements correspond to permutations of the classical sensing matrix used in SAR tomography. We now have designed a linear operator that allows us to express the tomographic stack from the 3-D complex scene :

v = Φu + n (3)

TOMOGRAPHIC INVERSION

In this part we will derive the inversion of equation ( 3) using some basic priors on the urban topography. To achieve super resolution, we will have a number of unknowns variables far more important than the size of v. To be able to estimate u we will add two constraints. First, we will assume that the 3-D scene is sparse which is the same hypothesis as in CS.

Secondly, we will make the assumption that the objects are smooth in the x, y and z directions. Those hypothesis express the fact walls and roofs are seen as punctual objects in at least one direction and are smooth in the other two directions. We then want to solve the following minimization problem

û = argmin u ||Φu -v|| 2 2 + R(|u|) with R(|u|) = µ x • D x |u| 2 2 + µ y • D y |u| 2 2 + µ z • D z |u| 2 2 + µ L1 • |u| 1 (4) 
µ x , µ y , µ z and µ 1 are the parameters allowing to tune the impact of each term in R. Here the regularization is applied to the modulus of the 3-D reflectivity. One big reason is that we don't want to risk to converge to zero as we smooth two neighboring scatterers with opposite phase. The introduction of the modulus add a lot of complexity to this problem even with a relatively simple prior. To be able to solve (4), we introduce two more variables and chose an alternating minimization scheme. We now want to solve

û = argmin u Φu -v 2 2 + R(w) s.t. u = f |f | = w (5) 
The real image w will converge to the modulus of the image u and the complex image f links them. We solve (5) using a modified ADMM [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] algorithm by jointly optimizing over u and w and updating the two Lagrange multipliers :

• {û, ŵ} ← arg min u, w 1 2 ||Φu -v|| 2 2 + β 1 2 ||f (u, w) -u + d1 || 2 2 + β 2 2 w -|f (u, w)| + d2 2 2 + R(w) • d2 ← d2 + ŵ -|f (û, ŵ)| • d1 ← d1 + f (û, ŵ) -û . (6) 
β 1 and β 2 are two parameters needed for the optimization and f (u, w) is given by

f (u, w) = β 1 • |u -d1 | + β 2 • (w + d2 ) β 1 + β 2 + • exp i • arg u -d1 (7) 
The first step in ( 6) is easy to optimize as it is a sum of quadratic and linear functions. As the modulus is positive, the 1 norm can be seen as the sum of all the elements in the vector. The algorithm described in [START_REF] Fedorov | 3D Slicer as an image computing platform for the Quantitative Imaging Network[END_REF] gives a new tool capable to inverse a tomographic problem under structural priors. Even if the model we choose is still simple, it gives good results on urban areas as shown in the next section. As the framework is completely independent of the regularization chosen, the structure of the algorithm can be used to add even more sophisticated priors on the reconstructed data.

EXPERIMENTAL RESULT

The algorithm described in the previous section has been implemented and tested on a dataset of 40 TerraSAR-X images over the front de Seine in the south-west of Paris, France. The observed scene is presented Fig. 3 1 .The spatial (orthogonal component) and temporal baseline are shown in Fig. 2. The total spatial baseline span is more than 775m and the total temporal baseline more than 5 years with a large gap of almost two years in it. Fig. 4 we present the intensity of the 3-D inversion over the Mirabeau Tower and we also plot in Google Hearth the height of the discretized reconstruction obtained by thresholding the intensity. Fig. 5 we present the intensity of the 3-D inversion over the Ministry of Foreign Affairs and the height of the discretized reconstruction in Google Hearth.

CONCLUSION

In this paper, we have proposed a new algorithm for the inversion of a stack of tomographic images. In this approach, we add structural constraints on the modulus of the 3-D reflectivity in order to describe more accurately a dense urban scene. This algorithm has been implemented and gives good results on real images. Finally, as the priors we add can be changed, we introduce a framework capable of performing 3-D tomographic inversion under spatial constraint. 

Fig. 2 .

 2 Fig. 2. Spatial Baseline (orthogonal part) vs. Temporal Baseline

Fig. 3 .

 3 Fig. 3. (Top) TerraSAR-X intensity image of the observed scene (Paris). The building back-scattering a strong signal in the center af the image is the Mirabeau Tower. In the bottom left corner is the Ministry of Foreign Affairs with a periodic appearing rooftop. (Bottom) Optical image from Geoportail of the scene.

These data have been provided by the DLR in the framework of the project LAN1746

Fig. 4. (top) Intensity of the 3-D reconstruction of the Mirabeau Tower [6]. (bottom) height of the brightest points in the 3-D reconstruction plotted in Google Hearth.