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Tunneling on graphs:
an approach “à la Helffer-Sjöstrand”

Yves Colin de Verdière ∗

September 19, 2018

Introduction

In the paper [2], the authors study the tunneling effect on a finite graph G. In or-
der to evaluate the eigenvalues of a Schrödinger operator onG in the semi-classical
regime, they introduce a kind of Dirichlet to Neumann map which gives an im-
plicit equation. On the other hand, Bernard Helffer and Johannes Sjöstrand gave
a very explicit approach to the estimation of the eigenvalues of a semi-classical
Schrödinger operator in Rd in several papers. In particular, in [3], they intro-
duce the so-called interaction matrix whose eigenvalues are close to the tunneling
eigenvalues.

The goal of this note is to show that the Helffer-Sjöstrand approach is also
suitable for the problem on graphs and to describe how to compute explicitely
the interaction matrix.

1 The problem

We consider a finite non-oriented graph G = (X,E) with no loops and we denote
by d(x) the degree of the vertex x and by D(x, y) the combinatorial distance
between the vertices x and y. A Schrödinger operator H on G is defined by

H = ~2∆ + V ,

where

• ~ is a positive parameter. The semi-classical limit that we will study is
~→ 0.
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• ∆ is the linear symmetric operator on RX defined by

∆f(x) = −
∑
y∼x

f(y)) .

• The potential V is a function V : X → [0,∞[. V is called simple if ∀x ∈
X, V (x) ∈ {0, 1}.

• A well x ∈ X is a vertex of G so that V (x) = 0. L = {1, · · · , j, · · · , N}
denotes the set of wells. We assume in what follows that there is no edges
between 2 wells. It means that the wells are isolated vertices of G.

2 Dirichlet problems and decay estimates

Let j ∈ L and Lj = L \ {j}. We will consider the restriction Hj of H to the
space of functions f : X → R which vanish on Lj. The ground state of Hj is
a function ψj which is > 0 on X \ Lj. We normalize ψj by ψj(j) = 1. The
associated eigenvalue is denoted µj.

Lemma 1 As ~ → 0, lim~→0 ψj is the function εj defined by εj(j) = 1 and
εj(x) = 0 is x 6= j and lim~→0 µj = 0. Moreover ψj and µj are analytic functions
of ~2.

This is clear because the matrix of Hj is analytic in ~2 and the limit for ~ = 0 is
a diagonal matrix with all entries > 0 except the j-th which is 0.

Some notations: if P = (x0, · · · , x|P |) is a path, we define the weight sλ(P )
by

sλ(P ) = ~2|P |a(x0) · · · a(x|P |−1)

with
a(x) = (V (x)− λ)−1 .

Let us note that sλ(P ) depends on ~. Sometimes it will be convenient to write
s(P ) = sλ(P ).

Theorem 1 Let us define, for λ close to 0, the function ψλ by ψλ(j) = 1,
(ψλ)|Lj

= 0 and, for x /∈ L,

ψλ(x) =
∑
P :x→j

sλ(P ) ,

where the (convergent) sum is on all paths with x0 = x, x|P | = j and xl /∈ L for
1 ≤ l ≤ |P | − 1, Then µj is defined implicitely by∑

P :j→j

sµj(P ) = 1 ,
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where the sum is on all paths with x0 = j, x|P | = j and xl /∈ L for 1 ≤ l ≤ |P |−1.
In particular µj = ~4

∑
y∼j V (y)−1 +O (~6), ‖ψj‖ = 1 +O (~4) and

∀x ∈ X, ψj(x) = O
(
~2D(x,j)

)
.

Remark 1 The implicit equation for µj can be expanded as

µj = −
∞∑
k=2

~2k
∑

P=(j,x1,··· ,j), |P |=k

|P |−1∏
l=1

(V (xl)− µj)−1 .

This equation can be solved induction. This is related to the so-called Rayleigh-
Schrödinger series.

Proof.–

The sums on paths are absolutely convergent for ~ small enough be-
cause of the following upper bound:

Lemma 2 If G = (X,E) is a finite graph and x ∈ X, the num-
ber of paths of length l starting from x is bounded from above by
(maxx∈X d(x))l.

So, for λ close to 0 the series defining ψ is bounded by O
(∑

l(C~)2l
)
.

Let us show first that ψλ satisfies ((H − λ)ψλ)(x) = 0 if x /∈ L.
We have

((H − λ)ψλ)(x) =
1

a(x)
ψλ(x)− ~2

∑
y∼x, y /∈Lj

ψλ(y) ,

and, using the definition of ψλ, the last sum is
∑

y∼x, y /∈Lj

∑
Q:y→j sλ(Q).

Using the decomposition of P : x→ j as a path (x,Q), we get

((H − λ)ψλ)(x) = 0 .

Similarly we can compute ((H − λ)ψλ)(j) as

((H−λ)ψλ)(j) =
1

a(j)
−~2

∑
y∼x

∑
Q:y→j

sλ(Q) =
1

a(j)

(
1−

∑
P :j→j

sλ(P )

)
.

�
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3 The interaction matrix

Our goal is to apply Theorem 3 with F the space generated by the ψj’s with
j ∈ L. Using Proposition 1, we can take η = ~4 and ε = ~2S0 with S0 :=
mini,j∈L, i6=j D(i, j). The diagonal entries of the interaction matrix HE are the
µj’s estimated in Proposition 1. We need to compute 〈rj|ψi〉. Using the fact that
((H−µj)ψj)(x) = 0 if x /∈ L\j, we get 〈rj|ψi〉 =

∑
l∈L\j((H−µj)ψj)(l)ψi(l). We

have ((H−µj)ψj)(l) =
∑

P :l→j s̃µj(P ) with s̃µj((l, x1, · · · , j)) = −~2|P |∏|P |−1
l=1 a(xl).

We get

〈rj|ψi〉 =
∑

P :i→j, |P |=S0

s̃µj(P ) +O
(
~2S0+2

)
.

Summarizing, we get the

Theorem 2 Up to O
(
~2S0+2

)
, the |L| first eigenvalues of H are those of the

matrix I = Diag(µj) + rij with

rij = −~2S0

∑
P=(i,x1,··· ,xl,··· ,j), |P |=S0

|P |−1∏
l=1

1

V (xl)
,

where the paths P in the sum satisfy xl /∈ L for 1 ≤ l ≤ |P | − 1.

4 Simple potentials on graphs of constant de-

gree d

Definition 1 The potential V is called simple if, for all vertices x ∈ X, we have
V (x) = 0 or 1.

If we assume moreover that the vertices of G are all of the same degree d, the
matrix I becomes purely combinatorial.

In this case, we have

s(P ) = ~2|P |(−λ)−1(1− λ)1−|P | ,

and the equation for µj is

µj = −
∞∑
k=2

~2k(1− µj)1−|k|Nj(k)

where Nj(k) is the number of paths P : j → j of length k.
The non-diagonal entries of I are given by

rij = −~2S0#{P : i→ j| |P | = S0} .
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5 Application to simulated annealing

The problem is to find the global minimum of a function H on a finite, but large
set X. We assume that the set X has a graph structure G = (X,E) which gives
a way to move on it.

Example 5.1 X is the set of element of the group SN of permutations of N
letters. S is a small generating set of SN and the G is the associated Cayley
graph.

Example 5.2 X = {−1,+1}Y is a spin system on the lattice Y and, if x, y ∈ X,
{x, y} ∈ E if all cordinates of x and y are the same except one.

The function H can be assumed to be with values in N and we can also assume
that, for {x, y} ∈ E, H(x)−H(y) = ±1. Let us fix some positive number T > 0,
the temperature, then there is a probability measure on X, called the Gibbs
measure, defined by µT ({x}) = Z−1e−H(x)/T . As T → 0+, the measure µT is
more and more concentrated on the global minima of H. We can define a Markov
process on X by the transition matrix ΛT defined by λx,y = 1 if H(y) < H(x),
λx,y = e−(H(y)−H(x))/T if H(y) > H(x) and λx,x = −

∑
y∼x λx,y. The quadratic

form associated to −ΛT is

qT (f) =
1

2
Z−1

∑
x∈X

e−H(x)/T
∑
y∼x

λx,y(f(x)− f(y))2 .

The measure µT is the stationary measure of this Markov process defined by

Prob({γ|γ(0) = x, γ(t) = y}) = etΛ
?
T (x, y) .

The matrix ΛT gives a symmetric map on l2(µT ) whose eigenvalues are λ1 =
0 > λ2 ≥ · · · . The speed of convergence of a random trajectory is basically
controlled by the gap −λ2 of the matrix ΛT . The main information is given by
the asymptotic behavior of the gap as T → 0+. This asymptotic behaviour is the
main object of the paper [1]. In this paper, we propose an algorithm in order to
determine the order of magnitude of the gap: an even power of ε = e−1/T .

The first step is to indentify l2(X,µT ) with l2(X, can) where can is the measure∑
x∈X δ(x). This is done using the unitary map U : l2(X, can) → l2(X,µT )

defined by
(Uf)(x) = Z

1
2 eH(x)/2Tf(x) .

The quadratic form associated to HT = −U?ΛTU , QT (f) = qT (Uf) is given by

QT (f) =
∑

x∼y, H(y)=H(x)−1

(f(x)− εf(y))2
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with ε = exp(−1/2T ). It can be checked that the lowest eigenvalue of QT is
0 with eigenvector f(x) = εH(x) which concentrate on the global minimas of
H. We have also HT = −εAG + Vε where AG is the adjacency matrix and
Vε(x) = n+(x) + ε2n−(x) with n+(x) = #{y ∼ x|H(y) = H(x)− 1} and n−(x) =
#{y ∼ x|H(y) = H(x) + 1}.

Our goal in [1] was do determine the asymptotic behavior of the gap of HT

as T → 0+. This can also be done using the previous approach with ~ :=
√
ε and

V depending now of ~ in a smooth way.

Appendix A: abstract interaction matrix

Let H be an Hilbert space (assumed to be real for simplicity) and E ,F two
subspaces of H, let us define the “distance”

d(E ,F) = sup
x∈E, ‖x‖=1

inf
y∈F
‖x− y‖ .

If dim E = dimF = N < ∞, one checks, using an isometry of H exchanging E
and F , that d is symmetric.

Lemma 3 Let A be self-adjoint on H, I = [α, β] ⊂ R and a > 0 so that
Spectrum(A) ∩ ([α− a, α[∪]β, β + a]) = ∅. Let ψj, j = 1, ..., N, so that

‖(A− µj)ψj‖ ≤ ε (1)

with α ≤ µj ≤ β and F the space generated by the ψj’s. If E is the range of the
spectral projector Π of A associated to the interval I = [α, β], we have:

d(F , E) ≤ ε
√
N/a
√
λS ,

where λS is the smallest eigenvalue of the matrix S = (sij) = (< ψi|ψj >).

Proof.–

Let ψj = vj + wj where vj is the projection of ψj on E . We have,
using the fact that wj belongs to the image of the spectral projector
Id− Π and the assumption on the spectrum of A,

ε ≥ ‖(A− µj)ψj‖ ≥ ‖(A− µj)wj‖ ≥ a‖wj‖

and hence ‖ψj − vj‖ ≤ ε/a.
If ψ =

∑
xjψj and v =

∑
xjvj is the projection of ψ on E , we

have, using Cauchy-Schwarz inequality,

‖ψ − v‖ ≤
√∑

x2
j .
√
N.

ε

a
,
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and:
‖ψ‖2 =

∑
xixjsi,j ≥ λS

∑
x2
j .

The result follows.

�
We keep the Assumptions of Lemma 3, in particular Equation (1), and assume

now that dim(E) = dim(F) = N so that d(E ,F) = 0(ε). We assume also that we
have two small parameters η = o(1), ε = o(1) and that

〈ψi|ψi〉 = 1 +O(η) and for i 6= j, 〈ψi|ψj〉 = O(ε) . (2)

We denote by Ψi = ψi/‖ψi‖, Vi = ΠΨi. If Σ is the matrix of the scalar products
Σ = (〈Vi|Vj〉) and if (κij) denotes the matrix Σ−1/2, we put ei =

∑
k κikVk. The

set O = {ei|i = 1, · · · , N} is an orthonormal basis of E . The next statement
gives an approximation of the matrix of the restriction AE of A to E in the basis
O:

Theorem 3 The matrix AE of A|E in the basis O is given by:

aij =< Aei|ej >= µiδi,j +
1

2
(< ri|ψj > + < rj|ψi >) +O (ε(ε+ η)) ,

with ri = (A− µi)ψi = O (ε).

Proof.–

First, by Pythagore’s Theorem and using Equation (2),

< Vi|Vj >=< Ψi|Ψj > +O
(
ε2
)

:= δi,j + Ti,j

with T = (Tij) = 0(ε).
Similarly

< AVi|Vj >=< AΨi|Ψj > +O
(
ε2
)

:

we start with Ψi = Vi + Wi and AΨi = AVi + AWi. Using AΨi =
µiΨi + ri/‖ψi‖ and projecting on E⊥, we get AWi = O(ε).

We get then using the symmetry of A:

(< AVi|Vj >) = Dµ+
1

2
(DµT + TDµ)+

1

2
(< ri|ψj > + < rj|ψi >)+O (ε(ε+ η)) ,

where Dµ is the diagonal matrix whose entries are the µi’s.
Using the fact that (ei) = (Id− T/2 +O (ε2)) (Vj), we get :

(< Aei|ej >) = (Id− T/2) (< AVi|Vj >) (Id− T/2) +O
(
ε2
)
.

The final result follows.

7



�

Corollary 1 If λ1 ≤ · · · ≤ λN are the eigenvalues of A in the interval I and
µ1 ≤ · · · ≤ µN are the eigenvalues of

Dµ +
1

2
(〈ri|ψj〉+ 〈rj|ψi〉) ,

then
λj = µj +O (ε(ε+ η)) .
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[3] Bernard Helffer & Johannes Sjöstrand. Multiple wells in the semi-classical
limit I. Comm. PDE 9 (4):337–408 (1984).
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