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Introduction

In the paper [START_REF] Li | Quantum tunneling on graphs[END_REF], the authors study the tunneling effect on a finite graph G. In order to evaluate the eigenvalues of a Schrödinger operator on G in the semi-classical regime, they introduce a kind of Dirichlet to Neumann map which gives an implicit equation. On the other hand, Bernard Helffer and Johannes Sjöstrand gave a very explicit approach to the estimation of the eigenvalues of a semi-classical Schrödinger operator in R d in several papers. In particular, in [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF], they introduce the so-called interaction matrix whose eigenvalues are close to the tunneling eigenvalues.

The goal of this note is to show that the Helffer-Sjöstrand approach is also suitable for the problem on graphs and to describe how to compute explicitely the interaction matrix.

The problem

We consider a finite non-oriented graph G = (X, E) with no loops and we denote by d(x) the degree of the vertex x and by D(x, y) the combinatorial distance between the vertices x and y. A Schrödinger operator H on G is defined by

H = 2 ∆ + V ,

where

• is a positive parameter. The semi-classical limit that we will study is → 0.

• ∆ is the linear symmetric operator on R X defined by

∆f (x) = - y∼x f (y)) . • The potential V is a function V : X → [0, ∞[. V is called simple if ∀x ∈ X, V (x) ∈ {0, 1}. • A well x ∈ X is a vertex of G so that V (x) = 0. L = {1, • • • , j, • • • , N }
denotes the set of wells. We assume in what follows that there is no edges between 2 wells. It means that the wells are isolated vertices of G.

Dirichlet problems and decay estimates

Let j ∈ L and L j = L \ {j}. We will consider the restriction H j of H to the space of functions f : X → R which vanish on L j . The ground state of H j is a function ψ j which is > 0 on X \ L j . We normalize ψ j by ψ j (j) = 1. The associated eigenvalue is denoted µ j .

Lemma 1 As → 0, lim →0 ψ j is the function ε j defined by ε j (j) = 1 and ε j (x) = 0 is x = j and lim →0 µ j = 0. Moreover ψ j and µ j are analytic functions of 2 . This is clear because the matrix of H j is analytic in 2 and the limit for = 0 is a diagonal matrix with all entries > 0 except the j-th which is 0.

Some notations:

if P = (x 0 , • • • , x |P |
) is a path, we define the weight s λ (P ) by

s λ (P ) = 2|P | a(x 0 ) • • • a(x |P |-1 ) with a(x) = (V (x) -λ) -1 .
Let us note that s λ (P ) depends on . Sometimes it will be convenient to write s(P ) = s λ (P ).

Theorem 1 Let us define, for λ close to 0, the function ψ λ by ψ λ (j) = 1, (ψ λ ) |L j = 0 and, for x / ∈ L,

ψ λ (x) = P :x→j s λ (P ) ,
where the (convergent) sum is on all paths with x 0 = x, x |P | = j and x l / ∈ L for 1 ≤ l ≤ |P | -1, Then µ j is defined implicitely by

P :j→j s µ j (P ) = 1 ,
where the sum is on all paths with x 0 = j, x |P | = j and

x l / ∈ L for 1 ≤ l ≤ |P |-1. In particular µ j = 4 y∼j V (y) -1 + O ( 6 ), ψ j = 1 + O ( 4 ) and ∀x ∈ X, ψ j (x) = O 2D(x,j) .
Remark 1 The implicit equation for µ j can be expanded as

µ j = - ∞ k=2 2k P =(j,x 1 ,••• ,j), |P |=k |P |-1 l=1 (V (x l ) -µ j ) -1 .
This equation can be solved induction. This is related to the so-called Rayleigh-Schrödinger series.

Proof.-

The sums on paths are absolutely convergent for small enough because of the following upper bound: E) is a finite graph and x ∈ X, the number of paths of length l starting from x is bounded from above by

Lemma 2 If G = (X,
(max x∈X d(x)) l .
So, for λ close to 0 the series defining ψ is bounded by O

l (C ) 2l . Let us show first that ψ λ satisfies ((H -λ)ψ λ )(x) = 0 if x / ∈ L. We have ((H -λ)ψ λ )(x) = 1 a(x) ψ λ (x) -2 y∼x, y / ∈L j ψ λ (y) ,
and, using the definition of ψ λ , the last sum is y∼x, y / ∈L j Q:y→j s λ (Q). Using the decomposition of P : x → j as a path (x, Q), we get

((H -λ)ψ λ )(x) = 0 . Similarly we can compute ((H -λ)ψ λ )(j) as ((H-λ)ψ λ )(j) = 1 a(j) -2 y∼x Q:y→j s λ (Q) = 1 a(j)
1 -P :j→j s λ (P ) .

The interaction matrix

Our goal is to apply Theorem 3 with F the space generated by the ψ j 's with j ∈ L. Using Proposition 1, we can take η = 4 and ε = 2S 0 with S 0 := min i,j∈L, i =j D(i, j). The diagonal entries of the interaction matrix H E are the µ j 's estimated in Proposition 1. We need to compute r j |ψ i . Using the fact that ((H -µ j )ψ j )(x) = 0 if x / ∈ L \ j, we get r j |ψ i = l∈L\j ((H -µ j )ψ j )(l)ψ i (l). We have ((H-µ j )ψ j )(l) = P :l→j sµ j (P ) with sµ j ((l,

x 1 , • • • , j)) = -2|P | |P |-1 l=1 a(x l ). We get r j |ψ i = P :i→j, |P |=S 0 sµ j (P ) + O 2S 0 +2 .
Summarizing, we get the Theorem 2 Up to O 2S 0 +2 , the |L| first eigenvalues of H are those of the matrix I = Diag(µ j ) + r ij with

r ij = -2S 0 P =(i,x 1 ,••• ,x l ,••• ,j), |P |=S 0 |P |-1 l=1 1 V (x l )
,

where the paths P in the sum satisfy

x l / ∈ L for 1 ≤ l ≤ |P | -1.
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Simple potentials on graphs of constant degree d

Definition 1 The potential V is called simple if, for all vertices x ∈ X, we have V (x) = 0 or 1.

If we assume moreover that the vertices of G are all of the same degree d, the matrix I becomes purely combinatorial.

In this case, we have

s(P ) = 2|P | (-λ) -1 (1 -λ) 1-|P | ,
and the equation for µ j is

µ j = - ∞ k=2 2k (1 -µ j ) 1-|k| N j (k)
where N j (k) is the number of paths P : j → j of length k.

The non-diagonal entries of I are given by

r ij = -2S 0 #{P : i → j| |P | = S 0 } .

Application to simulated annealing

The problem is to find the global minimum of a function H on a finite, but large set X. We assume that the set X has a graph structure G = (X, E) which gives a way to move on it.

Example 5.1 X is the set of element of the group S N of permutations of N letters. S is a small generating set of S N and the G is the associated Cayley graph.

Example 5.2 X = {-1, +1} Y is a spin system on the lattice Y and, if x, y ∈ X, {x, y} ∈ E if all cordinates of x and y are the same except one.

The function H can be assumed to be with values in N and we can also assume that, for {x, y} ∈ E, H(x) -H(y) = ±1. Let us fix some positive number T > 0, the temperature, then there is a probability measure on X, called the Gibbs measure, defined by µ T ({x}) = Z -1 e -H(x)/T . As T → 0 + , the measure µ T is more and more concentrated on the global minima of H. We can define a Markov process on X by the transition matrix Λ T defined by λ x,y = 1 if H(y) < H(x), λ x,y = e -(H(y)-H(x))/T if H(y) > H(x) and λ x,x = -y∼x λ x,y . The quadratic form associated to -Λ T is

q T (f ) = 1 2 Z -1 x∈X e -H(x)/T y∼x λ x,y (f (x) -f (y)) 2 .
The measure µ T is the stationary measure of this Markov process defined by Prob({γ|γ(0) = x, γ(t) = y}) = e tΛ T (x, y) .

The matrix Λ T gives a symmetric map on l 2 (µ T ) whose eigenvalues are λ 1 = 0 > λ 2 ≥ • • • . The speed of convergence of a random trajectory is basically controlled by the gap -λ 2 of the matrix Λ T . The main information is given by the asymptotic behavior of the gap as T → 0 + . This asymptotic behaviour is the main object of the paper [START_REF] Colin De Verdière | Singular limits of Schrödinger operators and Markov processes[END_REF]. In this paper, we propose an algorithm in order to determine the order of magnitude of the gap: an even power of ε = e -1/T . The first step is to indentify l 2 (X, µ T ) with l 2 (X, can) where can is the measure x∈X δ(x). This is done using the unitary map U :

l 2 (X, can) → l 2 (X, µ T ) defined by (U f )(x) = Z 1 2 e H(x)/2T f (x) .
The quadratic form associated to

H T = -U Λ T U , Q T (f ) = q T (U f ) is given by Q T (f ) = x∼y, H(y)=H(x)-1 (f (x) -εf (y)) 2
with ε = exp(-1/2T ). It can be checked that the lowest eigenvalue of Q T is 0 with eigenvector f (x) = ε H(x) which concentrate on the global minimas of H. We have also H T = -εA G + V ε where A G is the adjacency matrix and

V ε (x) = n + (x) + ε 2 n -(x) with n + (x) = #{y ∼ x|H(y) = H(x) -1} and n -(x) = #{y ∼ x|H(y) = H(x) + 1}.
Our goal in [START_REF] Colin De Verdière | Singular limits of Schrödinger operators and Markov processes[END_REF] was do determine the asymptotic behavior of the gap of H T as T → 0 + . This can also be done using the previous approach with := √ and V depending now of in a smooth way.

Appendix A: abstract interaction matrix

Let H be an Hilbert space (assumed to be real for simplicity) and E, F two subspaces of H, let us define the "distance"

d(E, F) = sup x∈E, x =1 inf y∈F x -y .
If dim E = dim F = N < ∞, one checks, using an isometry of H exchanging E and F, that d is symmetric.

Lemma 3 Let A be self-adjoint on H, I = [α, β] ⊂ R and a > 0 so that Spectrum(A) ∩ ([α -a, α[∪]β, β + a]) = ∅. Let ψ j , j = 1, ..., N, so that

(A -µ j )ψ j ≤ ε (1) 
with α ≤ µ j ≤ β and F the space generated by the ψ j 's. If E is the range of the spectral projector Π of A associated to the interval I = [α, β], we have:

d(F, E) ≤ ε √ N /a √ λ S ,
where λ S is the smallest eigenvalue of the matrix S = (s ij ) = (< ψ i |ψ j >).

Proof.-Let ψ j = v j + w j where v j is the projection of ψ j on E. We have, using the fact that w j belongs to the image of the spectral projector Id -Π and the assumption on the spectrum of A, ε ≥ (A -µ j )ψ j ≥ (A -µ j )w j ≥ a w j and hence ψ j -v j ≤ ε/a. If ψ = x j ψ j and v = x j v j is the projection of ψ on E, we have, using Cauchy-Schwarz inequality,

ψ -v ≤ x 2 j . √ N . ε a ,
and:

ψ 2 = x i x j s i,j ≥ λ S x 2 j . The result follows.
We keep the Assumptions of Lemma 3, in particular Equation (1), and assume now that dim(E) = dim(F) = N so that d(E, F) = 0( ). We assume also that we have two small parameters η = o(1), = o(1) and that

ψ i |ψ i = 1 + O(η) and for i = j, ψ i |ψ j = O( ) . (2) 
We denote by 

Ψ i = ψ i / ψ i , V i = ΠΨ i . If Σ is the matrix of the scalar products Σ = ( V i |V j ) and if (κ ij ) denotes the matrix Σ -1/2 , we put e i = k κ ik V k . The set O = {e i |i = 1, • • • , N } is
a ij =< Ae i |e j >= µ i δ i,j + 1 2 (< r i |ψ j > + < r j |ψ i >) + O (ε(ε + η)) ,
with r i = (A -µ i ) ψ i = O (ε).

Proof.-First, by Pythagore's Theorem and using Equation (2), < V i |V j >=< Ψ i |Ψ j > +O ε 2 := δ i,j + T i,j

with T = (T ij ) = 0( ). Similarly

< AV i |V j >=< AΨ i |Ψ j > +O ε 2 :
we start with Ψ i = V i + W i and AΨ i = AV i + AW i . Using AΨ i = µ i Ψ i + r i / ψ i and projecting on E ⊥ , we get AW i = O(ε). We get then using the symmetry of A:

(< AV i |V j >) = D µ + 1 2 (D µ T + T D µ )+ 1 2 (< r i |ψ j > + < r j |ψ i >)+O (ε(ε + η)) ,
where D µ is the diagonal matrix whose entries are the µ i 's.

Using the fact that (e i ) = (Id -T /2 + O (ε 2 )) (V j ), we get :

(< Ae i |e j >) = (Id -T /2) (< AV i |V j >) (Id -T /2) + O ε 2 .

The final result follows. 

Corollary 1 2 (

 12 If λ 1 ≤ • • • ≤ λ N are the eigenvalues of A in the interval I and µ 1 ≤ • • • ≤ µ N are the eigenvalues of D µ + 1 r i |ψ j + r j |ψ i ) , then λ j = µ j + O (ε(ε + η)) .

  an orthonormal basis of E. The next statement gives an approximation of the matrix of the restriction A E of A to E in the basis

O:

Theorem 3 The matrix A E of A |E in the basis O is given by: