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Abstract
In this paper, we propose a method to generate a three-
dimensional (3D) thermal map and RGB + thermal
(RGB-T) images of a scene from thermal-infrared and
RGB images. The scene images are acquired by mov-
ing both a RGB camera and an thermal-infrared camera
mounted on a stereo rig. Before capturing the scenewith
those cameras, we estimate their respective intrinsic pa-
rameters and their relative pose. Then, we reconstruct
the 3D structures of the scene by using Direct Sparse
Odometry (DSO) using the RGB images. In order to
superimpose thermal information onto each point gen-
erated from DSO, we propose a method for estimating
the scale of the point cloud corresponding to the ex-
trinsic parameters between both cameras by matching
depth images recovered from the RGB camera and the
thermal-infrared camera based on mutual information.
We also generate RGB-T images using the 3D structure
of the scene and Delaunay triangulation. We do not
rely on depth cameras and, therefore, our technique is
not limited to scenes within the measurement range of
the depth cameras. To demonstrate this technique, we
generate 3D thermal maps and RGB-T images for both
indoor and outdoor scenes.

1 Introduction
Thermal-infrared cameras measure infrared rays emit-
ted from any objects and can use this ray information
to estimate the object temperature. This temperature,

which can not be retrieved from RGB cameras, is a
valuable information that leads to many applications in
industrial domains as well as in academic research. In-
deed, thermal-infrared cameras can be used to detect gas
leaks, fires, abnormalities in electronic apparatus, and
so on. Most of these issues are hardly detectable with
visible light, thus thermal-infrared cameras constitute a
precious tool in these cases. However, thermal-infrared
camera also presents some drawbacks. In practice, the
material used to produce the lenses of thermal-infrared
cameras usually makes their field of view usually nar-
row compared to the lenses of standard RGB cameras.
Moreover, textures perceptible in visible spectral do-
main (i.e. captured by RGB cameras) are likely lost in
invisible light. Since the human eye deals with visi-
ble light, it is often difficult for humans to understand
thermal-infrared images due to this texture alteration.

These issues would be easily solved if it was possible
to perfectly superpose a thermal-infrared image with its
corresponding RGB image. This is feasible only if both
RGB and thermal-infrared cameras share the same pro-
jection center (i.e., the same position). Some very spe-
cific cameras, such as the one used in [1], can simultane-
ously capture RGB and thermal-infrared images. How-
ever, in standard situations, RGB and thermal-infrared
images are captured using different cameras. This paper
addresses the problem to effectively associate thermal
data to its corresponding RGB counterpart for visual-
ization purposes.
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Figure 1: Example of a generated thermal map and
RGB-T image. The correspondence between RGB and
thermal-infrared images is obtained using the 3D struc-
ture generated from DSO. The top row shows a refer-
ence view and a 3D reconstructed result, the middle
row shows a 3D thermal model generated by the pro-
posed method, and the bottom shows an RGB-T image
and reference frames of an RGB and a thermal-infrared
cameras.

2 Related Works

In this paper, we consider the situation where the ac-
quisition device is composed of at least an RGB and
a thermal-infrared camera. In a standard situation, the
two (or more) cameras can not share the same posi-
tion. Thus, the matching of these data requires some
geometric computation.
A feasible way to proceed consists of adding a 3D

sensor to the thermal-infrared and RGB cameras to han-
dle these geometric constraints. Borrmann et al. [2] use

a laser scanner and an RGB camera. Due to its heavy
weight, the laser scanner is attached to the RGB cam-
era and mounted on a wheeled robot. The robot moves
around the scene and performs laser scans repeatedly to
generate a 3D RGB map. For each scan of the scene,
the robot also acquires the corresponding 3D thermal
map. While this method performs well, both the laser
scanner and the robot are very expensive. Moreover,
the need for a wheeled robot prevents the acquisition
process to be conducted in scenes composed of stairs or
other low-quality paths.

A cheaper alternative consists of using an RGB-D
sensor to generate the 3D model of the scene. Vi-
das et al. [3], as well as Matsumoto et al. [4] mount
a Kinect with a thermal-infrared camera on a hand-held
stereo rig. They obtain a 3D structure of the scene us-
ing KinectFusion [5]. Although, this method performs
well in indoor situations, low cost depth sensors, such as
Kinect, usually fail in outdoor environments where the
sunlight affects the depth value acquisition [6, 7]. More-
over, the size of the acquired scene is usually limited to
small areas with the use of KinectFusion.

Prakash et al. [8] combines two thermal-infrared cam-
eras and use stereo vision to compute a 3D model of
the scene. In this method, they use epipolar geome-
try from the thermal-infrared images to constrain the
computation of correspondence. However, the thermal
stereo method is relevant only when there are signifi-
cant temperature gradients on the object surface. Up to
now, finding stereo correspondences between 2 thermal-
infrared images is still very challenging, as stated in [9].
Indeed, since the thermal-infrared images are low tex-
tured, standard matching method often find very few
correspondences.

Finally, Ham et al. [10] compute the geometry of
the scene using the Structure from Motion (SfM) tech-
nique [11] and superimpose the thermal information on
the resulting 3D structure. This system uses only an
RGB camera and a thermal-infrared camera, and thus
handles both indoor scenes and outdoor scenes. How-
ever, the calculation cost of the 3D reconstruction from
the SfM is significant. Indeed, SfM combines all the im-
ages of the considered sequence in order to match them.
Thus, the generated 3D point cloud is accurate, however
this process leads to a significant computational cost.
On the other hand, SLAM uses selective frames (e.g.,
keyframes) or the last consecutive frames to improve its
real-time performance during the video capture. Thus,
this approach results in a low computational cost for a
3D reconstruction not as accurate as for SfM [12].

2



Figure 2: Overview of the proposed method.

In this work, we propose amethod combining an RGB
camera with a thermal-infrared camera. As discussed
in [10], this setup does not include any depth sensor and
thus also supports outdoor scenes. We use a simultane-
ous localization and mapping (SLAM) method instead
of a SfM approach, so the calculation cost is lower than
in [10]. Moreover, we propose a robust calibration pro-
cess for thermal-infrared cameras as well as an accurate
camera relative pose for a more efficient thermal to RGB
mapping.

3 Overview of the Proposed
Method

In this paper, we present a method to generate RGB-T
images (RGB plus Thermal) by superimposing thermal
information obtained from the thermal-infrared camera
onto the RGB images.
More precisely, our system consists of four stages:

first, we attach an RGB camera and a thermal-infrared
camera on a stereo rig, then calibrate them using a com-
mon calibration board that can be simultaneously de-
tected by both cameras, as described in Section 4. Sec-
ond, we acquire a set of images of the scene with the
RGB camera and generate at runtime a 3D structure of
the environment, as explained in Section 5. In the third
step, we estimate the projective scale between the 3D
structure and the calibration board using depth images

generated from both RGB and thermal-infrared camera
sequences, as described in Section 6. Finally, the ther-
mal map and the RGB-T images are generated using the
3D structure computed from the RGB images and the
estimated scale. An overview of the whole process is
depicted in Fig. 2.

Ourmain contribution is this paper consists in both the
accurate thermal camera calibration process (Section 4)
and the overall process to superimpose Thermal-infrared
data on 3D reconstruction from the RGB images, includ-
ing the specific problem of finding the unknown projec-
tive scale between RGB and Thermal-infrared cameras
(Section 6).

4 Camera Calibration

4.1 Calibration Board Issues
Camera calibration is a well known process for pinhole
cameras. This process, that usually requires point cor-
respondences between images, has been wildly studied
for RGB images but appears to be more challenging
for thermal-infrared cameras, due to the lack of tex-
tures. Assuming that the calibration process is per-
formed using a calibration board, the thermal-infrared
camera hardly detects the calibration pattern. Indeed, a
thermal-infrared camera measures the temperature from
the infrared rays emitted by objects. The locally emitted
infrared light intensity depends more on the object tem-
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perature than on the color of the object. Even though it
is true that black objects absorb and emit a larger amount
of infrared energy than brighter objects, in practice, a
thermal-infrared camera cannot detect a checker pattern
if the temperature of the calibration board is uniform
across the black and white parts.
A general way to make the board detectable by the

thermal-infrared camera is to heat the calibration board
in order to make the re-emitted light significantly hotter
than the intrinsic object temperature. Matsumoto et
al. [4] uses a hair dryer to heat the calibration boardwhile
Ham et al. and Weinmann et al. [13, 10] prefer to use a
set of lamps. Some other methods proposed by Prakash
et al. and Saponaro et al. [14, 15] use a flood lamp to
heat the calibration board. However, Vidas et al. [16]
suggest that the use of a flood lamp is comparatively
inaccurate.
In our method, we designed our calibration board

from a printed chessboard pattern and placed black plas-
tic tape on the black parts. Then, we used a freezer to
cool the calibration board. Heating the board with a
lamp is also a good way to proceed, however using a
freezer is more convenient in our case.
The resulting image obtained after heating or cooling

still presents some very blurred textures, as shown in
Fig. 3. This blur is caused by the fact that the board
temperature quickly tends to diffuse from one cell to the
next. Thus, after the heating or cooling process, the
measured temperature gradually diffuse from a black
part to a white one.
This blur is a serious issue for the calibration pro-

cess, in term of accuracy but also for any automatic
chessboard detection. In our method, we first estimate
the camera lens distortion parameter using the plumb
line method (more details in Section 4.3). Next, we
perform an initial estimation of the checker pattern cor-
ners. These estimated points are significantly refined
using a non-linear process involving constrains such as
cross-ratio and vanishing point consistency.

4.2 Camera Model

In this paper, we use the pinhole camera model [17]
for both the RGB and thermal-infrared cameras. Let
x = (u, v, 1)> andX = (X,Y, Z, 1)> be the image coordi-
nates and the world coordinates, respectively. A camera

Figure 3: Blur on the thermal-infrared camera im-
age. The top row shows images of a calibration board
captured by both a thermal-infrared camera and an RGB
camera. At the bottom row, a zoomed corner on a
thermal-infrared image and an RGB image are com-
pared. It is more difficult to detect a thermal-infrared
image than an RGB image because of the blur.

projection matrix is defined as follows:

P = K
[
R t

]
, with K =


fx 0 x0
0 fy y0
0 0 1


R ∈ SO(3), t ∈ R3. (1)

where K is the camera’s intrinsic matrix, defined by
the camera principal point (x0, y0) and the camera focal
length

(
fx, fy

)
expressed in pixel units. R is a 3 × 3

rotation matrix defining the camera orientation and t is a
transformation vector representing the camera position.
A 3D world coordinate point X = (X,Y, Z, 1)> projects
to a 2D image point x = (u, v, 1)> by sx = PX, with
s ∈ R∗.

4.3 Distortion Correction
The camera lens distortion correction is performed only
once per camera unless the lenses are changed or ma-
nipulated (zoom or strong refocus). We use the plumb
line method described by Devernay and Faugeras [18]
in order to correct the lens distortion by making straight
lines of the scene also straight in the image. Thismethod
requires a set of points assumed to be aligned in the real
world. In our case, we manually extract these points
from buildings images that contain good straight lines
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Figure 4: Estimation of distortion parameter. (Left)
A set of points supposed to be aligned in the real scene
and their least-square fitted line. (Right) Corresponding
undistorted image.

with strong thermal contrasts with the sky. The method
defined in [18] non-linearly computes the fine radial
distortion parameters such that the selected points be-
come aligned. The resulting images present a very good
correction, as depicted in Fig. 4. This radial distortion
correction procedure is strongly required for the next
steps of the camera calibration process.

4.4 Corner Refinement
This section presents our chessboard corner points re-
finement. This process highly improve the accuracy of
the camera calibration.

4.4.1 Initial Detection

A very common way to detect a calibration chessboard
is to use the automatic tools provided by OpenCV1. This
tool automatically detects the corner of the chessboard
and is wildly used to calibrate RGB cameras. However,
in the thermal-infrared camera case, the inherent blur
(shown in Fig. 3) makes the point detection accuracy
drastically fall. The point detection is clearly inaccurate
and messy for thermal images. Since a good accuracy
in camera calibration is required for the thermal to RGB
mapping, we propose a chessboard detection refinement
process.

4.4.2 Corner Refinement based on Line Intersec-
tion

This process starts from an undistorted image of the cal-
ibration chessboard obtained from Section 4.3. Thus,

1Open Source Computer Vision Library (OpenCV)
http://opencv.org/

every corner of the checkerboard pattern should be de-
tected such that each point lying on the same row (re-
spectively column) should be aligned. We refine the
corner points using line intersection optimization in-
spired by the method proposed by De la Escalera and
Armingol [19]. In ourmethod, we perform a least square
fitting of the lines from the “inaccurate” detected corners
instead of using the Hough transform on the image.

Naturally, these first estimated lines are not accurate
due to the blur on the thermal-infrared images, see Fig. 5
(left). However, they can be considered as a good start-
ing estimation for the first step of our refinement process.
These lines are transformed to fit the neighboring max-
imum gradient of the image intensity, computed only in
the orthogonal direction of the lines. In other words,
the lines are transformed to lie on the middle of the blur
between the black and the white cells of the chessboard.
Since the maximum gradient point set may include out-
liers, the line fitting is performed with RANSAC line
fitting. Finally, the corner points are estimated based on
the intersection between each rows and columns.

4.4.3 Corner Refinement based on Geometric Con-
straints

Firstly, let P denote the set of the corners initially
detected on the calibration board and refined in Sec-
tion 4.4.2. The next step of our refinement consists in
a non-linear process. Indeed, we also optimize the cor-
ners’ position according to both the cross-ratio extracted
from each chessboard cell and the vanishing points of
the chessboard rows and columns respectively.

Cross ratio Corner points are placed at constant in-
tervals on the chessboard and thus should satisfy some
constraints of cross-ratio. The cross-ratio is a perspec-
tive invariant defined in the invariance theory of cross-
ratio [20, 17]. If the points A, B, C and D are collinear
in space, the four corresponding projected image points
A′, B′, C ′ and D′ are also collinear. The cross-ratio
of two sets of any such consecutive four points from
any row (or column) of the chessboard are identical and
satisfies the following equation:

ρ̂ =
AC
CB
/

AD
DB
=

A′C ′

C ′B′
/

A′D′

D′B′
(2)

In practice, it is possible to measure how the detected
points satisfy this cross-ratio constraint by a cost func-
tionCcross(P) inspired by amethod proposed by Ricolfe-
Viala et al. [21]. This cross-ratio cost is equally di-
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Figure 5: Initial detection and refining the points. Refined corner points should lie along straight lines in the
left image. The center image shows the refinement of the points. Blue points are points detected by OpenCV and
Red Points are the refined points, and the right image shows lines drawn connecting the corners.

vided into two costs dedicated respectively to rows and
columns constrains:

Ccross(P) = Crows
cross(P) + Ccols

cross(P)

where Crows
cross(P) and Ccols

cross(P) are computed in the same
way. For clarity purpose, we will detail only the com-
putation of Crows

cross(P). According to the cross-ratio con-
straint, each four successive points of a row should lead
to the theoretical cross-ratio ρ̂ defined by any consecu-
tive points on the chessboard. Let Qrows be the set of all
combination of four consecutive points q = A, B,C,D of
P, extracted only from the rows of the calibration board.
The cross-ratio ρ(qi) of each qi ∈ Qrows is defined as:

ρ(qi) =
AiCi

CiBi
/

AiDi

DiBi

Then, the cross-ratio cost function dedicated to the rows
points can be defined as:

Crows
cross(P) =

1
card(Qrows)

∑
qi ∈Qrows

(
1 −

ρ(qi)
ρ̂

)
(3)

The same procedure holds for Qcols with:

Ccols
cross(P) =

1
card(Qcols)

∑
qi ∈Qrows

(
1 −

ρ(qi)
ρ̂

)
(4)

Vanishing points As for the cross-ratio cost function,
the vanishing point cost function is divided into two costs
since a calibration board contains two main vanishing
points:

Cvanish(P) = Crows
vanish(P) + Ccols

vanish(P)

Again, let’s just consider the chessboard row vanishing
point. The cost function procedure starts by an esti-
mation of the vanishing point (xv, yv) computed as the
least square intersection of all the line extending each
rows. Then, the vanishing point cost Crows

vanish(P) is de-
fined as the average distance from this vanishing point
to these lines. Since each of those lines should pass
throw the vanishing point, the average distance from the
lines to the vanishing point should tend to zero if the
corner points are accurately positioned. More formally,
let ri = (ai, bi, ci)> be the Hessian form of the ist row,
and V the set of rows of P, then the cost to minimize
can be expressed as:

Cvanish(P) =
1

card(V)

∑
ri ∈V

|ai xv + biyv + ci |√
a2
i + b2

i

(5)

The denominator transforms the line equations in their
normalized Hessian form. Moreover, note that we don’t
use this formulation when the calibration board is or-
thogonal to the principal ray of the camera since in
this situation, the vanishing points would lie at infin-
ity which is not compatible with our vanishing point
scoring method.

Fig. 6 depicts both the cross-ratio and the vanishing
points constraints.

Data fidelity term Using only the two first terms
would lead to a set of points perfectly aligned and with
the perfect distances from one to the next, but not nec-
essary consistent with the calibration board since the re-
fined points could freelymove anywhere. Thus, tomain-
tain a certain consistency between the points and the
calibration board, we add a data fidelity term Cdist(P).
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Figure 6: Constraints of cost function. The left figure
describes the cross-ratio constraint, which is satisfied by
Eq. (2). The right figure shows vanishing point of the
calibration board.

This cost simply defines the `2 distance d(xi, x̂i) from
any original point x̂i computed in Section 4.4.2 to its
corresponding refined points xi ∈ P:

Cdist(P) =
1

card(P)

∑
x∈P

d(xi, x̂i) (6)

global cost function The final cost function to opti-
mize the chessboard corner position estimation can be
described as the weighted sum of the three first cost
functions:

C(P) = arg min
P

(
Cvanish(P) + αCcross(P) + βCdist(P)

)
(7)

where α, β are given parameters. Once the corners
are refined by minimizing the weighted sum of Eq.(7),
these refined points are used to calibrate the camera
parameters using Zhang’s method [22].

4.4.4 Deciding the Weights α and β

The weights α and β of Eq. (7) are decided experimen-
tally. We generate a virtual chessboard consisting in
a set of points regularly arranged and transform them
using a random but realistic perspective transformation
(homography). Then, we added a Gaussian noise on
these points. For a large set of values for α and β, we
generate many noised virtual chessboards and ran our
algorithm. We selected the couple (α, β) that recon-
struct the best the original virtual chessboard in average
over all the virtual noised chessboards.

5 Reconstructing the 3D Struc-
tures

Assuming the cameras to be calibrated, the next step
consists in the computation of a 3D structure of the
scene and in the camera pose estimation of each frame
in the 3D structure coordinate system. This 3D structure
will be the support to projected thermal data for the final
visualization. Note that we only need the camera pose
of the RGB camera since we already know the relative
pose between the RGB camera and the thermal-infrared
camera, from the camera stereo rig calibration.

Many different techniques exist to compute a 3D re-
construction. Table 1 shows a comparison between
state-of-the-art methods. Density refers to how dense
the 3D structure is, cost corresponds to the calculation
cost, and scale specifies whether the method can handle
large scenes.

Among these methods, techniques using depth sen-
sors based on time of flight or structured light in the
infrared domain (e.g., Microsoft Kinect sensor) are im-
mediately discarded since such low-cost depth sensors
do not perform well in outdoor scenes due to interfer-
ence with sunlight. Moreover, low-cost depth sensors
cannot handle large scenes due to their intrinsic limited
range of action. These constrains exclude the use of
KinectFusion. Better sensors are expensive and thus do
not match our purpose of keeping the whole process af-
fordable. Moreover, our method should be easy to set up
and to implement, so we also discard Lidar 3D scanners.
The remaining solutions suggest to use an RGB camera
to perform the 3D reconstruction.

There are two main approaches to generate 3D struc-
tures from RGB images: direct methods, like Engel
et al. [23], referring directly to image intensity, and
feature-based methods, such as Klein et al. [24], that
generates and matches feature points to construct the
3D map. Since our goal is to generate a large thermal
map with real-time performance, possibly on outdoor
scenes, the best candidates are direct sparse odometry
(DSO) [25], large-scale direct monocular simultaneous
localization and mapping (LSD-SLAM) [26] and ORB-
SLAM [27]. In these three 3D reconstruction systems,
DSO and ORB-SLAM are more accurate than LSD-
SLAM [25, 27]. Moreover, the 3D structures generated
from DSO have a better density than those generated
from ORB-SLAM. Thus, we selected DSO for our 3D
reconstruction.
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Table 1: Comparison of 3D reconstruction methods.

method density cost scale
DSO [25] direct sparse small large
LSD-SLAM [26] direct semi-dense small large
PTAM [24] feature sparse small small
ORB-SLAM [27] feature sparse small large
SfM [11] feature sparse large large
KinectFusion [5] RGB-D dense small small
Lidar 3D scanner dense - large

6 Relative Scale Between the Point
Clouds

Any 3D models generated by a monocular RGB camera
is build and defined up to an unknown scale. Since
we want to back-project the thermal-infrared images on
the 3D model obtained by DSO, this unknown scale
should be estimated. In practice, this scale is also the
scale that relates a depth map generated from the RGB
image to the corresponding depth map generated from
the thermal-infrared images. This Section defines how
to estimate the scale of the DSO point cloud in the
stereo rig coordinate system, and how to back-project
the thermal-infrared images on this point cloud.
DSO divides frames into two types: key frames for

which a depth map is computed, and the other frames
just used to refine the depth map generated by the key
frames. We use these depth maps to superimpose ther-
mal information on the 3D structure. For a given key
frame, the depth value of each pixel x refers to a 3D point
that can be projected on the infrared thermal image on
x′. This projected point x′ corresponds to a thermal
value that can be associated to the pixel x in the RGB
image.
More precisely, let Irgb express an RGB image and

Iir a thermal-infrared image. The depth maps of DSO
are sparse so some points have depth value and some
others do not. Image coordinates with depth value d
are denoted by x = (x, y, 1)>. A general back-projection
function [17] to converts the RGB image coordinate to
a 3D coordinate according to the depth d in the DSO
depth map is given by:

X(d) =
( (

KR
)−1
(dx − Kt)
1

)
(8)

If we consider that Prgb defines the coordinate system

of the stereo rig, then Prgb = Krgb[Id|0] and Pir =

Kir [Rir |tir ], where [Rir |tir ] is the relative pose between
the two cameras, usually with the arbitrary constraint
‖tir ‖2 = 1. Since we are back projecting from Prgb =

Krgb[Id|0], the back-projection function simplifies to :

P′rgb(x, d) =
(

dK−1
rgb

x
1

)
(9)

whereKrgb is the intrinsicmatrix ofRGBcamera. Then,
the following equation is used to project the DSO depth
map onto the thermal-infrared image to read its thermal
intensity value:

x′ = Mrgb_irP′rgb(x, d) (10)

such that the pixels of the RGB image can be associated
to the corresponding pixel in the thermal-infrared image:

Irgb(x) ↔ Iir (x′) (11)

However, since the relative pose of Pir in Prgb coordi-
nate system is defined up to scale, the transformation
matrix Mrgb_ir from Prgb in Pir is also defined up to
scale s:

Mrgb_ir = Kir
[
Rir stir

]
(12)

Here, tir is a translation vector corresponding to the
position of the thermal infrared camera in the stereo rig
coordinate system. Since tir is defined up to an arbi-
trary scale (here ‖tir ‖2 = 1), it can be also defined up
to any other scale factor s. Moreover, the 3D structure
and thus the depth values provided by any monocular
RGB SLAM are also defined up to scale, thus we cannot
project the DSO point cloud to thermal-infrared camera
images unless we can determine a common scale fac-
tor between the 3D structure system coordinate and the
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Figure 7: Variation of back-projection by different
scale. The red circle represent a 3D object of the scene,
with a certain arbitrary scale. The translation t between
the two cameras is initially subject to ‖tir ‖2 = 1 can be
scaled with the fine scale factor s to fit the 3D recon-
struction from the first camera.

Figure 8: Result of back-projection to thermal-
infrared images using different scales. The top left
is a reference RGB camera image. The other images are
generated by back-projection of the DSO point cloud
using different scales. The bottom left image shows the
accurate scale.

stereo rig system coordinate. For this process, we can
fix the 3D structure scale factor to its default value and
search for the fine the stereo rig scale factor s of that fits
the best to the 3D structure, as depicted in Fig. 7.

Fig. 8 shows projection result from DSO point cloud
to thermal-infrared images using difference scale s in
Eq. (12), varying the parameter s. In our method, we es-
timate the scale of the point cloud generated by amonoc-
ular RGB camera and project it to thermal-infrared im-
ages accurately.

Thermal values andRGBvalues have differentmodal-
ities, and thus cannot be compared directly. We use
instead the RGB and Thermal depth value to compare
both images, since depth is a common modality. In our
method, we generate a depth map from both the RGB
and thermal-infrared images using a multi view stereo
(MVS) algorithm [28, 29]. A depth map is generated us-
ing several images near focus frames and the trajectory
of the camera obtained from DSO. We generate a patch
for each pixel, then get the score by comparing the patch
and other frame patches using zero-mean normalized
cross correlation (ZNCC).

di = arg min
d∈D

C(i, d) (13)

Eq. (14) describes the score of the ZNCC where C
expresses the ZNCC score of the patch centered in pixel
i with a certain depth value d.

C(i, d) = −
∑
j∈Ip

(
Ip(j) − Ip

) (
I′p(j) − I′p

)
σ(Ip) σ(I′p)

(14)

This score is calculated comparing a square window
Ip in depth image I and a square window I′p in depth
image I′. Ip(j) and I′p(j) describe the intensity value on
pixel j. Finally, Ip and σ(Ip) refer to the means and
the standard deviation of the window Ip . Fig. 9 shows
some results of depth maps generated from both RGB
and thermal-infrared images.

The depth map generated from the RGB image se-
quence is successively translated to thermal-infrared
camera coordinates by Eq. (12) by iterating on t. The
translated RGB depth map and the thermal-infrared
depth map are compared using the mutual information
defined in [30, 31]. This mutual information is often
used to compare images of different modalities. In our
case, this modality variety can be expressed as the differ-
ence of accuracy between the RGB and thermal camera
depth map computation. Indeed, thermal-infrared depth
maps are always significantly worse than the depth maps
build from RGB images. The translation t leading to the
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Figure 9: Generating a depth map using a multi-view
stereo (MVS) algorithm. The top left shows a reference
RGBcamera image and the bottom left shows a reference
thermal-infrared camera image. Right images show the
result of MVS using each image.

best depth map overlap defines the scale s. Eq. (15)
describes the mutual information score.

MI(Irgb, Iir ) = η
(
H(Irgb)+H(Iir )−H(Irgb, Iir )

)
(15)

In Eq. (15), Irgb is the patch converted by Eq. (11) using
given scale s, and η describes the ratio of appear theRGB
depth map on the thermal-infrared camera coordinate
after converting. H(I) describes the appearance ratio
of depth i on the depth image I and H(I, I′) describes
the two dimensional appearance ratio of depth i on the
depth image I and depth j on the depth image I′.

H(I) = −
∑
i=0

pI(i) log
(
pI(i)

)
(16)

H(I, I′) = −
∑
i=0

∑
j=0

pII′(i, j) log
(
pII′(i, j)

)
(17)

Fig.10 shows the variation of the mutual information
scores with different scales s. The green curve is the
average score for each scale. The optimal scale can be
estimated uniquely as a global maximum from this the
graph. This scale is a valuable information to correctly
superimpose the temperature data on the point cloud.

Figure 10: Variation of the MI score with scale. The
green curve is the average score for each scale. We use
some samples to estimate the scale and get the average
of the score. The red vertical line is the place where
the score is maximum, and the blue vertical line is the
ground truth obtained by the experiment in Section 8.4.

7 Generating RGB-T Images from
the Point cloud

At that stage, we have a point cloud computed by the
RGB camera and the correct scale between this point
cloud and the stereo rig referential. Thus, it is basi-
cally possible to project associate to each point a RGB
value as well as a thermal value. In practice, the point
cloud generated from DSO is sparse, so we sometimes
have to interpolate the thermal information where the
point cloud is not dense enough. Thus, the 3D point
cloud is first back-projected on the targeted RGB image
using the camera pose provided by DSO. Second, we
generate triangle meshes from the projected point cloud
using Delaunay triangle division2 [32]. Then each tri-
angle vertex is back projected on the thermal image
using Eq. ( 10), in order to compute the right texture
coordinates of each triangle in the thermal image. The
final rendering consists in the superimposition of the
dense thermal textured mesh back projected onto the
corresponding RGB image. Fig.11 shows an example
of an RGB-T image build with this process.

2Fade2D Delaunay Triangulation
http://www.geom.at/products/fade2d/
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Figure 11: RGB-T image. The left shows the result of
overlaying a 2D mesh on the image, and the right shows
the resulting generated an RGB-T image.

Figure 12: Camera rig. Left: thermal-infrared camera.
Right: RGB camera.

8 Experiments

8.1 Experimental Setups

In our experiments, we fixed a Flea3 in Point Grey
monocular RGB camera and a PI640 Optris thermal-
infrared camera into a hand-held stereo rig, as depicted
in Fig. 12. This device can be easily manipulated to
capture two videos of the scene.

Table 2: Calibration RMS in pixel.

Initial Refined
Thermal 1.4980 0.6311
Stereo 1.2345 0.7594
RGB 0.1723 -

8.2 Calibration Refinement
The calibration refinement process described in Sec-
tion. 4 is evaluated as follows. We first calibrate the
cameras with the non-optimized chessboard corners de-
tected by OpenCV, then compute the reprojection error
on each camera, i.e. the average distance from each de-
tected corner in the image and the projected corned with
the projection matrix. Second, we repeated this process
with the refined chessboard corners. These reprojection
errors are shown in Table 2. Even through the reprojec-
tion error of the thermal camera is still not as accurate
as for the RGB camera, we can note a noticeable im-
provement, roughly by a factor of 2, in the reprojection
error of the thermal camera calibration.

8.3 Thermal Maps and RGB-T Images
As detailed in Section 7, the final RGB-T images are
computed by superimposing thermal information on the
RGB-images. The thermal data is rendered with a col-
ormap with red, green, blue gradation, where red indi-
cates high temperature and blue indicates lower temper-
ature. For our experiments, we generated thermal maps
from both an outdoor sequence and an indoor sequence.
Fig. 13 shows the resulting generated thermal maps.

In the outdoor sequence, the building equipments and
the asphalt exposed to the sun light get a high temper-
ature, and thus appear in red. The cars parked in the
shadows of buildings have a lower temperature and are
rendered in blue. In the indoor sequence, we can no-
tice the high temperature of the displays in red, and low
temperature of the beverage rendered in blue.

We also generated RGB-T images from various
scenes. Fig. 14 shows the resulting RGB-T images and
reference RGB images.

8.4 Evaluation the Estimated Scale
In this section, we describe the evaluation of our scale
estimation method and its accuracy. Fig. 15 shows the
environment we used to evaluate the scale. In this ex-
periment, we reconstruct a calibration board of known
length. Using the scale estimated by our method, we
compared the estimated size of the calibration board
with the actual size.

First, we reconstruct a thermal map as usual, as shown
on the left of Fig. 15, then we reconstruct the calibra-
tion board in the right part of the figure. Second, the
point cloud is reprojected to the image capturing the
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Figure 13: Thermal maps. Left: outdoor sequence, made out of 1330 pairs of RGB and thermal-infrared images.
Right: indoor sequence with 1264 pairs of RGB and thermal-infrared images.

Figure 14: RGB-T images from various scenes. This images are generated from 3 different sequences.
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Figure 15: Evaluation of the estimated scale. The
reconstructed environment includes a calibration board.
First, estimate the scale of the point cloud. Second,
compare the estimated scale and the actual scale by
using the side of the calibration board.

calibration board and we pick up the points on the cor-
ners of each cell of the calibration board. The points
are very noisy, so we remove the outliers that are not
on the plane of the calibration board by RANSAC and
compute a estimated length L̂ of each cell side:

L̂ =
‖t‖
s

(18)

We then estimate the average length of the cells, which
is the length of the DSO point cloud scale. Using
Eq. (18), we converted the scale to the actual size. We
calculated the mean relative error against the actual size
L using Eq. (19):

ε =
L̂ − L

L
(19)

Considering the randomness of RANSAC, we re-
peated the process 100 times. Table 3 describes the
mean and the standard deviation of the relative error.
We evaluated the indoor and outdoor scenes in two se-
quences.

9 Conclusion
In this paper, we visualize temperature more effectively
by generating a thermal map and RGB-T images using
3D structures obtained from DSO. We further demon-
strate the results of our method using indoor and outdoor
scenes.

Table 3: Mean and standard deviation of the relative
error between the estimated scale and the ground truth.

Average Standard deviation
Scene1 -0.1026 0.0048
Scene2 0.0719 0.0386

In the proposed method, first, we calibrate an RGB
and a thermal-infrared camera using a calibration board
that can be detected by the thermal-infrared camera.
Then, temperature information is superimposed onto
the generated 3D structure using the extrinsic parameter
between both cameras. At that time, we have to obtain
the scale of the 3D point cloud. Thus, we estimate the
scale using depth maps generated fromMVS.Moreover,
we generate RGB-T images that can superimpose tem-
perature on RGB images where sufficient 3D points are
not obtained from DSO using Delaunay triangulation in
order to create triangle mesh.

We can generate thermal maps and RGB-T images
by using the proposed method. We plan to expand our
system to generate automatic alerts for abnormalities in
electricity in plants based on variations in the tempera-
ture.
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